Home > CSC-OpenAccess Library > Manuscript Information
EXPLORE PUBLICATIONS BY COUNTRIES |
EUROPE | |
MIDDLE EAST | |
ASIA | |
AFRICA | |
............................. | |
United States of America | |
United Kingdom | |
Canada | |
Australia | |
Italy | |
France | |
Brazil | |
Germany | |
Malaysia | |
Turkey | |
China | |
Taiwan | |
Japan | |
Saudi Arabia | |
Jordan | |
Egypt | |
United Arab Emirates | |
India | |
Nigeria |
Detection of Neural Activities in FMRI Using Jensen-Shannon Divergence
Jayanta Basak
Pages - 113 - 122 | Revised - 15-09-2012 | Published - 24-10-2012
MORE INFORMATION
KEYWORDS
Speckle Noise, Frost Filter, Fuzzy Level Set Method
ABSTRACT
In this paper, we present a statistical technique based on Jensen-Shanon divergence for detecting
the regions of activity in fMRI images. The method is model free and
we exploit the metric property of the square
root of Jensen-Shannon divergence to accumulate the variations between successive time
frames of fMRI images. Theoretically
and experimentally we show the effectiveness of our algorithm.
1 | Barcaru, A., & Vivó-Truyols, G. (2016). Use of Bayesian Statistics for Pairwise Comparison of Megavariate Data Sets: Extracting Meaningful Differences between GCxGC-MS Chromatograms Using Jensen–Shannon Divergence. Analytical chemistry, 88(4), 2096-2104. |
2 | Vallabhadas, D. K. (2013). Comparative study of distance metrics for t-closeness (Doctoral dissertation). |
A. D. Wagner, D. L. Schacter, M. Rotte, W. Koutstaal, A. Marial, A. M. Dale, B. R. Rosen, and R. L. Bucker, “Building memories: Remembering and forgetting of verbal experiences and predicted by brain activity,” Science, vol. 281, pp. 1188–1190, 1998. | |
A. K. C. Wong and M. You, “Entropy and distance of random graphs with application to structural pattern recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 7, pp.599–609, 1985. | |
B. A. Ardekani, J. Kershaw, K. Kashikura, and I. Kanno, “Activation detection in functional MRI using subspacemodeling and maximum likelihood estimation,” IEEE Trans. Medical Imaging,vol. 18, pp. 101–114, 1996. | |
B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med., vol. 34, pp. 537–541,1995. | |
C. Atae-Allah, J. F. G´omez-Lopera, J. Mart´inez-Aroza, Rom´an-Rold´an, and P. LuqueEscamilla,“Image segmentation by Jensen-Shannon divergence : Application to measurement of interfacial tension,” in Proc. Int. Conference on Pattern Recognition (ICPR00), Barcelona, Spain,vol. 3, 2000. | |
C. Goutte, P. Toft, E. Rostrup, F. A. Nielsen, and L. K. Hansen, “On clustering fMRI time series,” NeuroImage, vol. 9, pp. 298–310, 1999. | |
C. R. Rao, “Diversity : Its measurement, decomposition, appointment and analysis,”Sankhya: The Indian Journal of Statistics, vol. 11(A), pp. 1–22, 1982. | |
D. M. Endres and J. E. Schindelin, “A new metric for probability distributions,” IEEE Trans.Information Theory, vol. 49, pp. 1858–60, 2003. | |
E. Bullmore, S. C. Brammer, M. Williams, S. Rabe-Hesketh, N. Janot, A. David, J. Mellers, R.Howard, and P. Sham, “Statistical methods of estimation and inference for functional MR image analysis,” Magn. Resonance Med., vol. 35, pp. 261–277, 1996. | |
E. Salli, H. H. Aronen, S. Savolainen, A. Korvenoja, and A. Visa, “Contextual clustering for analysis of functional fMRI data,” IEEE Transactions on Medical Imaging, vol. 20, pp. 403–414,2001. | |
F. ¨Osterreicher and I. Vajda, “A new class of metric divergences on probability spaces and its statistical applications,” Ann. Inst. Statist. Math., vol. 55, pp. 639–653, 2003. | |
fMRIDC, “fmri data center,” http://www.fmridc.org/f/fmridc. | |
G. H. Glover, “Deconvolution of impulse response in event-related bold fmri,” NeuroImage,vol. 9, pp. 416–429, 1999. | |
