Home > CSC-OpenAccess Library > Manuscript Information
EXPLORE PUBLICATIONS BY COUNTRIES |
EUROPE | |
MIDDLE EAST | |
ASIA | |
AFRICA | |
............................. | |
United States of America | |
United Kingdom | |
Canada | |
Australia | |
Italy | |
France | |
Brazil | |
Germany | |
Malaysia | |
Turkey | |
China | |
Taiwan | |
Japan | |
Saudi Arabia | |
Jordan | |
Egypt | |
United Arab Emirates | |
India | |
Nigeria |
Modeling of Nitrogen Oxide Emissions in Fluidized Bed Combustion Using Artificial Neural Networks
Mika Liukkonen, Eero Hälikkä, Reijo Kuivalainen, Yrjö Hiltunen
Pages - 25 - 34 | Revised - 30-06-2010 | Published - 10-08-2010
Published in International Journal of Data Engineering (IJDE)
MORE INFORMATION
KEYWORDS
Fluidized bed, Artificial neural network, Self-organizing map, Multilayer perceptron, Clustering
ABSTRACT
The reduction of harmful emissions is affecting increasingly the modern-day production of energy, while higher objectives are set also for the efficiency of combustion processes. Therefore it is necessary to develop such data analysis and modeling methods that can respond to these demands. This paper presents an overview of how the formation of nitrogen oxides (NOx) in a circulating fluidized bed (CFB) boiler was modeled by using a sub-model -based artificial neural network (ANN) approach. In this approach, the process data is processed first by using a self-organizing map (SOM) and k-means clustering to generate subsets representing the separate process states in the boiler. These primary process states represent the higher level process conditions in the combustion, and can include for example start-ups, shutdowns, and idle times in addition to the normal process flow. However, the primary states of process may contain secondary states that represent more subtle phenomena in the process, which are more difficult to observe. The data from secondary combustion conditions can involve information on e.g. instabilities in the process. In this study, the aims were to identify these secondary process states and to show that in some cases the simulation accuracy can be improved by creating secondary sub-models. The results show that the approach presented can be a fruitful way to get new information from combustion processes.
1 | Liukkonen, M. (2010). Intelligent Methods in the Electronics Industry. University of Eastern Finland. |
A. Tourunen, J. Saastamoinen, H. Nevalainen. ”Experimental Trends of NO in Circulating Fluidized Bed Combustion”. Fuel 88(7):1333-1341, 2009 | |
B. Leckner, A. Lyngfelt. “Optimization of Emissions from Fluidized Bed Combustion of Coal, Biofuel and Waste”. International Journal of Energy Research 26(13):1191-1202, 2002 | |
C.J. Willmott. “On the validation of models”. Physical Geography, 2:184-194, 1981 | |
D.L. Davies, D.W. Bouldin. “A Cluster Separation Measure”. IEEE Trans. Pattern Recognition and Machine Intelligence, 1(2):224-227, 1979 | |
E. Alhoniemi, J. Hollmén, O. Simula, J. Vesanto. ”Process Monitoring and Modeling Using the Self-Organizing Map”. Integrated Computer Aided Engineering, 6(1):3-14, 1999 | |
I.M. Mujtaba, M.A. Hussain (eds.). ”Application of Neural Network and Other Learning Technologies in Process Engineering”, Imperial College Press, London, UK (2001) | |
J. Freeman, D. Skapura. “Neural Networks Algorithms, Application, and Programming Techniques”, Addison-Wesley Publishing Company, Menlo Park, California (1991) | |
J. MacQueen. “Some methods for classification and analysis of multivariate observations”. In Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. I: Statistics, pp. 281-297. University of California Press, Berkeley and Los Angeles (1967) | |
