Home > CSC-OpenAccess Library > Manuscript Information
EXPLORE PUBLICATIONS BY COUNTRIES |
EUROPE | |
MIDDLE EAST | |
ASIA | |
AFRICA | |
............................. | |
United States of America | |
United Kingdom | |
Canada | |
Australia | |
Italy | |
France | |
Brazil | |
Germany | |
Malaysia | |
Turkey | |
China | |
Taiwan | |
Japan | |
Saudi Arabia | |
Jordan | |
Egypt | |
United Arab Emirates | |
India | |
Nigeria |
Semi-Autonomous Control of a Multi-Agent
Robotic System for Multi-Target Operations
Yushing Cheung, Jae H. Chung
Pages - 107 - 127 | Revised - 01-05-2011 | Published - 31-05-2011
MORE INFORMATION
KEYWORDS
Teleoperation, Multi-Target Operations, Multi-Agent Systems
ABSTRACT
Since multi-targets often occur in most applications, it is required that multi-robots are grouped to work on multi-targets simultaneously. Therefore, this paper proposes a control method for a single-master multi-slave (SMMS) teleoperator to control cooperative mobile multi-robots for a multi-target mission. The major components of the proposed control method are the robot-target pairing method and modified potential field based leader-follower formation
The robot-target paring method is derived from the proven auction algorithm for a single target and is extended for multi-robot multi-target cases, which optimizes effect-based robot-target pairing based on heuristic and sensory data. The multi-robot multi-target pairing method can produce a weighted attack guidance table (WAGT), which contains benefits of different robot-target pairs. The robot-target pairing converges rapidly - as is the case for auction algorithms with integer benefits.
Besides, as long as optimal robot-target pairs are obtained, a team is split into subteams formed by paired robots regarding types and numbers of the robot-target pairs with the robot-target pairing method. The subteams approach and then capture their own paired targets in the modified potential field based leader-follower formation while avoiding sensed obstacles.
Simulation studies illustrate system efficacy with the proposed control method for multi-target operations. Moreover, the paper is concluded with observations of enhanced system performance.
1 | Hernansanz, A., Casals, A., & Amat, J. (2015). A multi-robot cooperation strategy for dexterous task oriented teleoperation. Robotics and Autonomous Systems, 68, 156-172. |
A. Pongpunwattana and R. Rysdyk, “real-time planning for multiple autonomous vehicles in dynamic uncertain environments”, Journal of Aerospace Computing, Information, and Communication, 1(12) pages. 580-604, 2004. | |
B. Kaleci, O. Parlaktuna, M. Ozkan, and G. Kirlik, “market-based task allocation by using assignment problem”, Systems, Man, and Cybernetics (SMC), 2010, IEEE International Conference, pages 135-141, 2010. | |
B. Liu, Z. Qin, R. Wang, Y.B. Gao, and L.P. Shao, “a hybrid heuristic particle swarm optimization for coordinated multi-target assignment”, Industrial Electronics and Applications, ICIEA, 4th IEEE Conference, pages 1929-1934, 2009. | |
C. Sabattini, C. Secchi, and C. Fantuzzi, “potential based control strategy for arbitrary shape formations of mobile robots”, Intelligent Robots and Systems, 2009, IROS 2009, IEEE/RSJ International Conference, pages 3762-3767, 2009. | |
C.S. Lim, R. Mamat, and T. Braunl, “market-based approach for multi-team robot cooperation”, Autonomous Robots and Agents, 2009, ICARA 2009, 4th International Conference, pages 62-67, 2009. | |
D. Fox, W.Burgard, H. Kruppa, and S. Thrun, “collaborative multi-robot localization”, In Proceedings of the German Conference on Artificial Intelligence and the 21st Symposium on Pattern Recognition, 1999. | |
D. Lee and M.W. Spong, “bilateral teleoperation of multiple cooperative robots over delayed communication networks: Application”, Robotics and Automation, ICRA Proceedings of the 2005 IEEE International Conference, 2005. | |
D. Lee, O. Martinez-Palafox, and M.W. Spong, “bilateral teleoperation of multiple cooperative robots over delayed communication networks: Theory”, Robotics and Automation, ICRA, Proceedings of the IEEE International Conference, 2005. | |
