Home > CSC-OpenAccess Library > Manuscript Information
EXPLORE PUBLICATIONS BY COUNTRIES |
EUROPE | |
MIDDLE EAST | |
ASIA | |
AFRICA | |
............................. | |
United States of America | |
United Kingdom | |
Canada | |
Australia | |
Italy | |
France | |
Brazil | |
Germany | |
Malaysia | |
Turkey | |
China | |
Taiwan | |
Japan | |
Saudi Arabia | |
Jordan | |
Egypt | |
United Arab Emirates | |
India | |
Nigeria |
Novel Robot Manipulator Adaptive Artificial Control: Design a Novel SISO Adaptive Fuzzy Sliding Algorithm Inverse Dynamic Like Method
Farzin Piltan, N. Sulaiman, Hajar Nasiri, Sadeq Allahdadi, Mohammad A. Bairami
Pages - 399 - 418 | Revised - 01-11-2011 | Published - 15-12-2011
Published in International Journal of Engineering (IJE)
MORE INFORMATION
KEYWORDS
Inverse Dynamic Control, Sliding Mode Algorithm, Fuzzy Estimator Sliding Mode Control, Adaptive Method, Adaptive Fuzzy Sliding Mode Inverse Dynamic Like, Robot Manipulator
ABSTRACT
Refer to the research, design a novel SISO adaptive fuzzy sliding algorithm inverse dynamic like method (NAIDLC) and application to robot manipulator has proposed in order to design high performance nonlinear controller in the presence of uncertainties. Regarding to the positive points in inverse dynamic controller, fuzzy logic controller and self tuning fuzzy sliding method, the output has improved. The main objective in this research is analyses and design of the adaptive robust controller based on artificial intelligence and nonlinear control. Robot manipulator is nonlinear, time variant and a number of parameters are uncertain, so design the best controller for this plant is the main target. Although inverse dynamic controller have acceptable performance with known dynamic parameters but regarding to uncertainty, this controller\'s output has fairly fluctuations. In order to solve this problem this research is focoused on two methodology the first one is design a fuzzy inference system as a estimate nonlinear part of main controller but this method caused to high computation load in fuzzy rule base and the second method is focused on design novel adaptive method to reduce the computation in fuzzy algorithm.
1 | Piltan, F., Bazregar, M., Piran, M., & Akbari, M. (2014). Quality Model and Artificial Intelligence Base Fuel Ratio Management with Applications to Automotive Engine. IAES International Journal of Artificial Intelligence (IJ-AI), 3(1), 36-48. |
2 | Bazregar, M., Piltan, F., Nabaee, A., & Ebrahimi, M. (2014). Design Modified Fuzzy PD Gravity Controller with Application to Continuum Robot. International Journal of Information Technology and Computer Science (IJITCS), 6(3), 82. |
3 | Mozafari, N. G., Piltan, F., Shamsodini, M., Yazdanpanah, A., & Roshanzamir, A. (2014). On Line Tuning Premise and Consequence FIS Based on Lyaponuv Theory with Application to Continuum Robot. International Journal of Intelligent Systems and Applications (IJISA), 6(3), 96. |
4 | Nazari, I., Hosainpour, A., Piltan, F., Emamzadeh, S., & Mirzaie, M. (2014). Design Sliding Mode Controller with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 6(4), 63. |
5 | Piran, M., Piltan, F., Akbari, M., Garg, R., & Bazregar, M. (2014). Quality Model and Artificial Intelligence Base Fuel Ratio Management with Applications to Automotive Engine. International Journal of Intelligent Systems and Applications (IJISA), 6(2), 76. |
6 | Piltan, F., Piran, M., Bazregar, M., & Akbari, M. (2013). Design High Impact Fuzzy Baseline Variable Structure Methodology to Artificial Adjust Fuel Ratio. International Journal of Intelligent Systems and Applications (IJISA), 5(2), 59. |
