Home   >   CSC-OpenAccess Library   >    Manuscript Information
General-Purpose Quantum Databases: Revolutionizing Data Storage and Processing
Soumyodeep Mukherjee, Meethun Panda
Pages - 1 - 12     |    Revised - 31-08-2024     |    Published - 01-10-2024
Volume - 9   Issue - 1    |    Publication Date - October 2024  Table of Contents
MORE INFORMATION
KEYWORDS
Quantum Computing, Quantum Databases, Data Storage, Data Processing, Quantum Algorithms.
ABSTRACT
General-purpose quantum databases leverage the principles of quantum computing to revolutionize data storage and processing. This paper explores the theoretical foundations of quantum databases, their potential advantages over classical databases and current research & development in this field. Additionally, we discuss the challenges faced and future directions for quantum databases in data-intensive applications.
Banerjee, S., & Roy, S. "Enhancing data security in cloud computing using quantum cryptography." International Journal of Data Engineering, vol. 12(2), pp. 59-72, 2021.
Biamonte, J., & Bergholm, V. "Tensor networks in a nutshell." Nature Physics, vol. 17(9), pp. 1097-1103, 2021.
Cacciapuoti, A. S., Caleffi, M., Tafuri, F., Cataliotti, F. S., Gherardini, S., & Bianchi, G. "Quantum internet: Networking challenges in distributed quantum computing." IEEE Network, vol. 34(1), pp. 137-143, 2020.
Cirac, J. I., & Zoller, P. "Goals and opportunities in quantum simulation." Nature, vol. 570(7762), pp. 45-52, 2020.
Devoret, M. H., & Schoelkopf, R. J. "Superconducting circuits for quantum information: An outlook." Science, vol. 376(6581), pp. 1239-1246, 2021.
Gao, J., & Zhang, F. "Quantum machine learning: State of the art and outlook." Nature Reviews Physics, vol. 4(5), pp. 369-381, 2022.
Georgescu, I. "25 years of quantum error correction." Nat Rev Phys, vol. 2, p. 519, 2020.
Gupta, A., & Sharma, R. "Quantum machine learning for big data classification: A comparative study." International Journal of Data Engineering, vol. 11(4), pp. 101-115, 2020.
Liu, Y., & Zhang, W. "Leveraging quantum algorithms for efficient data mining in large datasets." International Journal of Data Engineering, vol. 13(1), pp. 23-38, 2022.
Patel, V., & Joshi, A. "Quantum-enhanced data analytics: An emerging trend in data engineering." International Journal of Data Engineering, vol. 10(3), pp. 45-58, 2019.
Rieffel, E. G., & Polak, W. H. "Quantum Computing: A Gentle Introduction." MIT Press, 2021.
Singh, P., & Kumar, N. "A survey on quantum-inspired algorithms for data clustering." International Journal of Data Engineering, vol. 12(3), pp. 89-104, 2021.
Yuan, G., Chen, Y., Lu, J., Wu, S., Ye, Z., Qian, L., & Chen, G. "Quantum Computing for Databases: Overview and Challenges." arXiv preprint arXiv:2405.12511, 2024.
Zhang, H., Wang, K., Liang, Y. C., Li, S., & Guo, G. "An optimal algorithm for quantum counting." Quantum Information Processing, vol. 19(1), pp. 1-16, 2020.
Mr. Soumyodeep Mukherjee
Associate Director, Data Engineering, Genmab, Avenel, New Jersey - United States of America
soumyodeep.88@gmail.com
Mr. Meethun Panda
Associate Partner, Data & AI capabilities, Bain & Company, Dubai - United Arab Emirates


CREATE AUTHOR ACCOUNT
 
LAUNCH YOUR SPECIAL ISSUE
View all special issues >>
 
PUBLICATION VIDEOS