Home > CSC-OpenAccess Library > Manuscript Information
EXPLORE PUBLICATIONS BY COUNTRIES |
EUROPE | |
MIDDLE EAST | |
ASIA | |
AFRICA | |
............................. | |
United States of America | |
United Kingdom | |
Canada | |
Australia | |
Italy | |
France | |
Brazil | |
Germany | |
Malaysia | |
Turkey | |
China | |
Taiwan | |
Japan | |
Saudi Arabia | |
Jordan | |
Egypt | |
United Arab Emirates | |
India | |
Nigeria |
Inference Networks for Molecular Database Similarity Searching
Ammar Abdo, Naomie Salim
Pages - 1 - 16 | Revised - 15-02-2008 | Published - 30-02-2008
MORE INFORMATION
KEYWORDS
Bayesian Networks, Molecular Similarity Searching, Chemical Databases, Inference Network, Drug Discovery.
ABSTRACT
Molecular similarity searching is a process to find chemical compounds that are
similar to a target compound. The concept of molecular similarity play an
important role in modern computer aided drug design methods, and has been
successfully applied in the optimization of lead series. It is used for chemical
database searching and design of combinatorial libraries. In this paper, we
explore the possibility and effectiveness of using Inference Bayesian network for
similarity searching. The topology of the network represents the dependence
relationships between molecular descriptors and molecules as well as the
quantitative knowledge of probabilities encoding the strength of these
relationships, mined from our compound collection. The retrieve of an active
compound to a given target structure is obtained by means of an inference
process through a network of dependences. The new approach is tested by its
ability to retrieve seven sets of active molecules seeded in the MDDR. Our
empirical results suggest that similarity method based on Bayesian networks
provide a promising and encouraging alternative to existing similarity searching
methods.
1 | Xu, J., Yue, K., Li, J., Wang, F., & Liu, W. (2014, October). An approach for discovering user similarity in social networks based on the Bayesian network and MapReduce. In Behavior, Economic and Social Computing (BESC), 2014 International Conference on (pp. 1-7). IEEE. |
2 | M. R. Dikhit, G.C.Sahoo and P.Das, “JEVBase: An Interactive Resource for Protein Annotationof JE Virus” International Journal of Biometrics and Bioinformatics (IJBB), 4(3), pp. 31-66, Aug. 2009. |
B. A. N. Ribeiro and R. Muntz. “A belief network model for IR”. In: Proceedings of the 19th ACM SIGIR Conference, pp. 253–260,1996 | |
Barnard Chemical Information Ltd., “Barnard Chemical Information Fingerprint Software Documentation”. MAKEBITS version 3.3, p. 1-5, 1997 | |
Barnard Chemical Information Ltd., “Barnard Chemical Information Fingerprint Software Documentation”. MAKEFRAG version 3.3, Sheffield, p. 1, 1997 | |
Barnard Chemical Information Ltd., “Barnard Chemical Information Fingerprint”. http://www.bci.gb.com | |
C. A James, D. Weininger and J. Delany. “Daylight Theory Manual” http://www.daylight.com/dayhtml/doc/theory/index.html | |
C. J. Van Rijsbergen. “Information Retrieval”, 2nd ed., University of Glasgow, 87-110 (1979) | |
D. Bawden. “Molecular dissimilarity in chemical information systems”. In Chemical Structures Vol. 2: The International Language of Chemistry (W. A. Warr, ed.), Springer-Verlag, Hiedelberg, pp. 383-388, 1993 | |
D. E. Patterson, R. D. Cramer, A. M. Ferguson, R. D. Clark and L. E. Weinberger. “Neighborhood behavior: as useful concept for validation of molecular diversity descriptors”. Journal of Medical Chemistry, 39:3060-3069, 1996 | |
