Home > CSC-OpenAccess Library > Manuscript Information
EXPLORE PUBLICATIONS BY COUNTRIES |
EUROPE | |
MIDDLE EAST | |
ASIA | |
AFRICA | |
............................. | |
United States of America | |
United Kingdom | |
Canada | |
Australia | |
Italy | |
France | |
Brazil | |
Germany | |
Malaysia | |
Turkey | |
China | |
Taiwan | |
Japan | |
Saudi Arabia | |
Jordan | |
Egypt | |
United Arab Emirates | |
India | |
Nigeria |
Identification of Potential Inhibitors against Attachment Glycoprotein G of Nipah Virus using Comprehensive Drug
Repurposing Approach
Sangita Ghimire, Sazzad Shahrear, Siddhesh Kishor Saigaonkar, Laura K.Harris
Pages - 1 - 20 | Revised - 30-09-2022 | Published - 31-10-2022
MORE INFORMATION
KEYWORDS
Nipah Virus Drug Development, Attachment Glycoprotein G, Molecular Docking, Molecular Dynamics Simulation, Drug Repurposing.
ABSTRACT
The emerging zoonotic Nipah virus (NiV) is a major threat to public health because of its potential
to cause severe outbreaks from human-to-human transmission and lack of therapeutic options
currently. Identification of effective therapeutics to combat NiV infections is needed to contain
future outbreaks. This research uses in silico methods to predict putative therapeutic candidates
for the NiV attachment glycoprotein G (NiV-G) from existing therapeutic agents. To do this, virtual
screening of NiV-G against 1615 FDA approved drugs publicly available from the Zinc 15
database is performed using a molecular docking approach via AutoDock Vina software. Further,
a molecular dynamics simulation using WebGRO server is employed to identify top NiV-G
inhibitors. Most of the binding for the top three ligands – as determined by binding energy–occurs
in the catalytic groove that must contain Phe458, Trp504, Gln559, and Glu579 in order to
successfully inhibit NiV-G. The molecular dynamics simulation analysis validates rigidity and
stability of the docked complex through the assessment of root mean square deviations, root
mean square fluctuations, solvent accessible surface area, radius of gyration, and hydrogen bond
analysis from simulation trajectories. Post-molecular dynamics analysis also shows that
Alvimopan, Betrixaban, and Ribociclib interact with NiV-G in the same binding pocket. Therefore,
Alvimopan, Betrixaban, and Ribociclib are identified as top NiV-G inhibitors that could be used to
improve NiV-infected patient outcomes when an outbreak arises.
Aditi, & Shariff, M. (2019). Nipah virus infection: A review. Epidemiology and Infection, 147, e95. https://doi.org/10.1017/S0950268819000086 | |
Agency, E. M. (n.d.). Kisqali: EPAR - Product Information. https://www.ema.europa.eu/en/documents/product-information/kisqali-epar-product-information_en.pdf | |
Aguilar, H. C., Ataman, Z. A., Aspericueta, V., Fang, A. Q., Stroud, M., Negrete, O. A., Kammerer, R. A., & Lee, B. (2009). A Novel Receptor-induced Activation Site in the Nipah Virus Attachment Glycoprotein (G) Involved in Triggering the Fusion Glycoprotein (F). Journal of Biological Chemistry, 284(3), 1628-1635. https://doi.org/10.1074/jbc.M807469200 | |
Banerjee, S., Gupta, N., Kodan, P., Mittal, A., Ray, Y., Nischal, N., Soneja, M., Biswas, A., & Wig, N. (2019). Nipah virus disease: A rare and intractable disease. Intractable & Rare Diseases Research, 8(1), 1-8. https://doi.org/10.5582/irdr.2018.01130 | |