7 | Piltan, F., Yarmahmoudi, M., Mirzaie, M., Emamzadeh, S., & Hivand, Z. (2013). Design Novel Fuzzy Robust Feedback Linearization Control with Application to Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(5), 1. |
8 | Piltan, F., Nabaee, A., Ebrahimi, M., & Bazregar, M. (2013). Design robust fuzzy sliding mode control technique for robot manipulator systems with modeling uncertainties. International Journal of Information Technology and Computer Science (IJITCS), 5(8), 123. |
9 | Salehi, A., Piltan, F., Mousavi, M., Khajeh, A., & Rashidian, M. R. (2013). Intelligent Robust Feed-forward Fuzzy Feedback Linearization Estimation of PID Control with Application to Continuum Robot. International Journal of Information Engineering and Electronic Business (IJIEEB), 5(1), 1. |
10 | Ebrahimi, M. M., Piltan, F., Bazregar, M., & Nabaee, A. (2013). Intelligent Robust Fuzzy-Parallel Optimization Control of a Continuum Robot Manipulator. International Journal of Control and Automation, 6(3), 15-34. |
11 | Piltan, F., Eram, M., Taghavi, M., Sadrnia, O. R., & Jafari, M. (2013). Nonlinear Fuzzy Model-base Technique to Compensate Highly Nonlinear Continuum Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(12), 135. |
12 | Piltan, F., Bazregar, M., Akbari, M., & Piran, M. (2013). Adjust the fuel ratio by high impact chattering free sliding methodology with application to automotive engine. International Journal of Hybrid Information Technology, 6(1), 13-24. |
13 | Piltan, F., Mansoorzadeh, M., Zare, S., Shahryarzadeh, F., & Akbari, M. (2013). Artificial tune of fuel ratio: Design a novel siso fuzzy backstepping adaptive variable structure control. International Journal of Electrical and Computer Engineering (IJECE), 3(2), 171-185. |
14 | Piltan, F., ShahryarZadeh, F., Mansoorzadeh, M., & Zare, S. (2013). Robust Fuzzy PD Method with Parallel Computed Fuel Ratio Estimation Applied to Automotive Engine. International Journal of Intelligent Systems and Applications (IJISA), 5(8), 83. |
15 | Jahed, A., Piltan, F., Rezaie, H., & Boroomand, B. (2013). Design Computed Torque Controller with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. International Journal of Information Engineering & Electronic Business, 5(3). |
16 | Mirshekaran, M., Piltan, F., Esmaeili, Z., Khajeaian, T., & Kazeminasab, M. (2013). Design Sliding Mode Modified Fuzzy Linear Controller with Application to Flexible Robot Manipulator. International Journal of Modern Education and Computer Science (IJMECS), 5(10), 53. |
17 | Ebrahimi, M. M., Piltan, F., Bazregar, M., & Nabaee, A. (2013). Artificial Chattering Free on-line Modified Sliding Mode Algorithm: Applied in Continuum Robot Manipulator. International Journal of Information Engineering and Electronic Business (IJIEEB), 5(5), 57. |
18 | Piltan, F., Emamzadeh, S., Heidari, S., Zahmatkesh, S., & Heidari, K. (2013). Design Artificial Intelligent Parallel Feedback Linearization of PID Control with Application to Continuum Robot. International Journal of Engineering and Manufacturing, 3(2), 51-72. |
19 | Jalali, A., Piltan, F., Hashemzadeh, M., BibakVaravi, F., & Hashemzadeh, H. (2013). Design Parallel Linear PD Compensation by Fuzzy Sliding Compensator for Continuum Robot. International Journal of Information Technology and Computer Science (IJITCS), 5(12), 97. |
20 | Piltan, F., Hosainpour, A., Emamzadeh, S., Nazari, I., & Mirzaie, M. (2013). Design Sliding Mode Controller of with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. IAES International Journal of Robotics and Automation (IJRA), 2(4), 149-162. |
