Home   >   CSC-OpenAccess Library   >    Manuscript Information
Identification of Potential Inhibitors against Attachment Glycoprotein G of Nipah Virus using Comprehensive Drug Repurposing Approach
Sangita Ghimire, Sazzad Shahrear, Siddhesh Kishor Saigaonkar, Laura K.Harris
Pages - 1 - 20     |    Revised - 30-09-2022     |    Published - 31-10-2022
Volume - 15   Issue - 1    |    Publication Date - October 2022  Table of Contents
MORE INFORMATION
KEYWORDS
Nipah Virus Drug Development, Attachment Glycoprotein G, Molecular Docking, Molecular Dynamics Simulation, Drug Repurposing.
ABSTRACT
The emerging zoonotic Nipah virus (NiV) is a major threat to public health because of its potential to cause severe outbreaks from human-to-human transmission and lack of therapeutic options currently. Identification of effective therapeutics to combat NiV infections is needed to contain future outbreaks. This research uses in silico methods to predict putative therapeutic candidates for the NiV attachment glycoprotein G (NiV-G) from existing therapeutic agents. To do this, virtual screening of NiV-G against 1615 FDA approved drugs publicly available from the Zinc 15 database is performed using a molecular docking approach via AutoDock Vina software. Further, a molecular dynamics simulation using WebGRO server is employed to identify top NiV-G inhibitors. Most of the binding for the top three ligands – as determined by binding energy–occurs in the catalytic groove that must contain Phe458, Trp504, Gln559, and Glu579 in order to successfully inhibit NiV-G. The molecular dynamics simulation analysis validates rigidity and stability of the docked complex through the assessment of root mean square deviations, root mean square fluctuations, solvent accessible surface area, radius of gyration, and hydrogen bond analysis from simulation trajectories. Post-molecular dynamics analysis also shows that Alvimopan, Betrixaban, and Ribociclib interact with NiV-G in the same binding pocket. Therefore, Alvimopan, Betrixaban, and Ribociclib are identified as top NiV-G inhibitors that could be used to improve NiV-infected patient outcomes when an outbreak arises.
Aditi, & Shariff, M. (2019). Nipah virus infection: A review. Epidemiology and Infection, 147, e95. https://doi.org/10.1017/S0950268819000086
Agency, E. M. (n.d.). Kisqali: EPAR - Product Information. https://www.ema.europa.eu/en/documents/product-information/kisqali-epar-product-information_en.pdf
Aguilar, H. C., Ataman, Z. A., Aspericueta, V., Fang, A. Q., Stroud, M., Negrete, O. A., Kammerer, R. A., & Lee, B. (2009). A Novel Receptor-induced Activation Site in the Nipah Virus Attachment Glycoprotein (G) Involved in Triggering the Fusion Glycoprotein (F). Journal of Biological Chemistry, 284(3), 1628-1635. https://doi.org/10.1074/jbc.M807469200
Banerjee, S., Gupta, N., Kodan, P., Mittal, A., Ray, Y., Nischal, N., Soneja, M., Biswas, A., & Wig, N. (2019). Nipah virus disease: A rare and intractable disease. Intractable & Rare Diseases Research, 8(1), 1-8. https://doi.org/10.5582/irdr.2018.01130
Bekker, H., J C Berendsen, H., van Drunen, R., van der Spoel, D., Sijbers, A., Keegstra, H., Reitsma, B., Renardus, M. K. R., Achterop, S., & Dijkstra, E. J. (1993). Gromacs : A parallel computer for molecular dynamics simulations. Physics Computing, 252-256.
