Home > CSC-OpenAccess Library > Manuscript Information
EXPLORE PUBLICATIONS BY COUNTRIES |
EUROPE | |
MIDDLE EAST | |
ASIA | |
AFRICA | |
............................. | |
United States of America | |
United Kingdom | |
Canada | |
Australia | |
Italy | |
France | |
Brazil | |
Germany | |
Malaysia | |
Turkey | |
China | |
Taiwan | |
Japan | |
Saudi Arabia | |
Jordan | |
Egypt | |
United Arab Emirates | |
India | |
Nigeria |
A linear-Discriminant-Analysis-Based Approach to Enhance the Performance of Fuzzy C-means Clustering in Spike Sorting With low-SNR Data
Chien-Wen Cho, Wen-Hung Chao, You-Yin Chen
Pages - 1 - 13 | Revised - 15-06-2007 | Published - 30-06-2007
MORE INFORMATION
KEYWORDS
Spike sorting, spike classification, fuzzy c-means, principal-component analysis, linear discriminant analysis, low-SNR.
ABSTRACT
Spike sorting is of prime importance in neurophysiology and hence has received
considerable attention. However, conventional methods suffer from the degradation
of clustering results in the presence of high levels of noise contamination. This paper
presents a scheme for taking advantage of automatic clustering and enhancing the
feature extraction efficiency, especially for low-SNR spike data. The method employs
linear discriminant analysis based on a fuzzy c-means (FCM) algorithm. Simulated
spike data [1] were used as the test bed due to better a priori knowledge of the spike
signals. Application to both high and low signal-to-noise ratio (SNR) data showed that
the proposed method outperforms conventional principal-component analysis (PCA)
and FCM algorithm. FCM failed to cluster spikes for low-SNR data. For two
discriminative performance indices based on Fisher's discriminant criterion, the
proposed approach was over 1.36 times the ratio of between- and within-class
variation of PCA for spike data with SNR ranging from 1.5 to 4.5 dB. In conclusion,
the proposed scheme is unsupervised and can enhance the performance of fuzzy
c-means clustering in spike sorting with low-SNR data.
1 | T. Rashid, “Classification of Churn and non-Churn Customers in Telecommunication Companies” International Journal of Biometrics and Bioinformatics (IJBB), 3(5), pp. 66-95, Nov. 2009. |
A. Hyvarinen et al. “Independent component analysis”, New York: Wiley (2001) | |
A. Martinez and M. Kak. “PCA versus LDA”. IEEE Trans Pattern Analysis Machine Intell, 23(2): 233-288, 2001 | |
B. C. Wheeler and W. J. Heetderks. “A comparison of techniques for classification of multiple neural signals”. IEEE Trans Biomed Eng, 29(12):752-759, 1982 | |
B. J. Richmond and L. M. Optican. “Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. II. Quantification of response waveform”. J Neurophysiol, 57(1):147-161, 1987 | |
C. Liu and H. Wechsler. Enhanced Fisher linear discriminant model for face recognition. In Proceedings of Int Conf Pattern Recognition.1368-1372, 1998 | |
D. Donoho and I. M. Johnstone. “Ideal spatial adaptation by wavelet shrinkage”. Biometrika, 81(3):425-455, 1994 | |
D. L. Swets and J. Weng. “Using discriminant eigenfeatures for image retrieval”. IEEE Trans Pattern Anal Machine Intell 18(8):831-836, 1996 | |
F. Rieke et al. “Spikes: exploring the neural code”, Cambridge, MA: The MIT Press (1996) | |
F. Rieke et al. “Spikes: exploring the neural code”, Cambridge, MA: The MIT Press (1996) | |
G. L. Gerstein and W. A. Clark. “Simultaneous studies of firing patterns in several neurons”. Science,143(3612):1325-1327, 1964 | |
G. Zouridakis and D. C. Tam. “Identification of reliable spike templates in multi-unit extracellular recordings using fuzzy clustering”. Comp Meth Prog Biomed, 61(2):91-98, 2000 | |
H. R. Barker. “Multivariate Analysis of Variance (MANOVA): A Practical Guide to Its Use in Scientific Decision-Making”, AL: University of Alabama Press (1984) | |