21 | Sadrnia, O. R., Piltan, F., Jafari, M., Eram, M., & Shamsodini, M. (2013). Design PID Estimator Fuzzy plus Backstepping to Control of Uncertain Continuum Robot. International Journal of Hybrid Information Technology, 6(4), 31-48. |
22 | Moosavi, M., Eram, M., Khajeh, A., Mahmoudi, O., & Piltan, F. (2013). Design New Artificial Intelligence Base Modified PID Hybrid Controller for Highly Nonlinear System. International Journal of Advanced Science and Technology, 57. |
23 | Jalali, A., Piltan, F., Hashemzadeh, H., Hasiri, A., & Hashemzadeh, M. (2013). Design Novel Soft Computing Backstepping Controller with Application to Nonlinear Dynamic Uncertain System. International Journal of Intelligent Systems and Applications (IJISA), 5(10), 93. |
24 | Piltan, F., Jafari, M., Eram, M., Mahmoudi, O., & Sadrnia, O. R. (2013). Design Artificial Intelligence-Based Switching PD plus Gravity for Highly Nonlinear Second Order System. International Journal of Engineering and Manufacturing (IJEM), 3(1), 38. |
25 | Piltan, F., Zare, S., ShahryarZadeh, F., & Mansoorzadeh, M. (2013). Supervised Optimization of Fuel Ratio in IC Engine Based on Design Baseline Computed Fuel Methodology. International Journal of Information Technology and Computer Science (IJITCS), 5(4), 76. |
26 | Esmaili, P., & Esmaili, P. (2013). Modeling of two cooperative manipulators to handle an object. International Journal of Engineering, 2(1). |
27 | Piltan, F., Badri, A., Meigolinedjad, J., & Keshavarz, M. (2013). Adaptive Artificial Intelligence Based Model Base Controller: Applied to Surgical Endoscopy Telemanipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(9), 103. |
28 | Piltan, F., Bazregar, M., Akbari, M., & Piran, M. (2013). Management of Automotive Engine Based on Stable Fuzzy Technique with Parallel Sliding Mode Optimization. International Journal of Advances in Applied Sciences, 2(4), 171-184. |
29 | Morishita, T., & Tojo, O. (2013). Integer inverse kinematics method using Fuzzy logic. Intelligent Service Robotics, 6(2), 101-108. |
30 | Shamsodini, M., Piltan, F., Jafari, M., reza Sadrnia, O., & Mahmoudi, O. (2013). Design Modified Fuzzy Hybrid Technique: Tuning By GDO. International Journal of Modern Education and Computer Science (IJMECS), 5(8), 58. |
31 | Mansoorzadeh, M. (2013). Design Novel Model Reference Artificial Intelligence Based Methodology to Optimized Fuel Ratio in IC Engine. International Journal of Information Engineering and Electronic Business (IJIEEB), 5(2), 44. |
32 | Piltan, F., Bairami, M. A., Aghayari, F., & Rashidian, M. R. (2013). Stable Fuzzy PD Control with Parallel Sliding Mode Compensation with Application to Rigid Manipulator. International Journal of Information Technology and Computer Science (IJITCS), 5(7), 103. |
33 | Bazregar, M., Piltan, F., Akbari, M., & Piran, M. (2013). Management of Automotive Engine Based on Stable Fuzzy Technique with Parallel Sliding Mode Optimization. International Journal of Information Technology and Computer Science (IJITCS), 6(1), 101. |
34 | Park, S., & Rahmdel, S. (2013). A new fuzzy sliding mode controller with auto-adjustable saturation boundary layers implemented on vehicle suspension. Int. J. Eng. C Asp, 26(12), 1401-1410. |
35 | Piltan, F., Mehrara, S., Meigolinedjad, J., & Bayat, R. (2013). Design Serial Fuzzy Variable Structure Compensator for Linear PD Controller: Applied to Rigid Robot. International Journal of Information Technology and Computer Science (IJITCS), 5(11), 111. |
36 | Seven Tir Ave, S. Effect of Rule Base on the Fuzzy-Based Tuning Fuzzy Sliding Mode Controller: Applied to 2 nd Order Nonlinear System. |
37 | Piltan, F., Yarmahmoudi, M. H., Shamsodini, M., Mazlomian, E., & Hosainpour, A. (2012). PUMA-560 Robot Manipulator Position Computed Torque Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate Nonlinear Control and MATLAB Courses. International Journal of Robotics and Automation, (3), 167-191. |