Berellini, G., Waters, N. J., & Lombardo, F. (2012). In silico Prediction of Total Human Plasma Clearance. Journal of Chemical Information and Modeling, 52(8), 2069-2078. https://doi.org/10.1021/ci300155y
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. In Nucleic Acids Research (Vol. 28, Issue 1, pp. 235-242). Oxford University Press. https://doi.org/10.1093/nar/28.1.235
Bowden, T. A., Aricescu, A. R., Gilbert, R. J. C., Grimes, J. M., Jones, E. Y., & Stuart, D. I. (2008). Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nature Structural & Molecular Biology, 15(6), 567-572. https://doi.org/10.1038/nsmb.1435
Chua, K. B. (2003). Nipah virus outbreak in Malaysia. Journal of Clinical Virology, 26(3), 265-275. https://doi.org/10.1016/S1386-6532(02)00268-8
Chua, K. B., Bellini, W. J., Rota, P. A., Harcourt, B. H., Tamin, A., Lam, S. K., Ksiazek, T. G., Rollin, P. E., Zaki, S. R., Shieh, W.-J., Goldsmith, C. S., Gubler, D. J., Roehrig, J. T., Eaton, B., Gould, A. R., Olson, J., Field, H., Daniels, P., Ling, A. E., Mahy, B. W. J. (2000). Nipah Virus: A Recently Emergent Deadly Paramyxovirus. Science, 288(5470), 1432-1435. https://doi.org/10.1126/science.288.5470.1432
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
Dallakyan, S., & Olson, A. J. (2015). Small-Molecule Library Screening by Docking with PyRx (pp. 243-250). https://doi.org/10.1007/978-1-4939-2269-7_19
Diederich, S., Moll, M., Klenk, H.-D., & Maisner, A. (2005). The Nipah Virus Fusion Protein Is Cleaved within the Endosomal Compartment. Journal of Biological Chemistry, 280(33), 29899-29903. https://doi.org/10.1074/jbc.M504598200
Diederich, S., Thiel, L., & Maisner, A. (2008). Role of endocytosis and cathepsin-mediated activation in Nipah virus entry. Virology, 375(2), 391-400. https://doi.org/10.1016/j.virol.2008.02.019
Durán-Iturbide, N. A., Díaz-Eufracio, B. I., & Medina-Franco, J. L. (2020). In Silico ADME/Tox Profiling of Natural Products: A Focus on BIOFACQUIM. ACS Omega, 5(26), 16076-16084. https://doi.org/10.1021/acsomega.0c01581
Epstein, J. H., Anthony, S. J., Islam, A., Kilpatrick, A. M., Ali Khan, S., Balkey, M. D., Ross, N., Smith, I., Zambrana-Torrelio, C., Tao, Y., Islam, A., Quan, P. L., Olival, K. J., Khan, M. S. U., Gurley, E. S., Hossein, M. J., Field, H. E., Fielder, M. D., Briese, T., Daszak, P. (2020). Nipah virus dynamics in bats and implications for spillover to humans. Proceedings of the National Academy of Sciences, 117(46), 29190-29201. https://doi.org/10.1073/pnas.2000429117
Erbar, S., & Maisner, A. (2010). Nipah virus infection and glycoprotein targeting in endothelial cells. Virology Journal, 7(1), 305. https://doi.org/10.1186/1743-422X-7-305
Geerts, T., & Vander Heyden, Y. (2011). In Silico Predictions of ADME-Tox Properties: Drug Absorption. Combinatorial Chemistry & High Throughput Screening, 14(5), 339-361. https://doi.org/10.2174/138620711795508359
Geisbert, T. W., Mire, C. E., Geisbert, J. B., Chan, Y.-P., Agans, K. N., Feldmann, F., Fenton, K. A., Zhu, Z., Dimitrov, D. S., Scott, D. P., Bossart, K. N., Feldmann, H., & Broder, C. C. (2014). Therapeutic Treatment of Nipah Virus Infection in Nonhuman Primates with a Neutralizing Human Monoclonal Antibody. Science Translational Medicine, 6(242). https://doi.org/10.1126/scitranslmed.3008929
Georges-Courbot, M. C., Contamin, H., Faure, C., Loth, P., Baize, S., Leyssen, P., Neyts, J., & Deubel, V. (2006). Poly(I)-Poly(C 12 U) but Not Ribavirin Prevents Death in a Hamster Model of Nipah Virus Infection. Antimicrobial Agents and Chemotherapy, 50(5), 1768-1772. https://doi.org/10.1128/AAC.50.5.1768-1772.2006
Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2019). ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1), 148-157. https://doi.org/10.1039/C8MD00472B
Hamaguchi, W., Masuda, N., Miyamoto, S., Shiina, Y., Kikuchi, S., Mihara, T., Moriguchi, H., Fushiki, H., Murakami, Y., Amano, Y., Honbou, K., & Hattori, K. (2015). Synthesis, SAR study, and biological evaluation of novel quinoline derivatives as phosphodiesterase 10A inhibitors with reduced CYP3A4 inhibition. Bioorganic & Medicinal Chemistry, 23(2), 297-313. https://doi.org/10.1016/j.bmc.2014.11.039
Hua, Y., Dai, X., Xu, Y., Xing, G., Liu, H., Lu, T., Chen, Y., & Zhang, Y. (2022). Drug repositioning: Progress and challenges in drug discovery for various diseases. European Journal of Medicinal Chemistry, 234, 114239. https://doi.org/10.1016/j.ejmech.2022.114239