D. Ellis, J. Furner-Hines and P. Willett. “Measuring the degree of similarity between objects in text retrieval systems”. Perspective in Information Management. 3:128-149, 1993 | |
Downs, G.M., Poirrette, A.R., Walsh, P. and Willett, P. “Evaluation of similarity searching methods using activity and toxicity data”. In Chemical Structures Vol. 2: The International Language of Chemistry (W. A. Warr, ed), Springer Verlag, Heidelberg, pp. 409-421, 1993 | |
E. J. Martin, J. M. Blaney, M. A. Siani, D. C. Spellmeyer, A. K. Wong and W. H. Moos. “Measuring diversity: Experimental design of combinatorial libraries for drug discovery. Journal of Medicinal Chemistry, 38:1431-1436, 1995 | |
G. M. Downs and P. Willett. “Similarity searching in databases of chemical structures”. In: K. B. Lipkowitz and D. B. Boyd (Eds.), Reviews in Computational Chemistry, VCH Publishers, New York, Vol. 7, pp. 1-66, 1996 | |
G. Salton and M. J. McGill. “Introduction to Modern Information Retrieval”, McGraw-Hill, NewYork, (1983) | |
G. W. Adamson and J. A. Bush. “A method for the automatic classification of chemical structures”. Information Storage and Retrieval, 9:561-568,1973 | |
H. Turtle and W. Croft. “A comparison of text retrieval models”. Comput. Journal, 35, 279- 290, 1992 | |
H. Turtle and W. Croft. “Evaluation of an inference network-based retrieval model”. ACM Transactions on Information Systems, 9:187-222, 1991 | |
H. Turtle. “Inference Networks for Document Retrieval”. PhD Thesis, University of Massachusetts, 1990 | |
J. D. Holliday and P. Willett. “Definitions of "dissimilarity" for dissimilarity-based compound selection”. Journal of Biomolecular Screening, 1:145-151, 1996 | |
J. Gasteiger and T. Engel. ”Chemoinformatics”, VCH-Wiley, New York, Vol. 1, pp. 3-5 (2003) | |
J. L. Durant, B. A. Leland, D. R. Henry and J. G. Nourse. “MDL keys revisited”. 2nd Joint Sheffield Conference on Chemoinformatics: Computational Tools For Lead Discovery, University of Sheffield, Sheffield, 2001 | |
J. L. Durant, B. A. Leland, D. R. Henry and J. G. Nourse. “Reoptimization of MDL keys for use in drug discovery”. Journal of Chemical Information and Computer Science, 42:1273- 1280, 2002 | |
J. Pearl. “Probabilistic reasoning in intelligent systems: Networks of plausible inference”, Morgan Kaufmann Publishers, (1988) | |
L. Hodes. “Clustering a large number of compounds. 1. Establishing the method on an initial sample”. Journal of Chemical Information and Computer Science, 29:66-71, 1989 | |
L. M. De Campos, J. M. Fernández and J. F. Huete. “The BNR model: foundations and performance of a Bayesian network- based retrieval model”. Int. J. Approx. Reasoning, 3, pp. 265–285, 2003 | |
M. A. Johnson and G. M. Maggiora. “Concepts and Application of Molecular Similarity”, John Wiley & Sons, New York (1990) | |
M. A. Miller. “Chemical Database Techniques in Drug Discovery”. Nature Reviews Drug Discov.,1, pp. 220-227, 2002 | |
M. S. Lajiness. “Dissimilarity-based compound selection techniques”. Perspectives in Drug Discovery and Design, 7/8:65-84, 1997 | |
Melano Chemoinformatics. “Dragon software”. http://www.talete.mi.it | |
Molecular Design Ltd., MDDR “MDL Drug Data Report Database”. http://www.mdli.com | |
N. Daut, R. Mohemad and N. Salim. “Finding Best Coefficients for Similarity Searching Using Neural Network Algorithm”. International Conference in Artificial Intelligence in Engineering & Technology (ICAIET), 2006. | |