38 | Piltan, F., Emamzadeh, S., Hivand, Z., Shahriyari, F., & Mirazaei, M. (2012). PUMA-560 Robot Manipulator Position Sliding Mode Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate/Undergraduate Nonlinear Control, Robotics and MATLAB Courses. International Journal of Robotics and Automation, 3(3), 106-150. |
39 | Piltan, F., Hosainpour, A., Mazlomian, E., Shamsodini, M., & Yarmahmoudi, M. H. (2012). Online Tuning Chattering Free Sliding Mode Fuzzy Control Design: Lyapunov Approach. International Journal of Robotics and Automation, 3(3), 77-105. |
40 | Piltan, F., Nazari, I., Siamak, S., & Ferdosali, P. (2012). Methodology of FPGA-based mathematical error-based tuning sliding mode controller. International Journal of Control and Automation, 5(1), 89-118. |
41 | Piltan, F., Boroomand, B., Jahed, A., & Rezaie, H. (2012). Methodology of Mathematical Error-Based Tuning Sliding Mode Controller. International Journal of Engineering, 6(2), 96-117. |
42 | Piltan, F., Dialame, M., Zare, A., & Badri, A. (2012). Design Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot Manipulator. International Journal of Engineering, 6(1), 25-41. |
43 | Piltan, F., Mirzaei, M., Shahriari, F., Nazari, I., & Emamzadeh, S. (2012). Design Baseline Computed Torque Controller. International Journal of Engineering, 6(3), 129-141. |
44 | Piltan, F., Boroomand, B., Jahed, A., & Rezaie, H. (2012). Performance-Based Adaptive Gradient Descent Optimal Coefficient Fuzzy Sliding Mode Methodology. International Journal of Intelligent Systems and Applications (IJISA), 4(11), 40. |
45 | Piltan, F., Meigolinedjad, J., Mehrara, S., & Rahmdel, S. (2012). Evaluation Performance of 2nd Order Nonlinear System: Baseline Control Tunable Gain Sliding Mode Methodology. International Journal of Robotics and Automation, 3(3), 192-211. |
46 | Piltan, F., Aghayari, F., Rashidian, M. R., & Shamsodini, M. (2012). A New Estimate Sliding Mode Fuzzy Controller for Robotic Manipulator. International Journal of Robotics and Automation, 3(1), 45-58. |
47 | Piltan, F., Jahed, A., Rezaie, H., & Boroomand, B. (2012). Methodology of Robust Linear On-line High Speed Tuning for Stable Sliding Mode Controller: Applied to Nonlinear System. International Journal of Control and Automation, 5(3), 217-236. |
48 | Piltan, F., Akbari, M., Piran, M., & Bazregar, M. (2012). Design Model Free Switching Gain Scheduling Baseline Controller with Application to Automotive Engine. International Journal of Information Technology and Computer Science (IJITCS), 5(1), 65. |
49 | Piltan, F., Bayat, R., Aghayari, F., & Boroomand, B. (2012). Design Error-Based Linear Model-Free Evaluation Performance Computed Torque Controller. International Journal of Robotics and Automation, 3(3), 151-166. |
50 | Piltan, F., Siamak, S., Bairami, M. A., & Nazari, I. (2012). Gradient descent optimal chattering free sliding mode fuzzy control design: LYAPUNOV approach. International Journal of Advanced Science and Technology, 43, 73-90. |
51 | Piltan, F., Bayat, R., Mehara, S., & Meigolinedjad, J. (2012). GDO Artificial Intelligence-Based Switching PID Baseline Feedback Linearization Method: Controlled PUMA Workspace. International Journal of Information Engineering and Electronic Business (IJIEEB), 4(5), 17. |
52 | Piltan, F., Piran, M., Akbari, M., & Barzegar, M. (2012). Baseline Tuning Methodology Supervisory Sliding Mode Methodology: Applied to IC Engine. International Journal of Advances in Applied Sciences, 1(3), 116-124. |