Bekker, H., J C Berendsen, H., van Drunen, R., van der Spoel, D., Sijbers, A., Keegstra, H., Reitsma, B., Renardus, M. K. R., Achterop, S., & Dijkstra, E. J. (1993). Gromacs : A parallel computer for molecular dynamics simulations. Physics Computing, 252-256. | |
Berellini, G., Waters, N. J., & Lombardo, F. (2012). In silico Prediction of Total Human Plasma Clearance. Journal of Chemical Information and Modeling, 52(8), 2069-2078. https://doi.org/10.1021/ci300155y | |
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. In Nucleic Acids Research (Vol. 28, Issue 1, pp. 235-242). Oxford University Press. https://doi.org/10.1093/nar/28.1.235 | |
Bowden, T. A., Aricescu, A. R., Gilbert, R. J. C., Grimes, J. M., Jones, E. Y., & Stuart, D. I. (2008). Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nature Structural & Molecular Biology, 15(6), 567-572. https://doi.org/10.1038/nsmb.1435 | |
Chua, K. B. (2003). Nipah virus outbreak in Malaysia. Journal of Clinical Virology, 26(3), 265-275. https://doi.org/10.1016/S1386-6532(02)00268-8 | |
Chua, K. B., Bellini, W. J., Rota, P. A., Harcourt, B. H., Tamin, A., Lam, S. K., Ksiazek, T. G., Rollin, P. E., Zaki, S. R., Shieh, W.-J., Goldsmith, C. S., Gubler, D. J., Roehrig, J. T., Eaton, B., Gould, A. R., Olson, J., Field, H., Daniels, P., Ling, A. E., Mahy, B. W. J. (2000). Nipah Virus: A Recently Emergent Deadly Paramyxovirus. Science, 288(5470), 1432-1435. https://doi.org/10.1126/science.288.5470.1432 | |
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717 | |
Dallakyan, S., & Olson, A. J. (2015). Small-Molecule Library Screening by Docking with PyRx (pp. 243-250). https://doi.org/10.1007/978-1-4939-2269-7_19 | |
Diederich, S., Moll, M., Klenk, H.-D., & Maisner, A. (2005). The Nipah Virus Fusion Protein Is Cleaved within the Endosomal Compartment. Journal of Biological Chemistry, 280(33), 29899-29903. https://doi.org/10.1074/jbc.M504598200 | |
Diederich, S., Thiel, L., & Maisner, A. (2008). Role of endocytosis and cathepsin-mediated activation in Nipah virus entry. Virology, 375(2), 391-400. https://doi.org/10.1016/j.virol.2008.02.019 | |
Durán-Iturbide, N. A., DÃaz-Eufracio, B. I., & Medina-Franco, J. L. (2020). In Silico ADME/Tox Profiling of Natural Products: A Focus on BIOFACQUIM. ACS Omega, 5(26), 16076-16084. https://doi.org/10.1021/acsomega.0c01581 | |
Epstein, J. H., Anthony, S. J., Islam, A., Kilpatrick, A. M., Ali Khan, S., Balkey, M. D., Ross, N., Smith, I., Zambrana-Torrelio, C., Tao, Y., Islam, A., Quan, P. L., Olival, K. J., Khan, M. S. U., Gurley, E. S., Hossein, M. J., Field, H. E., Fielder, M. D., Briese, T., Daszak, P. (2020). Nipah virus dynamics in bats and implications for spillover to humans. Proceedings of the National Academy of Sciences, 117(46), 29190-29201. https://doi.org/10.1073/pnas.2000429117 | |
Erbar, S., & Maisner, A. (2010). Nipah virus infection and glycoprotein targeting in endothelial cells. Virology Journal, 7(1), 305. https://doi.org/10.1186/1743-422X-7-305 | |
Geerts, T., & Vander Heyden, Y. (2011). In Silico Predictions of ADME-Tox Properties: Drug Absorption. Combinatorial Chemistry & High Throughput Screening, 14(5), 339-361. https://doi.org/10.2174/138620711795508359 | |
Geisbert, T. W., Mire, C. E., Geisbert, J. B., Chan, Y.-P., Agans, K. N., Feldmann, F., Fenton, K. A., Zhu, Z., Dimitrov, D. S., Scott, D. P., Bossart, K. N., Feldmann, H., & Broder, C. C. (2014). Therapeutic Treatment of Nipah Virus Infection in Nonhuman Primates with a Neutralizing Human Monoclonal Antibody. Science Translational Medicine, 6(242). https://doi.org/10.1126/scitranslmed.3008929 | |