J. B. Brewer, J. E. Desmond, G. H. Glover, and J. D. E. Gabrieli, “Making memories: Brain activity predicts how well visual experience will be remembered,” Science, vol. 281, pp. 1185–1187, 1998. | |
J. Hirsch, D. Rodriguez Moreno, and K. H. S. Kim, “Interconnected large-scale systems for three fundamental cognitive tasks revealed by fMRI,” Journal of Cognitive Neuroscience, vol. 13,pp. 389–405, 2001. | |
J. Lin, “Divergence measures based on the Shannon entropy,” IEEE Trans. Information Theory, vol. 37, pp. 145–151, 1991. | |
J. V. Stone, J. Porrill, C. Buchel, and K. Friston, “Spatial, temporal, and spatiotemporal independent component analysis of fMRI data,” in 18th Leeds Statistical Research Workshop on Spatio-temporal modeling and its applications, University of Leeds, 1999. | |
K. J. Friston, K. J. Worsley, R. S. J. Frackowiak, J. C. Mazziotta, and A. C. Evans,“Assessing the significance of focal activations using their spatial extent,” Human Brain Mapping,vol. 1, pp. 214–220, 1994. | |
K. K. Kwong, “Functional resonance imaging with echoplanar imaging,” Magn. Reson. Q., vol.11, pp. 1–20, 1995. | |
K. Kuppusamy, W. Lin, and E. M. Haacke, “Statistical assesment of crosscorrelation and variance methods and the importance of electrocardiogram gating in functional magnetic resonance imaging,” Magn. Resonance Imaging, vol. 15, pp. 169–181, 1997. | |
M. J. Brammer, “Multidimensional wavelet analysis of functional magnetic resonance images,” Human Brain Mapping, vol. 6, pp. 378–382, 1998. | |
M. M. J., S. Makeig, G. G. Brown, T. P. Jung, S. S. Kindermann, A. J. Bell, and T. J. Sejnowski, “Analysis of fMRI data by blind separation into independent spatial components,”Human Brain Mapping, vol. 6, pp. 160–188, 1998. | |
P. A. Bandettini, A. Jesmanowicz, E. C. Wong, and J. S. Hyde, “Processing strategies for time-course data sets in functional MRI of the human brain,” Magn. Reson. Med., vol. 30, pp.161–173, 1993. | |
S. Clare, Functional Magnetic Resonance Imaging: Methods and Applications. PhD thesis,University of Nottingham, 1997. | |
S. Gold, B. Christian, S. Arndt, G. Zeien, T. Cizadlo, D. L. Johnson, M. Flaum, and N. C.Andreasen, “Functional MRI statistical software packages : A comparative analysis,” Human Brain Mapping, vol. 6, pp. 73–84, 1998. | |
S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. National Academy of Science, USA, vol. 87, pp.9868–9872, 1990. | |
S. Y. Bookheimer, M. H. Strojwas, M. S. Cohen, A. M. Saunders, M. A. Pericak-Vance, J. C.Mazziotta, and G. W. Small, “Patterns of brain activation in people at risk for alzheimer’s disease,” New England Journal of Medicine, vol. 343, pp. 450–456, 2000. | |
U. E. Ruttimann, M. Unser, R. R. Rawlings, D. Rio, N. F. Ramsey, V. S. Mattay, D. W. Hommer, J. A. Frank, and D. R. Weinberger, “Statistical analysis of functional MRI data in the wavelet domain,” IEEE Transactions on Medical Imaging, vol. 17, pp. 142–154, 1998. | |
W. Backfrieder, R. Baumgartner, M. Smal, E. Moser, and H. Bergmann, “Quantification of intensity variations in functional MR images using rotated principal components,” Phys. Med.Biol., vol. 41, pp. 1425–1438, 1996. | |
W. Richter, P. M. Andersen, A. P. Georgopoulos, and S. G. Kim, “Sequential activity in human motor areas during a delayed cued finger movement task studied by time-resolved fMRI,” Neuro Report, vol. 24, pp. 1–15, 1997. | |
Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: A practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society, Series B, vol. 57, pp. 289–300, 1995. | |
Dr. Jayanta Basak
NetApp - India
basakjayanta@yahoo.com
|
|
|
|
View all special issues >> | |
|
|