53 | Morishita, T., & Tojo, O. (2012). Proposal and evaluation of integer inverse kinematics for multijoint small robot. In Intelligent Robotics and Applications (pp. 376-386). Springer Berlin Heidelberg. |
54 | Piltan, F., & Haghighi, S. T. (2012). Design Gradient Descent Optimal Sliding Mode Control of Continuum Robots. IAES International Journal of Robotics and Automation (IJRA), 1(4), 175-189. |
55 | Piltan, F., Mehrara, S., Bayat, R., & Rahmdel, S. (2012). Design New Control Methodology of Industrial Robot Manipulator: Sliding Mode Baseline Methodology. |
56 | Rahmdel, S., Bairamai, M., & Fahham, M. M. H. R. (2012). Design Chattering-Free Performance-Based Fuzzy Sliding Mode Controller for Bus Suspension. International Journal of Engineering Sciences Research-IJESR, 3(05), 796-802. |
57 | Bairami, M. A., & AMINIMOGHADAM, M. (2012). e. al," Model-based Fuzzy Sliding Mode plus I Controller Applied to Robot Manipulator,". International Journal of Engineering Sciences Research (IJESR). |
58 | Piltan, F., Bairami, M. A., Aghayari, F., & Allahdadi, S. (2011). Design adaptive artificial inverse dynamic controller: Design sliding mode fuzzy adaptive new inverse dynamic fuzzy controller. International Journal of Robotics and Automation (IJRA), 3(1), 13. |
59 | Piltan, F., Allahdadi, S., Mohammad, A. B., & Nasiri, H. (2011). Design Auto Adjust Sliding Surface Slope: Applied to Robot Manipulator. International Journal of Robotics and Automation, 3(1), 27-44. |
A. Vivas and V. Mosquera, "Predictive functional control of a PUMA robot," 2005. | |
B. K. Yoo and W. C. Ham, "Adaptive control of robot manipulator using fuzzy compensator," Fuzzy Systems, IEEE Transactions on, vol. 8, pp. 186-199, 2002. | |
B. Siciliano and O. Khatib, Springer handbook of robotics: Springer-Verlag New York Inc, 2008. | |
B. Wu, et al., "An integral variable structure controller with fuzzy tuning design for electro-hydraulic driving Stewart platform," 2006, pp. 5-945. | |
C. C. Chiang and C. H. Wu, "Observer-Based Adaptive Fuzzy Sliding Mode Control of Uncertain Multiple-Input Multiple-Output Nonlinear Systems," 2007, pp. 1-6. | |
C. C. Lee, "Fuzzy logic in control systems: fuzzy logic controller. I," IEEE Transactions on systems, man and cybernetics, vol. 20, pp. 404-418, 1990. | |
C. C. Weng and W. S. Yu, "Adaptive fuzzy sliding mode control for linear time-varying uncertain systems," 2008, pp. 1483-1490. | |
C. G. Lhee, et al., "Sliding mode-like fuzzy logic control with self-tuning the dead zone parameters," Fuzzy Systems, IEEE Transactions on, vol. 9, pp. 343-348, 2002. | |
C. L. Hwang and S. F. Chao, "A fuzzy-model-based variable structure control for robot arms:theory and experiments," 2005, pp. 5252-5258. | |
C. M. Lin and C. F. Hsu, "Adaptive fuzzy sliding-mode control for induction servomotor systems,"Energy Conversion, IEEE Transactions on, vol. 19, pp. 362-368, 2004. | |
D. Nguyen-Tuong, et al., "Computed torque control with nonparametric regression models," 2008,pp. 212-217. | |
F. Barrero, et al., "Speed control of induction motors using a novel fuzzy sliding-mode structure,"Fuzzy Systems, IEEE Transactions on, vol. 10, pp. 375-383, 2002. | |
F. Piltan, et al., "Artificial Control of Nonlinear Second Order Systems Based on AFGSMC,"Australian Journal of Basic and Applied Sciences, 5(6), pp. 509-522, 2011. | |
F. Y. Hsu and L. C. Fu, "Nonlinear control of robot manipulators using adaptive fuzzy sliding mode control," 2002, pp. 156-161. | |
Farzin Piltan, A. R. Salehi and Nasri B Sulaiman.,” Design artificial robust control of second order system based on adaptive fuzzy gain scheduling,” International Journal of Robotics and Automation (IJRA), 2 (4), 2011 | |