Georges-Courbot, M. C., Contamin, H., Faure, C., Loth, P., Baize, S., Leyssen, P., Neyts, J., & Deubel, V. (2006). Poly(I)-Poly(C 12 U) but Not Ribavirin Prevents Death in a Hamster Model of Nipah Virus Infection. Antimicrobial Agents and Chemotherapy, 50(5), 1768-1772. https://doi.org/10.1128/AAC.50.5.1768-1772.2006 | |
Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2019). ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1), 148-157. https://doi.org/10.1039/C8MD00472B | |
Hamaguchi, W., Masuda, N., Miyamoto, S., Shiina, Y., Kikuchi, S., Mihara, T., Moriguchi, H., Fushiki, H., Murakami, Y., Amano, Y., Honbou, K., & Hattori, K. (2015). Synthesis, SAR study, and biological evaluation of novel quinoline derivatives as phosphodiesterase 10A inhibitors with reduced CYP3A4 inhibition. Bioorganic & Medicinal Chemistry, 23(2), 297-313. https://doi.org/10.1016/j.bmc.2014.11.039 | |
Hua, Y., Dai, X., Xu, Y., Xing, G., Liu, H., Lu, T., Chen, Y., & Zhang, Y. (2022). Drug repositioning: Progress and challenges in drug discovery for various diseases. European Journal of Medicinal Chemistry, 234, 114239. https://doi.org/10.1016/j.ejmech.2022.114239 | |
Jang, W. D., Jeon, S., Kim, S., & Lee, S. Y. (2021). Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay. Proceedings of the National Academy of Sciences, 118(30). https://doi.org/10.1073/pnas.2024302118 | |
Kumar, R., Harilal, S., Gupta, S. V., Jose, J., Thomas Parambi, D. G., Uddin, M. S., Shah, M. A., & Mathew, B. (2019). Exploring the new horizons of drug repurposing: A vital tool for turning hard work into smart work. European Journal of Medicinal Chemistry, 182, 111602. https://doi.org/10.1016/j.ejmech.2019.111602 | |
Lagorce, D., Douguet, D., Miteva, M. A., & Villoutreix, B. O. (2017). Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Scientific Reports, 7(1), 46277. https://doi.org/10.1038/srep46277 | |
Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. Journal of Chemical Information and Modeling, 51(10), 2778-2786. https://doi.org/10.1021/ci200227u | |
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997). Advanced Drug Delivery Reviews, 46(1-3), 3-26. https://doi.org/10.1016/S0169-409X(00)00129-0 | |
Luby, S. P., Gurley, E. S., & Hossain, M. J. (2009). Transmission of Human Infection with Nipah Virus. Clinical Infectious Diseases, 49(11), 1743-1748. https://doi.org/10.1086/647951 | |
Luby, S., Rahman, M., Hossain, M., Blum, L., Husain, M., Gurley, E., Khan, R., Ahmed, B.-N., Rahman, S., Nahar, N., Kenah, E., Comer, J., & Ksiazek, T. (2006). Foodborne Transmission of Nipah Virus, Bangladesh. Emerging Infectious Diseases, 12(12), 1888-1894. https://doi.org/10.3201/eid1212.060732 | |
McCarren, P., Springer, C., & Whitehead, L. (2011). An investigation into pharmaceutically relevant mutagenicity data and the influence on Ames predictive potential. Journal of Cheminformatics, 3(1), 51. https://doi.org/10.1186/1758-2946-3-51 | |
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785-2791. https://doi.org/10.1002/jcc.21256 | |
Negrete, O. A., Levroney, E. L., Aguilar, H. C., Bertolotti-Ciarlet, A., Nazarian, R., Tajyar, S., & Lee, B. (2005). EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature, 436(7049), 401-405. https://doi.org/10.1038/nature03838 | |