J.A. Harding, M. Shahbaz, Srinivas, A. Kusiak. ”Data Mining in Manufacturing: A Review”. Journal of Manufacturing Science and Engineering, 128(4):969-976, 2006 | |
K. Svoboda, M. Poho?elý. ”Influence of operating conditions and coal properties on NOx and N2O emissions in pressurized fluidized bed combustion of subbituminous coals”. Fuel 83(7-8):1095-1103, 2004 | |
M. Heikkinen, A. Kettunen, E. Niemitalo, R. Kuivalainen, Y. Hiltunen. ”SOM-based method for process state monitoring and optimization in fluidized bed energy plant”. In W. Duch, J. Kacprzyk, E. Oja, S. Zadro?ny (eds.), Lecture Notes in Computer Science 3696, pp. 409-414. Springer-Verlag Berlin Heidelberg (2005) | |
M. Heikkinen, T. Heikkinen, Y. Hiltunen. ”Process States and Their Submodels Using Self-Organizing Maps in an Activated Sludge Treatment Plant”. In Proc. 48th Scandinavian Conference on Simulation and Modeling (SIMS 2008) [CD-ROM]. Oslo University College, 2008 | |
M. Heikkinen, T. Hiltunen, M. Liukkonen, A. Kettunen, R. Kuivalainen, Y. Hiltunen. ”A Modelling and Optimization System for Fluidized Bed Power Plants”. Expert Systems with Applications, 36(7):10274-10279, 2009 | |
M. Heikkinen, V. Nurminen, T. Hiltunen, Y. Hiltunen. ”A Modeling and Optimization Tool for the Expandable Polystyrene Batch Process”. Chemical Product and Process Modeling, 3(1), Article 3, 2008 | |
M. Kasslin, J. Kangas, O. Simula. ”Process State Monitoring Using Self-Organizing Maps”. In I. Aleksander, J. Taylor (eds.), Artificial Neural Networks 2, Vol. I, pp. 1532-1534. North-Holland, Amsterdam, Netherlands (1992) | |
M. Liukkonen, E. Havia, H. Leinonen, Y. Hiltunen. ”Application of Self-Organizing Maps in Analysis of Wave Soldering Process”. Expert Systems with Applications, 36(3P1):4604-4609, 2009 | |
M. Liukkonen, M. Heikkinen, E. Hälikkä, R. Kuivalainen, Y. Hiltunen. ”Emission Analysis of a Fluidized Bed Boiler by Using Self-Organizing Maps”. In M. Kolehmainen, P. Toivanen, B. Beliczynski (eds.), Lecture Notes in Computer Science 5495, pp. 119-129. Springer-Verlag Berlin Heidelberg (2009). | |
M. Liukkonen, M. Heikkinen, T. Hiltunen, E. Hälikkä, R. Kuivalainen, Y. Hiltunen. ”Modeling of Process States by Using Artificial Neural Networks in a Fluidized Bed Energy Plant”. In I. Troch, F. Breitenecker (eds.), Proc. MATHMOD 09 VIENNA, Full Papers Volume [CD-ROM]. ARGESIM – Publishing House, Vienna (2009) | |
M. Liukkonen, T. Hiltunen, E. Havia, H. Leinonen, Y. Hiltunen. ”Modeling of Soldering Quality by Using Artificial Neural Networks”. IEEE Trans. Electronics Packaging Manufacturing, 32(2):89-96, 2009 | |
M.R.M Meireles, P.E.M Almeida, M.G. Simões. “A Comprehensive Review for Industrial Applicability of Artificial Neural Networks”. IEEE Trans. Industrial Electronics, 50(3):585-601, 2003 | |
P. Basu. “Combustion of coal in circulating fluidized-bed boilers: a review”. Chemical Engineering Science, 54(22):5547-5557, 1999 | |
P.J. Werbos. “The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting”, John Wiley & Sons, New York (1994) | |
R. Hecht-Nielsen. “Neurocomputing”, Addison-Wesley Publishing, San Diego, California (1990) | |
R.D. Reed, R.J. Marks II. “Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks”, MIT Press, Cambridge, Massachusetts (1999) | |
S. Haykin, S. “Neural Networks: A Comprehensive Foundation”, Prentice Hall, Upper Saddle River, NJ (1999) | |
T. Kohonen. “Self-Organizing Maps”, 3rd ed., Springer-Verlag, Berlin Heidelberg New York (2001) | |
Mr. Mika Liukkonen
- Finland
mika.liukkonen@uef.fi
Mr. Eero Hälikkä
- Finland
Mr. Reijo Kuivalainen
- Finland
Professor Yrjö Hiltunen
- Finland
|
|
|
|
View all special issues >> | |
|
|