Home > CSC-OpenAccess Library > Manuscript Information
EXPLORE PUBLICATIONS BY COUNTRIES |
EUROPE | |
MIDDLE EAST | |
ASIA | |
AFRICA | |
............................. | |
United States of America | |
United Kingdom | |
Canada | |
Australia | |
Italy | |
France | |
Brazil | |
Germany | |
Malaysia | |
Turkey | |
China | |
Taiwan | |
Japan | |
Saudi Arabia | |
Jordan | |
Egypt | |
United Arab Emirates | |
India | |
Nigeria |
Numerical Investigation of The Performance of Fully Solar
Driven Compact HDH Desalination System
Khaled Alshamrani, Ahmed Asiri, Ali Alqarni, Hossam AbdelMeguid
Pages - 23 - 41 | Revised - 31-05-2023 | Published - 30-06-2023
Published in International Journal of Engineering (IJE)
MORE INFORMATION
KEYWORDS
HDH, Solar Desalination, Decentralized Desalination.
ABSTRACT
Climate change is characterized by long-term changes in weather patterns and temperatures,
which may occur naturally through solar cycle variations. However, human activities, particularly
the burning of fossil fuels like coal, oil, and gas, have been the primary cause of climate change
since the 1800s. Global climate change affects water resources through increased evaporation
rates, decreased water quality in inland and coastal areas, higher water temperatures, earlier and
shorter runoff seasons. These effects have significant implications for water availability and
management. This paper provides an overview of the different methods of desalination and
focuses on the use of a compact and domestic air humidification dehumidification (HDH)
desalination system, which is suitable for remote areas with limited water resources and
experienced operators. The study presents a mathematical model to analyze the impact of
various operating parameters on the system's productivity. The mathematical model is solved
using a MATLAB, and a series of numerical runs are performed under different operating and
design parameters. The study presents the transient state behavior of the system and its
productivity. Overall, the report provides valuable insights into the use of HDH desalination
systems in remote areas and highlights the importance of both theoretical and experimental
investigations in improving the efficiency of such systems.
Abdel Dayem, A. M., & AlZahrani, A. (2022). Psychometric study and performance investigation of an efficient evaporative solar HDH water desalination system. Sustainable Energy Technologies and Assessments, 52(PA), 102030. https://doi.org/10.1016/j.seta.2022.102030 | |
Abdullah, A. S., Omara, Z. M., Essa, F. A., Alarjani, A., Mansir, I. B., & Amro, M. I. (2021). Enhancing the solar still performance using reflectors and sliding-wick belt. Solar Energy, 214(December 2020), 268-279. https://doi.org/10.1016/j.solener.2020.11.016 | |
Abu Mallouh, M., AbdelMeguid, H., & Salah, M. (2022). A comprehensive comparison and control for different solar water heating system configurations. Engineering Science and Technology, an International Journal, 35(2022), 101210. https://doi.org/10.1016/j.jestch.2022.101210 | |
Aburub, A., Aliyu, M., Lawal, D., & Antar, M. A. (2017). Experimental Investigations of a Cross-Flow Humidification Dehumidification Desalination System. International Water Technology, 7(3), 198-208. | |
Ahmed, M. M. Z., Alshammari, F., Abdullah, A. S., & Elashmawy, M. (2021). Experimental investigation of a low cost inclined wick solar still with forced continuous flow. Renewable Energy, 179, 319-326. https://doi.org/10.1016/j.renene.2021.07.059 | |
Criscuoli, A., & Carnevale, M. C. (2022). Localized Heating to Improve the Thermal Efficiency of Membrane Distillation Systems. In Energies (Vol. 15, Issue 16). MDPI. https://doi.org/10.3390/en15165990 | |