Negrete, O. A., Wolf, M. C., Aguilar, H. C., Enterlein, S., Wang, W., Mühlberger, E., Su, S. V, Bertolotti-Ciarlet, A., Flick, R., & Lee, B. (2006). Two Key Residues in EphrinB3 Are Critical for Its Use as an Alternative Receptor for Nipah Virus. PLoS Pathogens, 2(2), e7. https://doi.org/10.1371/journal.ppat.0020007 | |
O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33 | |
Olson, J. G., Rupprecht, C., Rollin, P. E., An, U. S., Niezgoda, M., Clemins, T., Walston, J., & Ksiazek, T. G. (2002). Antibodies to Nipah-Like Virus in Bats ( Pteropus lylei) , Cambodia. Emerging Infectious Diseases, 8(9), 987-988. https://doi.org/10.3201/eid0809.010515 | |
Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066-4072. https://doi.org/10.1021/acs.jmedchem.5b00104 | |
Playford, E. G., Munro, T., Mahler, S. M., Elliott, S., Gerometta, M., Hoger, K. L., Jones, M. L., Griffin, P., Lynch, K. D., Carroll, H., El Saadi, D., Gilmour, M. E., Hughes, B., Hughes, K., Huang, E., de Bakker, C., Klein, R., Scher, M. G., Smith, I. L., Broder, C. C. (2020). Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the G glycoprotein of henipaviruses in healthy adults: a first-in-human, randomised, controlled, phase 1 study. The Lancet Infectious Diseases, 20(4), 445-454. https://doi.org/10.1016/S1473-3099(19)30634-6 | |
Salentin, S., Haupt, V. J., Daminelli, S., & Schroeder, M. (2014). Polypharmacology rescored: Protein-ligand interaction profiles for remote binding site similarity assessment. Progress in Biophysics and Molecular Biology, 116(2-3), 174-186. https://doi.org/10.1016/j.pbiomolbio.2014.05.006 | |
Sander, T., Freyss, J., Von Korff, M., & Rufener, C. (2015). DataWarrior: An open-source program for chemistry aware data visualization and analysis. Journal of Chemical Information and Modeling, 55(2), 460-473. https://doi.org/10.1021/ci500588j | |
Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug Solubility: Importance and Enhancement Techniques. ISRN Pharmaceutics, 2012, 1-10. https://doi.org/10.5402/2012/195727 | |
Sawada, T., Fedorov, D. G., & Kitaura, K. (2010). Role of the Key Mutation in the Selective Binding of Avian and Human Influenza Hemagglutinin to Sialosides Revealed by Quantum-Mechanical Calculations. Journal of the American Chemical Society, 132(47), 16862-16872. https://doi.org/10.1021/ja105051e | |
Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG : a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60(8), 1355-1363. https://doi.org/10.1107/S0907444904011679 | |
Sharma, V., Kaushik, S., Kumar, R., Yadav, J. P., & Kaushik, S. (2019). Emerging trends of Nipah virus: A review. Reviews in Medical Virology, 29(1), e2010. https://doi.org/10.1002/rmv.2010 | |
Singh, R. K., Dhama, K., Chakraborty, S., Tiwari, R., Natesan, S., Khandia, R., Munjal, A., Vora, K. S., Latheef, S. K., Karthik, K., Singh Malik, Y., Singh, R., Chaicumpa, W., & Mourya, D. T. (2019). Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review. Veterinary Quarterly, 39(1), 26-55. https://doi.org/10.1080/01652176.2019.1580827 | |
Soman Pillai, V., Krishna, G., & Valiya Veettil, M. (2020). Nipah Virus: Past Outbreaks and Future Containment. Viruses, 12(4), 465. https://doi.org/10.3390/v12040465 | |
Stampfer, H. G., Gabb, G. M., & Dimmitt, S. B. (2019). Why maximum tolerated dose? British Journal of Clinical Pharmacology, 85(10), 2213-2217. https://doi.org/10.1111/bcp.14032 | |