Jang, W. D., Jeon, S., Kim, S., & Lee, S. Y. (2021). Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay. Proceedings of the National Academy of Sciences, 118(30). https://doi.org/10.1073/pnas.2024302118
Kumar, R., Harilal, S., Gupta, S. V., Jose, J., Thomas Parambi, D. G., Uddin, M. S., Shah, M. A., & Mathew, B. (2019). Exploring the new horizons of drug repurposing: A vital tool for turning hard work into smart work. European Journal of Medicinal Chemistry, 182, 111602. https://doi.org/10.1016/j.ejmech.2019.111602
Lagorce, D., Douguet, D., Miteva, M. A., & Villoutreix, B. O. (2017). Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Scientific Reports, 7(1), 46277. https://doi.org/10.1038/srep46277
Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. Journal of Chemical Information and Modeling, 51(10), 2778-2786. https://doi.org/10.1021/ci200227u
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997). Advanced Drug Delivery Reviews, 46(1-3), 3-26. https://doi.org/10.1016/S0169-409X(00)00129-0
Luby, S. P., Gurley, E. S., & Hossain, M. J. (2009). Transmission of Human Infection with Nipah Virus. Clinical Infectious Diseases, 49(11), 1743-1748. https://doi.org/10.1086/647951
Luby, S., Rahman, M., Hossain, M., Blum, L., Husain, M., Gurley, E., Khan, R., Ahmed, B.-N., Rahman, S., Nahar, N., Kenah, E., Comer, J., & Ksiazek, T. (2006). Foodborne Transmission of Nipah Virus, Bangladesh. Emerging Infectious Diseases, 12(12), 1888-1894. https://doi.org/10.3201/eid1212.060732
McCarren, P., Springer, C., & Whitehead, L. (2011). An investigation into pharmaceutically relevant mutagenicity data and the influence on Ames predictive potential. Journal of Cheminformatics, 3(1), 51. https://doi.org/10.1186/1758-2946-3-51
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785-2791. https://doi.org/10.1002/jcc.21256
Negrete, O. A., Levroney, E. L., Aguilar, H. C., Bertolotti-Ciarlet, A., Nazarian, R., Tajyar, S., & Lee, B. (2005). EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature, 436(7049), 401-405. https://doi.org/10.1038/nature03838
Negrete, O. A., Wolf, M. C., Aguilar, H. C., Enterlein, S., Wang, W., Mühlberger, E., Su, S. V, Bertolotti-Ciarlet, A., Flick, R., & Lee, B. (2006). Two Key Residues in EphrinB3 Are Critical for Its Use as an Alternative Receptor for Nipah Virus. PLoS Pathogens, 2(2), e7. https://doi.org/10.1371/journal.ppat.0020007
O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
Olson, J. G., Rupprecht, C., Rollin, P. E., An, U. S., Niezgoda, M., Clemins, T., Walston, J., & Ksiazek, T. G. (2002). Antibodies to Nipah-Like Virus in Bats ( Pteropus lylei) , Cambodia. Emerging Infectious Diseases, 8(9), 987-988. https://doi.org/10.3201/eid0809.010515
Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066-4072. https://doi.org/10.1021/acs.jmedchem.5b00104
Playford, E. G., Munro, T., Mahler, S. M., Elliott, S., Gerometta, M., Hoger, K. L., Jones, M. L., Griffin, P., Lynch, K. D., Carroll, H., El Saadi, D., Gilmour, M. E., Hughes, B., Hughes, K., Huang, E., de Bakker, C., Klein, R., Scher, M. G., Smith, I. L., Broder, C. C. (2020). Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the G glycoprotein of henipaviruses in healthy adults: a first-in-human, randomised, controlled, phase 1 study. The Lancet Infectious Diseases, 20(4), 445-454. https://doi.org/10.1016/S1473-3099(19)30634-6
Salentin, S., Haupt, V. J., Daminelli, S., & Schroeder, M. (2014). Polypharmacology rescored: Protein-ligand interaction profiles for remote binding site similarity assessment. Progress in Biophysics and Molecular Biology, 116(2-3), 174-186. https://doi.org/10.1016/j.pbiomolbio.2014.05.006
Sander, T., Freyss, J., Von Korff, M., & Rufener, C. (2015). DataWarrior: An open-source program for chemistry aware data visualization and analysis. Journal of Chemical Information and Modeling, 55(2), 460-473. https://doi.org/10.1021/ci500588j
Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug Solubility: Importance and Enhancement Techniques. ISRN Pharmaceutics, 2012, 1-10. https://doi.org/10.5402/2012/195727
Sawada, T., Fedorov, D. G., & Kitaura, K. (2010). Role of the Key Mutation in the Selective Binding of Avian and Human Influenza Hemagglutinin to Sialosides Revealed by Quantum-Mechanical Calculations. Journal of the American Chemical Society, 132(47), 16862-16872. https://doi.org/10.1021/ja105051e
Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG : a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60(8), 1355-1363. https://doi.org/10.1107/S0907444904011679
Sharma, V., Kaushik, S., Kumar, R., Yadav, J. P., & Kaushik, S. (2019). Emerging trends of Nipah virus: A review. Reviews in Medical Virology, 29(1), e2010. https://doi.org/10.1002/rmv.2010
Singh, R. K., Dhama, K., Chakraborty, S., Tiwari, R., Natesan, S., Khandia, R., Munjal, A., Vora, K. S., Latheef, S. K., Karthik, K., Singh Malik, Y., Singh, R., Chaicumpa, W., & Mourya, D. T. (2019). Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review. Veterinary Quarterly, 39(1), 26-55. https://doi.org/10.1080/01652176.2019.1580827
Soman Pillai, V., Krishna, G., & Valiya Veettil, M. (2020). Nipah Virus: Past Outbreaks and Future Containment. Viruses, 12(4), 465. https://doi.org/10.3390/v12040465
Stampfer, H. G., Gabb, G. M., & Dimmitt, S. B. (2019). Why maximum tolerated dose? British Journal of Clinical Pharmacology, 85(10), 2213-2217. https://doi.org/10.1111/bcp.14032
Sterling, T., & Irwin, J. J. (2015). ZINC 15 - Ligand Discovery for Everyone. Journal of Chemical Information and Modeling, 55(11), 2324-2337. https://doi.org/10.1021/acs.jcim.5b00559
Sultana, J., Crisafulli, S., Gabbay, F., Lynn, E., Shakir, S., & Trifirò, G. (2020). Challenges for Drug Repurposing in the COVID-19 Pandemic Era. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.588654
SYSTÈMES, D. (2016). BIOVIA Discovery Studio Dassault Syst mes BIOVIA, Discovery Studio Modeling Environment, Release 2017. Dassault Syst mes. (n.d.).
Tang, W., Li, M., Liu, Y., Liang, N., Yang, Z., Zhao, Y., Wu, S., Lu, S., Li, Y., & Liu, F. (2019). Small molecule inhibits respiratory syncytial virus entry and infection by blocking the interaction of the viral fusion protein with the cell membrane. The FASEB Journal, 33(3), 4287-4299. https://doi.org/10.1096/fj.201800579R
Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, NA-NA. https://doi.org/10.1002/jcc.21334
WebGRO for Macromolecular Simulations (https://simlab.uams.edu/). (n.d.).
WHO. (2021a). Nipah virus disease - India. https://www.who.int/emergencies/disease-outbreak-news/item/nipah-virus-disease---india
WHO. (2021b). Prioritizing diseases for research and development in emergency contexts. https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts
WHO. (n.d.). Morbidity and mortality due to Nipah or Nipah-like virus encephalitis in WHO South-East Asia Region, 2001-2018. https://www.google.com/search?q=Morbidity+and+mortality+due+to+Nipah+or+Nipah-like+virus+encephalitis+in+WHO+South-East+Asia+Region%2C+2001-2018&oq=Morbidity+and+mortality+due+to+Nipah+or+Nipah-like+virus+encephalitis+in+WHO+South-East+Asia+Region%2C+2001
Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Wilson, M. (2018). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074-D1082. https://doi.org/10.1093/nar/gkx1037
Wong, J. J. W., Young, T. A., Zhang, J., Liu, S., Leser, G. P., Komives, E. A., Lamb, R. A., Zhou, Z. H., Salafsky, J., & Jardetzky, T. S. (2017). Monomeric ephrinB2 binding induces allosteric changes in Nipah virus G that precede its full activation. Nature Communications, 8(1), 781. https://doi.org/10.1038/s41467-017-00863-3
Wong, J. J., Chen, Z., Chung, J. K., Groves, J. T., & Jardetzky, T. S. (2021). EphrinB2 clustering by Nipah virus G is required to activate and trap F intermediates at supported lipid bilayer-cell interfaces. Science Advances, 7(5). https://doi.org/10.1126/sciadv.abe1235
Xu, K., Rajashankar, K. R., Chan, Y. P., Himanen, J. P., Broder, C. C., & Nikolov, D. B. (2008). Host cell recognition by the henipaviruses: Crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proceedings of the National Academy of Sciences of the United States of America, 105(29), 9953-9958. https://doi.org/10.1073/pnas.0804797105.
Miss Sangita Ghimire
Department of Biotechnology, SANN International College, Kathmandu - Nepal
ghimsangita97@gmail.com
Mr. Sazzad Shahrear
Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka - Bangladesh
Mr. Siddhesh Kishor Saigaonkar
Mahatma Gandhi Mission’s College of Engineering and Technology, Navi Mumbai - India
Mrs. Laura K.Harris
Institute for Cyber-Enabled Research, Michigan State University, East Lansing, Michigan - United States of America


CREATE AUTHOR ACCOUNT
 
LAUNCH YOUR SPECIAL ISSUE
View all special issues >>
 
PUBLICATION VIDEOS