El-Ghetany, H. H., & Khattab, N. M. (2016). Mathematical modeling for performance prediction of a humidification - dehumidification solar water desalination system in Egypt. Egyptian Journal of Chemistry, 59(2), 145-162. https://doi.org/10.21608/ejchem.2016.937 | |
El-Sharkawy, I. I., Abdelmeguid, H., & Saha, B. B. (2013). Towards an optimal performance of adsorption chillers: Reallocation of adsorption/desorption cycle times. International Journal of Heat and Mass Transfer, 63(0), 171-182. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.076 | |
El-Sharkawy, Ibrahim I, Abdelmaguid, H., Saha, B. B., Koyama, S., & Miyazaki, T. (2013). Performance Investigation of A Solar-Powered Adsorption Cooling System: A Case Study for Egypt. In International Symposium on Innovative Materials for Processes in Energy Systems 2013 (IMPRES2013). | |
El-Sharkawy, Ibrahim I., AbdelMeguid, H., & Saha, B. B. (2014). Potential application of solar powered adsorption cooling systems in the Middle East. Applied Energy, 126(0), 235-245. https://doi.org/10.1016/j.apenergy.2014.03.092 | |
Elsharkawy, M., AbdelMeguid, H., El-Sharkawy, I. I., & Rabie, L. (2014). Experimental and theoretical investigation of decentralized desalination system. Mansoura Engineering Journal, 39(2). | |
Elzayed, M. S., Ahmed, M. A. M., Antar, M. A., Sharqawy, M. H., & Zubair, S. M. (2021). The impact of thermodynamic balancing on the performance of a humidification dehumidification desalination system. Thermal Science and Engineering Progress, 21. https://doi.org/10.1016/j.tsep.2020.100794 | |
Fares, M. N., Al-Mayyahi, M. A., Rida, M. M., & Najim, S. E. (2019). Water Desalination Using a New Humidification-Dehumidification (HDH) Technology. Journal of Physics: Conference Series, 1279(1). https://doi.org/10.1088/1742-6596/1279/1/012052 | |
Farmani, R, Butler, D., Memon, F., Abdelmeguid, H., & Ward, S. (2011). Sustainable water management for urban regeneration. In The Future of Urban Water: Solutions for Livable and Resilient Cities. | |
Farmani, Raziyeh, Butler, D., Hunt, D. V. L., Memon, F. A., Abdelmeguid, H., Ward, S., & Rogers, C. D. F. (2012). Scenario-based sustainable water management and urban regeneration. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 165(1), 89-98. https://doi.org/10.1680/ensu.2012.165.1.89 | |
Kabeel, A. E., Diab, M. R., Elazab, M. A., & El-Said, E. M. S. (2022a). Hybrid solar powered desalination system based on air humidification dehumidification integrated with novel distiller: Exergoeconomic analysis. Journal of Cleaner Production, 379(P1), 134690. https://doi.org/10.1016/j.jclepro.2022.134690 | |
Kabeel, A. E., Diab, M. R., Elazab, M. A., & El-Said, E. M. S. (2022b). Solar powered hybrid desalination system using a novel evaporative humidification tower: Experimental investigation. Solar Energy Materials and Solar Cells, 248(September), 112012. https://doi.org/10.1016/j.solmat.2022.112012 | |
Kabeel, A. E., Hamed, M. H., Omara, Z. M., & Sharshir, S. W. (2013). Water Desalination Using a Humidification-Dehumidification Technique—A Detailed Review. Natural Resources, 04(03), 286-305. https://doi.org/10.4236/nr.2013.43036 | |
Khalaf-Allah, R. A., Abdelaziz, G. B., Kandel, M. G., & Easa, A. S. (2022). Development of a centrifugal sprayer-based solar HDH desalination unit with a variety of sprinkler rotational speeds and droplet slot distributions. Renewable Energy, 190, 1041-1054. https://doi.org/10.1016/j.renene.2022.04.019 | |
Manju, S., & Sagar, N. (2017). Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India. Renewable and Sustainable Energy Reviews, 73(February), 594-609. https://doi.org/10.1016/j.rser.2017.01.164 | |
Memon, F. A., Butler, D., Farmani, R., Abdelmeguid, H., Atkinson, S., Rogers, C., & Hunt, D. (2011). Urban Futures - Sustainability (Resilience) Evaluation of Water Infrastructure . In The 2011 AEESP Education & Research Conference. | |