J. C. Bezdek, R. Ehrlich and W. Full. “FCM: The fuzzy c-means clustering algorithm”. Comput Geosci, 10(2):191-203, 1984 | |
J. C. Letelier and P. P. Weber. “Spike sorting based on discrete wavelet transform coefficients”. J Neurosci Methods, 101(2):93-106, 2000 | |
J. H. Friedman. “Exploratory projection pursuit”. J Ameri Statist Associat, 82(1):249-266, 1987 | |
J. Ye, Q. Li. “A two-stage linear discriminant analysis via QR-decomposition”. IEEE Trans Pattern Analysis Machine Intell, 27(6):929-941, 2005 | |
K. H. Kim and S. J. Kim, “Neural spike sorting under nearly 0-dB signal-to-noise ratio using nonlinear energy operator and artificial neural-network classifier”. IEEE Trans Biomed Eng, 47(10):1406-1411, 2000 | |
K. H. Kim and S. J. Kim. “Method for unsupervised classification of multiunit neural signal recording under low signal-to-noise ratio”. IEEE Trans Biomed Eng, 50(4):421-431, 2003 | |
K. H. Kim, “Improved algorithm for fully-automated neural spike sorting based on projection pursuit and Gaussian mixture model”. Inter J Control Autom Syst, 4(6):705-713, 2006 | |
K. Mirfakhraei and K. Horch. “Classification of action potentials in multi-unit intrafascicular recordings using neural network patern-recognition techniques”. IEEE Trans Biomed Eng, 41(1):89-91, 1994 | |
M. S. Lewicki. “A review of methods for spike sorting: The detection and classification of neural action potentials”. Network: Computation Neural Syst, 9(4):R53-R78, 1998 | |
M. S. Lewicki. “Bayesian modeling and classification of neural signals”. Neural Comput, 6(5):1005-1030, 1994 | |
P. N. Belhumeour, J. P. Hespanha and D. J. Kriegman. “Eigenfaces vs. fisherfaces: recognition using class specific linear projection”. IEEE Trans Pattern Anal Machine Intell, 19(7):711-720, 1997 | |
P. S. Penev and J. J. Atick. “Local feature analysis: a general statistical theory for object representation”. Network: Comput Neural Syst, 7(3):477-500, 1996 | |
R. A. Fisher. “The use of multiple measurements in taxonomic problems”. Ann eugenics, 7(2):179-188, 1936 | |
R. Chandra and L. M. Optican. “Detection, classification, and superposition resolution of action potentials in multiunit single channel recordings by an on-line real-time neural network”. IEEE Trans Biomed Eng, 44(5):403-412, 1997 | |
R. O. Duda and P. E. Hart. “Pattern Classification and Scene Analysis”, New York: John Wiley & Sons (1973) | |
R. Q. Quiroga, Z. Nadasdy and Y. Ben-Shaul. “Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering”. Neural Comp, 16(8):1661-1687, 2004 | |
R. Q. Quiroga, Z. Nadasdy and Y. Ben-Shaul. “Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering”. Neural Comp, 16(8):1661-1687, 2004 | |
R. Tasker, Z. Israel and K. Burchiel. “Microelectrode recording in movement disorder surgery”. New York: Thieme Medical Publishers (2004) | |
S. N. Gozani and J. P. Miller. “Optimal discrimination and classification of neuronal action potential waveforms from multiunit, multichannel recordings using software-based linear filters”. IEEE Trans Biomed Eng, 41(4):358-372, 1994 | |
S. Qian and D. Chen. “Discrete Gabor transform”. IEEE Trans Signal Process, 41(7): 2429-2438, 1993 | |
X. L. Xie and G. A. Beni. “A validity measure for fuzzy clustering”. IEEE Trans Pattern Anal Machine Intell 13(8):841-847, 1991 | |
X. Yang and S. A. Shamma. “A totally automated system for the detection and classification of neural spikes”. IEEE Trans Biomed Eng, 35(10):806-816, 1988 | |
Y. Meyer. “Wavelet analysis book report”. Bull Am Math Soc (New Series), 28(2):350-360, 1993 | |
Mr. Chien-Wen Cho
- Taiwan
Mr. Wen-Hung Chao
- Taiwan
Mr. You-Yin Chen
- Taiwan
irradiance@so-net.net.tw
|
|
|
|
View all special issues >> | |
|
|