Farzin Piltan, et al., "Design of model free adaptive fuzzy computed torque controller for a nonlinear second order system," International Journal of Robotics and Automation (IJRA), 2(4),2011. | |
H. Elmali and N. Olgac, "Implementation of sliding mode control with perturbation estimation(SMCPE)," Control Systems Technology, IEEE Transactions on, vol. 4, pp. 79-85, 2002. | |
H. Medhaffar, et al., "A decoupled fuzzy indirect adaptive sliding mode controller with application to robot manipulator," International Journal of Modelling, Identification and Control, vol. 1, pp. 23-29, 2006. | |
H. Temeltas, "A fuzzy adaptation technique for sliding mode controllers," 2002, pp. 110-115. | |
H.K.Lee, K.Fms, "A Study on the Design of Self-Tuning Sliding Mode Fuzzy Controller. Domestic conference," IEEE Conference, 1994, vol. 4, pp. 212-218. | |
Harashima F., Hashimoto H., and Maruyama K, 1986. Practical robust control of robot arm using variable structure system, IEEE conference, P.P:532-539 | |
I. Boiko, et al., "Analysis of chattering in systems with second-order sliding modes," IEEE Transactions on Automatic Control, vol. 52, pp. 2085-2102, 2007. | |
Iordanov, H. N., B. W. Surgenor, 1997. Experimental evaluation of the robustness of discrete sliding mode control versus linear quadratic control, IEEE Trans. On control system technology,5(2):254-260. | |
J. J. D'Azzo, et al., Linear control system analysis and design with MATLAB: CRC, 2003. | |
J. J. E. Slotine and W. Li, Applied nonlinear control vol. 461: Prentice hall Englewood Cliffs, NJ,1991. | |
J. J. E. Slotine, "Sliding controller design for non-linear systems," International Journal of Control,vol. 40, pp. 421-434, 1984. | |
J. J. Slotine and S. Sastry, "Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators†," International Journal of Control, vol. 38, pp. 465-492, 1983. | |
J. Moura and N. Olgac, "A comparative study on simulations vs. experiments of SMCPE," 2002,pp. 996-1000. | |
J. Wang, et al., "Indirect adaptive fuzzy sliding mode control: Part I: fuzzy switching," Fuzzy Sets and Systems, vol. 122, pp. 21-30, 2001. | |
J. Zhou and P. Coiffet, "Fuzzy control of robots," 2002, pp. 1357-1364. | |
K. D. Young, et al., "A control engineer's guide to sliding mode control," 2002, pp. 1-14. | |
K. Kumbla, et al., "Soft computing for autonomous robotic systems," Computers and Electrical Engineering, vol. 26, pp. 5-32, 2000. | |
L. A. Zadeh, "Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic," Fuzzy Sets and Systems, vol. 90, pp. 111-127, 1997. | |
L. Cheng, et al., "Multi-agent based adaptive consensus control for multiple manipulators with kinematic uncertainties," 2008, pp. 189-194. | |
L. Reznik, Fuzzy controllers: Butterworth-Heinemann, 1997. | |
Lhee. C. G., J. S. Park, H. S. Ahn, and D. H. Kim, "Sliding-Like Fuzzy Logic Control with Selftuning the Dead Zone Parameters," IEEE International fuzzy systems conference proceeding,1999,pp.544-549. | |
M. B. Menhaj and M. Rouhani, "A novel neuro-based model reference adaptive control for a two link robot arm," 2002, pp. 47-52. | |
M. Ertugrul and O. Kaynak, "Neuro sliding mode control of robotic manipulators," Mechatronics,vol. 10, pp. 239-263, 2000. | |
M. R. Emami, et al., "Development of a systematic methodology of fuzzy logic modeling," IEEE Transactions on Fuzzy Systems, vol. 6, 1998. | |
O. Kaynak, "Guest editorial special section on computationally intelligent methodologies and sliding-mode control," IEEE Transactions on Industrial Electronics, vol. 48, pp. 2-3, 2001. | |
P. Kachroo and M. Tomizuka, "Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems," Automatic Control, IEEE Transactions on, vol. 41, pp.1063-1068, 2002. | |