E. Lalish, K.A. Morgansen, and T. Tsukamaki, “formation tracking control using virtual structures and deconfliction”, Decision and Control, 2006, 45th IEEE Conference, pages 5699-5705, 2006. | |
H. Park, Y.A. Lim, A. Pervez, B.C. Lee, S.G. Lee, and J. Ryu, “teleoperation of a multipurpose robot over the internet using augumented reality”, Control, Automation, and Systems, 2007, ICCAS 2007, International Conference, pages 2456-2461, 2007. | |
H. Tan, Q. Liao, and J. Zhang, “an improved algorithm of multiple robot cooperation in obstacle existing environment”, Robotics and Biomimetics, 2007, ROBIO 2007, pages 1001-1006, 2007. | |
H. Yamaguchi, “a distributed motion coordination strategy for multiple nonholonomic mobile robots in cooperative hunting operations”, Decision and Control, 2002, Proceedings of the 41st IEEE Conference, 3(10-13) pages 2984-2991, 2002. | |
H.K. Lee, M.H. Shin, and M.J. Chung, “adaptive controller of master-slave systems for transparent teleoperation”, ICAR 1997, pages 14-23, 1997. | |
I. Farkhatdinov and J.H. Ryu, “teleoperation of multi-robot and multi-property systems”, Industrial Informatics, INDIN 2008, 6th IEEE International Conference, pages 1453-1458, 2008. | |
J. Liu, L. Shun, T. Chen, X. Huang, and C. Zhao, “competitive multi-robot teleoperation”, Robotics and Automation, 2005, ICRA 2005, Proceedings of the 2005 IEEE International Conference, pages 75-80, 1993. | |
J. Ota, N. Miyata, T. Arai, E. Yoshida, D. Kurabatashi, and J. Sasaki, “transferring and regrasping a large object by cooperation of multiple mobile robots”, Human Robot Interaction and Cooperative Robots, Proceedings of IEEE/RSJ International Conference, 1995. | |
J.H. Ryu, D.S. Kwon, and B. Hannaford, “stable teleoperation with time-domain passivity control”, Robotics and Automation, IEEE Transactions, 20(2) pages. 365-373, 2004. | |
J.P. Desai, J.P. Ostrowski, and V. Kumar, “modeling and control of formations of nonholonomic mobile robots”, Robotics and Autonmation, IEEE Transactions, 17(6) pages. 905-908, 2001. | |
J.P. Graciano, “a simple navigation algorithm with no local minima”, Advanced Robotics, ICAR 2005, Proceedings, 12th International Conference, pages 640-646, 2005. | |
K. Hashtrudi-Zaad and S.E. Salcudean, “adaptive transparent impedance reflecting teleoperation”, Proceeding of the 1996 IEEE International Conference on Robotics and Automation, 1996. | |
K. R. Baghaei and A. Agah. “task allocation methodologies for multi-robot systems”, Technical Report ITTC-FY2003-TR-20272-01, 2003. | |
K.D. Do, “formation control of mobile agents using local potential functions”, American Control Conference, 2006. | |
K.F. Man, F.S. Tang, and S. Kwong, ”genetic algorithms: concepts and applications in engineering designs”, Industrial Electronics, IEEE Transactions, 43(5) pages. 519-534, 1996. | |
L. Barnes, W. Alvis, M.A. Fields, K. Valavanis, and W. Moreno. “heterogeneous swarm formation control using bivariate normal functions to generate potential fields”, Distributed Intelligent Systems: Collective Intelligence and Its Applications, 2006. DIS 2006, IEEE Workshop, pages 85-94, 2006. | |
L. Delin, D. Haibin, W. Shunxiang, and L. Maoqing, “research on air combat decision-making for cooperative multiple target attack using heuristic ant colony algorithm”, ACTA AERONAUTICA ET ASTRONAUTICA SINICA, 27(6) pages 1166-1170, 2006. | |
L. Delin, S. Chunlin, W. Biao, and W. Wenhai, “air combat decision-making for cooperative multiple target attack using heuristic adaptive genetic algorithm”, Machine Learning and Cybernetics, Proceeding of 2005 International Conference, (1)473-478, 2005. | |
L. Delin, Y. Zhong, D. Haibin, W. Zaigui, and S. Chunlin, “heuristic particle swarm optimization algorithm for air combat decision-making on CMTA”, Transactions of Nanjing University of Aeronautics and Astonautics, 23(1) pages. 20-26, 2006. | |
L.M. Wachter and L.E. Ray, “stability of potential function formation control with communication and processing delay”, American Control Conference, 2009, ACC 2009, pages 2997-3004, 2009. | |