Mohaisen, H. S., Esfahani, J. A., & Ayani, M. B. (2021). Improvement in the performance and cost of passive solar stills using a finned-wall/built-in condenser: An experimental study. Renewable Energy, 168, 170-180. https://doi.org/10.1016/j.renene.2020.12.056 | |
Mohamed, A. M. I., & Elminshawy, N. A. S. (2009). Humidification-dehumidification desalination system driven by geothermal energy. Desalination, 249(2), 602-608. https://doi.org/10.1016/j.desal.2008.12.053 | |
Mohamed, A. S. A., Shahdy, A. G., & Salem Ahmed, M. (2021). Investigation on solar humidification dehumidification water desalination system using a closed-air cycle. Applied Thermal Engineering, 188. https://doi.org/10.1016/j.applthermaleng.2021.116621 | |
Moumouh, J., Tahiri, M., & Balli, L. (2018). Solar Desalination by Humidification-Dehumidification of Air. MATEC Web of Conferences, 149, 1-4. https://doi.org/10.1051/matecconf/201714902092 | |
Nakamura, A., Ota, Y., Koike, K., Hidaka, Y., Nishioka, K., Sugiyama, M., & Fujii, K. (2015). A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells. Applied Physics Express, 8(10). https://doi.org/10.7567/APEX.8.107101 | |
Prakash, A., & Jayaprakash, R. (2021). Performance evaluation of stepped multiple basin pyramid solar still. Materials Today: Proceedings, 45, 1950-1956. https://doi.org/10.1016/j.matpr.2020.09.227 | |
Sayed, E. T., Olabi, A. G., Elsaid, K., Al Radi, M., Alqadi, R., & Ali Abdelkareem, M. (2022). Recent progress in renewable energy based-desalination in the Middle East and North Africa MENA region. Journal of Advanced Research, 48, 125-156. https://doi.org/10.1016/j.jare.2022.08.016 | |
Shafieian, A., Rizwan Azhar, M., Khiadani, M., & Kanti Sen, T. (2020a). Performance improvement of thermal-driven membrane-based solar desalination systems using nanofluid in the feed stream. Sustainable Energy Technologies and Assessments, 39(February). https://doi.org/10.1016/j.seta.2020.100715 | |
Shafieian, A., Rizwan Azhar, M., Khiadani, M., & Kanti Sen, T. (2020b). Performance improvement of thermal-driven membrane-based solar desalination systems using nanofluid in the feed stream. Sustainable Energy Technologies and Assessments, 39. https://doi.org/10.1016/j.seta.2020.100715 | |
Sukpancharoen, S., & Phetyim, N. (2021). Green hydrogen and electrical power production through the integration of CO2 capturing from biogas: Process optimization and dynamic control. Energy Reports, 7, 293-307. https://doi.org/10.1016/j.egyr.2021.06.048 | |
Tahir, F., & Al-Ghamdi, S. G. (2022). Integrated MED and HDH desalination systems for an energy-efficient zero liquid discharge (ZLD) system. Energy Reports, 8, 29-34. https://doi.org/10.1016/j.egyr.2022.01.028 | |
Ward, S., Abdelmeguid, H., Farmani, R., Memon, F. A., & Butler, D. (2011). Sustainable water management - Modelling acceptability for decision support: A methodology. In Urban Water Management: Challenges and Oppurtunities - 11th International Conference on Computing and Control for the Water Industry, CCWI 2011 (Vol. 1). | |
Zaragoza, G., Ruiz-Aguirre, A., & Guillén-Burrieza, E. (2014). Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production. Applied Energy, 130, 491-499. https://doi.org/10.1016/j.apenergy.2014.02.024. | |
Mr. Khaled Alshamrani
Faculty of Engineering / Mechanical Engineering Department, University of Tabuk, Tabuk 47913 - Saudi Arabia
Mr. Ahmed Asiri
Faculty of Engineering / Mechanical Engineering Department, University of Tabuk, Tabuk 47913 - Saudi Arabia
Mr. Ali Alqarni
Faculty of Engineering / Mechanical Engineering Department, University of Tabuk, Tabuk 47913 - Saudi Arabia
Associate Professor Hossam AbdelMeguid
Faculty of Engineering / Mechanical Engineering Department, University of Tabuk, Tabuk 47913 - Saudi Arabia
hssaleh@gmail.com
|
|
|
|
View all special issues >> | |
|
|