Sterling, T., & Irwin, J. J. (2015). ZINC 15 - Ligand Discovery for Everyone. Journal of Chemical Information and Modeling, 55(11), 2324-2337. https://doi.org/10.1021/acs.jcim.5b00559 | |
Sultana, J., Crisafulli, S., Gabbay, F., Lynn, E., Shakir, S., & Trifirò, G. (2020). Challenges for Drug Repurposing in the COVID-19 Pandemic Era. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.588654 | |
SYSTÈMES, D. (2016). BIOVIA Discovery Studio Dassault Syst mes BIOVIA, Discovery Studio Modeling Environment, Release 2017. Dassault Syst mes. (n.d.). | |
Tang, W., Li, M., Liu, Y., Liang, N., Yang, Z., Zhao, Y., Wu, S., Lu, S., Li, Y., & Liu, F. (2019). Small molecule inhibits respiratory syncytial virus entry and infection by blocking the interaction of the viral fusion protein with the cell membrane. The FASEB Journal, 33(3), 4287-4299. https://doi.org/10.1096/fj.201800579R | |
Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, NA-NA. https://doi.org/10.1002/jcc.21334 | |
WebGRO for Macromolecular Simulations (https://simlab.uams.edu/). (n.d.). | |
WHO. (2021a). Nipah virus disease - India. https://www.who.int/emergencies/disease-outbreak-news/item/nipah-virus-disease---india | |
WHO. (2021b). Prioritizing diseases for research and development in emergency contexts. https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts | |
WHO. (n.d.). Morbidity and mortality due to Nipah or Nipah-like virus encephalitis in WHO South-East Asia Region, 2001-2018. https://www.google.com/search?q=Morbidity+and+mortality+due+to+Nipah+or+Nipah-like+virus+encephalitis+in+WHO+South-East+Asia+Region%2C+2001-2018&oq=Morbidity+and+mortality+due+to+Nipah+or+Nipah-like+virus+encephalitis+in+WHO+South-East+Asia+Region%2C+2001 | |
Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Wilson, M. (2018). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074-D1082. https://doi.org/10.1093/nar/gkx1037 | |
Wong, J. J. W., Young, T. A., Zhang, J., Liu, S., Leser, G. P., Komives, E. A., Lamb, R. A., Zhou, Z. H., Salafsky, J., & Jardetzky, T. S. (2017). Monomeric ephrinB2 binding induces allosteric changes in Nipah virus G that precede its full activation. Nature Communications, 8(1), 781. https://doi.org/10.1038/s41467-017-00863-3 | |
Wong, J. J., Chen, Z., Chung, J. K., Groves, J. T., & Jardetzky, T. S. (2021). EphrinB2 clustering by Nipah virus G is required to activate and trap F intermediates at supported lipid bilayer-cell interfaces. Science Advances, 7(5). https://doi.org/10.1126/sciadv.abe1235 | |
Xu, K., Rajashankar, K. R., Chan, Y. P., Himanen, J. P., Broder, C. C., & Nikolov, D. B. (2008). Host cell recognition by the henipaviruses: Crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proceedings of the National Academy of Sciences of the United States of America, 105(29), 9953-9958. https://doi.org/10.1073/pnas.0804797105. | |
Miss Sangita Ghimire
Department of Biotechnology, SANN International College, Kathmandu - Nepal
ghimsangita97@gmail.com
Mr. Sazzad Shahrear
Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka - Bangladesh
Mr. Siddhesh Kishor Saigaonkar
Mahatma Gandhi Mission’s College of Engineering and Technology, Navi Mumbai - India
Mrs. Laura K.Harris
Institute for Cyber-Enabled Research, Michigan State University, East Lansing, Michigan - United States of America
|
|
|
|
View all special issues >> | |
|
|