M. Eghbali and M.A. Sharbafi, “multi-agent routing to multi-targets via ant colony”, Computer and Automation Engineering (ICCAE), 2010 the 2nd International Conference, (1)pages. 587-591, 2010. | |
M.B. Dias, R.M. Zlot, N. Kalra, and A. Stentz, “market-based multirobot coordination: a survey and analysis”, Proceedings of the IEEE, 94(7) pages. 1257-1270, 2006. | |
M.G. Park and M.C. Lee, “real-time path planning in unknown environment and a virtual hill concept to escape local minima”, Industrial Electronics Society, 2004, IECON 2004, 30th Annual Conference of IEEE, (3) pages.2223 – 2228, 2004. | |
M.T. Khan, T. Imanuel, and C.W. DeSilva, “autonomous market-based multi-robot cooperation”, Intelligent and Advanced Systems (ICIAS), 2010 International Conference, pages 1-6, 2010. | |
P.G. Espejo, S. Ventura, and F. Herrera, “a survey on the application of genetic programming to classification”, Systems, Man., and Cyberetics, Part C: Applications and Reviews, IEEE Transactions, 40(2), pages. 121-144, 2010. | |
S. Cifuentes, J.M. Giron-Sierra, and J.F. Jimenez, “robot formation control based on a multipotential approach”, Control Automation and Systems (ICCAS), 2010 International Conference, pages 1982-1987, 2010. | |
S. Monteiro and E. Bicho, “robots allocation and leader-follower pairs”, Robotics and Automation, ICRA, IEEE International Conference, pages 3769-3775, 2008. | |
S.S. Ge, C.H. Fua, and W.M. Liew, “swarm formations using the general formation potential function”, Robotics, Automation, and Mechatronics, 2004 IEEE Conference, (2) pages. 655- 660, 2004. | |
T. Balch and R.C. Arkin. “behavior-based formation control for multirobot teams”, Robotics and Automation, IEEE transactions, 14(6):926-939, 1998. | |
T. Fong, C. Thorpe, and C. Baur, “multi-robot remote driving with collaborative control”, Industrial Electronics, IEEE Transactions, 50(4) pages. 699-704, 2003. | |
T. Suzuki, T. Sekine, T. Fujii, H. Asama, and I. Endo, “cooperative formation among multiple mobile robot teleoperation in inspection task”, Decision and Control 2000, Proceedings of the 39th IEEE Conference, 1(12-15), pages. 358-363, 2000. | |
W. Kim, D.S. Cho, and H.J. Kim, “sequential multi-agent task assignment using auction algorithm based on d*lite”, Control Automation and Systems (ICCAS), 2010 International Conference, page 938-942, 2010. | |
Y. Cheung and J. Chung. “cooperative control of a multi-arm system using semi-autonomous telemanipuation and adaptive impedance”, 14th IEEE International Conference on Advanced Robotics (ICAR), 2009. | |
Y. Cheung, J.H. Chung, and N. Coleman, “semi-autonomous formation control of a singlemaster multi-slave teleoperation system”, IEEE Symposium on Computational Intelligence in Control and Automation, 2009. | |
Y. Cheung. “Adaptive semi-autonomous teleoperation of a mutli-agent robotic system”, PhD thesis, Stevens Institute of Technology, 2009. | |
Y. Yamamoto and S. Fukuda, “trajectory planning of multiple mobile manipulators with collision avoidance capability”, Proceedings of ICRA 2002 IEEE International Conference, 2002. | |
Z. R. Bogdanowicz and N.P. Coleman. “new algorithm for optimization of effect-based weapon-target pairings”, International Conference Scientific Computing CSC 08, 2008. | |
Z. Wang, M.N. Admadabadi, E. Nakano, and T. Takahashi, “a multiple robot system for cooperative object transportation with various requirements on task performing”, Robotics and Automation, 1999, Proceedings of 1999 IEEE International Conference, 2(10-15) pages 1226-1233, 1999. | |
Z. Yao and K. Gupta, “distributed strategies for local minima escape in motion planning for mobile networks”, Robot Communication and Coordination, 2009, ROBO-COMM 2009, Second International Conference, pages 1-7, 2009. | |
Z.J. Lee, C.Y. Lee, and S.F. Su, “an immunity-based ant colony optimization algorithm for solving weapon target assignment problem”, Applied Soft Computing Journal, 2(1) pages. 39-47, 2002. | |
Dr. Yushing Cheung
Telemax - Hong Kong
ycheung@stevens.edu
Dr. Jae H. Chung
- United States of America
|
|
|
|
View all special issues >> | |
|
|