Piltan, F., et al., “A Model Free Robust Sliding Surface Slope Adjustment in Sliding Mode Control for Robot Manipulator,” World Applied Science Journal, 12 (12): 2330-2336, 2011. | |
Piltan, F., et al., “Design Adaptive Fuzzy Robust Controllers for Robot Manipulator,” World Applied Science Journal, 12 (12): 2317-2329, 2011. | |
Piltan, F., et al., “Design Artificial Nonlinear Robust Controller Based on CTLC and FSMC with Tunable Gain,” International Journal of Robotic and Automation, 2 (3): 205-220, 2011. | |
Piltan, F., et al., “Design Mathematical Tunable Gain PID-Like Sliding Mode Fuzzy Controller with Minimum Rule Base,” International Journal of Robotic and Automation, 2 (3): 146-156, 2011. | |
Piltan, F., et al., “Design of FPGA based sliding mode controller for robot manipulator,”International Journal of Robotic and Automation, 2 (3): 183-204, 2011. | |
Piltan, F., et al., “Design sliding mode controller for robot manipulator with artificial tunable gain,”Canaidian Journal of pure and applied science, 5 (2): 1573-1579, 2011. | |
R. A. DeCarlo, et al., "Variable structure control of nonlinear multivariable systems: a tutorial,"Proceedings of the IEEE, vol. 76, pp. 212-232, 2002. | |
R. G. Berstecher, et al., "An adaptive fuzzy sliding-mode controller," Industrial Electronics, IEEE Transactions on, vol. 48, pp. 18-31, 2002. | |
R. J. Wai and M. C. Lee, "Intelligent optimal control of single-link flexible robot arm," Industrial Electronics, IEEE Transactions on, vol. 51, pp. 201-220, 2004. | |
R. J. Wai, et al., "Implementation of artificial intelligent control in single-link flexible robot arm,"2003, pp. 1270-1275. | |
R. Palm, "Sliding mode fuzzy control," 2002, pp. 519-526. | |
R. Shahnazi, et al., "Position control of induction and DC servomotors: a novel adaptive fuzzy PI sliding mode control," Energy Conversion, IEEE Transactions on, vol. 23, pp. 138-147, 2008. | |
S. Banerjee and P. Y. Woo, "Fuzzy logic control of robot manipulator," 2002, pp. 87-88. | |
S. Mohan and S. Bhanot, "Comparative study of some adaptive fuzzy algorithms for manipulator control," International Journal of Computational Intelligence, vol. 3, pp. 303–311, 2006. | |
T. R. Kurfess, Robotics and automation handbook: CRC, 2005. | |
V. Kim, "Independent joint adaptive fuzzy control of robot manipulator," 2002, pp. 645-652. | |
V. Utkin, "Variable structure systems with sliding modes," Automatic Control, IEEE Transactions on, vol. 22, pp. 212-222, 2002. | |
X. Zhang, et al., "Adaptive sliding mode-like fuzzy logic control for high order nonlinear systems,"pp. 788-792. | |
Y. C. Hsu and H. A. Malki, "Fuzzy variable structure control for MIMO systems," 2002, pp. 280-285. | |
Y. C. Hsueh, et al., "Self-tuning sliding mode controller design for a class of nonlinear control systems," 2009, pp. 2337-2342. | |
Y. Guo and P. Y. Woo, "An adaptive fuzzy sliding mode controller for robotic manipulators,"Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, vol. 33, pp.149-159, 2003. | |
Y. Li and Q. Xu, "Adaptive Sliding Mode Control With Perturbation Estimation and PID Sliding Surface for Motion Tracking of a Piezo-Driven Micromanipulator," Control Systems Technology,IEEE Transactions on, vol. 18, pp. 798-810, 2010. | |
Y. Wang and T. Chai, "Robust adaptive fuzzy observer design in robot arms," 2005, pp. 857-862. | |
Z. Kovacic and S. Bogdan, Fuzzy controller design: theory and applications: CRC/Taylor & Francis, 2006. | |
Mr. Farzin Piltan
UPM - Malaysia
SSP.ROBOTIC@yahoo.com
Mr. N. Sulaiman
- Malaysia
Mr. Hajar Nasiri
- Iran
Mr. Sadeq Allahdadi
- Iran
Mr. Mohammad A. Bairami
- Iran
|
|
|
|
View all special issues >> | |
|
|