N. Salim and W. W. P. Godfrey. “Effectiveness of Probability Models for Compound Similarity Searching”. Journal of Advancing Information Management Studies, 2(1): pp. 56-74, 2005. | |
N. Salim, J. Holliday and P. Willet. “Combination of fingerprint-based similarity coefficients using data fusion”. J. Chem. Inf. Comput. Sci., 43, pp. 435-442, 2003 | |
P. G. Dittmar, N. A. Farmer, W. Fisanick, R. C. Haines and J. Mockus. “The CAS online search system. 1. General system design and selection, generation and use of search screens”. Journal of Chemical Information and Computer Sciences, 23:93-102, 1983 | |
P. H. A. Sneath and R. R. Sokal. “Numerical Taxanomy”. Freeman, San Francisco, 1973 | |
P. M. Dean. “Molecular Similarity In Drug Design”. Blackie Academic & Professional, London, 1995 | |
P. Willett and V. Winterman. “A comparison of some measures of intermolecular structural similarity”. Quantitative Structure-Activity Relationships, 5, 18–25, 1986 | |
P. Willett, J. M. Barnard and G. M. Downs. “Chemical similarity searching”. Journal of Chemical Information and Computer Sciences, 38:983-996, 1998 | |
P. Willett, V. Winterman and D. Bawden. “Implementation of nearest neighbour searching in an online chemical structure search system”. Journal of Chemical Information and Computer Science, 26:36-41, 1986 | |
P. Willett. “Algorithms for calculation of similarity in chemical structure databases”. In Concepts and Application of Molecular Similarity, M. A. Johnson and G. M. Maggiora, Eds., John Wiley and Sons, New York. pp. 43-61, 1990 | |
P. Willett. “Chemoinformatics: an application domain for information retrieval techniques”. In Proceedings of the 27th Annual international ACM SIGIR Conference on Research and Development in information Retrieval SIGIR '04. ACM, New York, NY, 393-393, 2004 | |
P. Willett. “Similarity And Clustering In Chemical Information Systems”, Research Studies Press, Letchworth, (1987) | |
P. Willett. “Similarity-based virtual screening using 2D fingerprints”. Drug Discov. Today, 1046-1053, 2006 | |
P.A. Bath, C. A. Morris and P. Willett. “Effect of standardisation of fragment-based measures of structural similarity”. Journal of Chemometrics, 7, pp. 543, 1993. | |
R. E. Carhart, D. H. Smith and R. Venkataraghavan. “Atom pairs as molecular features in structure-activity studies: definitions and applications”. Journal of Chemical Information and Computer Science, 25:64-73, 1985 | |
R. P. Sheridan and S. K. Kearsley. “Why do we need so many chemical similarity search methods?”. Drug Discov. Today, 7, 903–911, 2002 | |
S. K. M. Wong and Y. Y Yao. “On modeling information retrieval with probabilistic inference”. ACM Transactions on Information Systems, Vol. 13, No. 1, pp. 38-68, 1995 | |
T. R. Hagadone. “Molecular substructure similarity searching: efficient retrieval in twodimensional structure databases”. Journal of Chemical Information and Computer Science. 32:515-521, 1992 | |
Tripos Inc. UNITY Reference Guide version 4.1. Tripos, St. Louis, Missouri, 1999 | |
V. J. Gillet, P. Willett and J. Bradshaw. “The effectiveness of reactant pools for generating structurally diverse combinatorial libraries”. Journal of Chemical Information and Computer Science. 37:731-740, 1997 | |
W. Fisanick, K. P. Cross and A. Rusinko. “Similarity searching on CAS Registry Substances. 1. Global molecular property and generic atom triangle geometric searching”. Journal of Chemical Information and Computer Sciences, 32:664-674, 1992 | |
Mr. Ammar Abdo
- Malaysia
ammar_utm@yahoo.com
Mr. Naomie Salim
- Malaysia
|
|
|
|
View all special issues >> | |
|
|