Home > CSC-OpenAccess Library > Manuscript Information
EXPLORE PUBLICATIONS BY COUNTRIES |
EUROPE | |
MIDDLE EAST | |
ASIA | |
AFRICA | |
............................. | |
United States of America | |
United Kingdom | |
Canada | |
Australia | |
Italy | |
France | |
Brazil | |
Germany | |
Malaysia | |
Turkey | |
China | |
Taiwan | |
Japan | |
Saudi Arabia | |
Jordan | |
Egypt | |
United Arab Emirates | |
India | |
Nigeria |
Consistent Nonparametric Spectrum Estimation Via
Cepstrum Thresholding
Moram Venkatanarayana , T. Jayachandra Prasad
Pages - 292 - 303 | Revised - 30-11-2010 | Published - 20-12-2010
Published in Signal Processing: An International Journal (SPIJ)
MORE INFORMATION
KEYWORDS
Cepstrum, Cramer Rao Lower Bound, Consistency, Unbiasedness
ABSTRACT
For stationary signals, there are number of power spectral density estimation techniques. The main problem of power spectral density (PSD)estimation methods is high variance. Consistent estimates may be obtained by suitable processing of the empirical spectrum estimates (periodogram). This may be done using window functions. These methods all require the choice of a certain resolution parameters called bandwidth. Various techniques produce estimates that have a good overall bias Vs variance tradeoff. In contrast, smooth components of this spectral required a wide bandwidth in order to achieve a significant noise reduction. In this paper, we explore the concept of cepstrum for non parametric spectral estimation. The method developed here is based on cepstrum thresholding for smoothed non parametric spectral estimation. The algorithm for Consistent Minimum Variance Unbiased Spectral estimator is developed and implemented, which produces good results for Broadband and Narrowband signals.
1 | Sridhar, B., & Tadisetty, S. (2015, June). ERLS non parametric spectrum sensing for CR. In Advance Computing Conference (IACC), 2015 IEEE International (pp. 185-190). IEEE. |
2 | Venkatanarayana, M. (2014). Variance reduction in power spectrum using cepstral thresholding appraoch. |
A.H.Gray Jr., “Log spectra of Gaussian signals”, Journal Acoustical Society of America, Vol.55, No.5, May 1974. | |
A.R. Ferreira da Silva, “Wavelet denoising with evolutionary algorithms” in Proc. Digital Sign., 2005, vol. 15, pp. 382–399. | |
A.T. Walden, D.B. Percival, and E.J. McCoy, “Spectrum estimation by wavelet thresholding of multitaper estimators,” IEEE Trans. Signal Processing, vol. 46, no. 12, pp. 3153–3165, 1998. | |
Alexander D.Poularikas and Zayed M.Ramadan, “Adaptive Filtering Primer with Matlab”, CRC Press, 2006 | |
B.P. Bogert, M.J.R. Healy, and J.W. Tukey, “The quefrency analysis of time series for echoes: Cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking,” in Time Series Analysis, M. Rosenblatt, Ed. Ch. 15, 1963, pp. 209–243. | |
D. G. Childers D. P. SLciAner and R. C. Kernemit, “The Cepstrum: A Guide to Processing”, Proceedings of the IEEE, Vol. 65, no. 10, October 1977. | |
E.J. Hannan and D.F. Nicholls, “The estimation of the prediction error variance,”J. Amer. Statistic. Assoc., vol. 72, no. 360, pp. 834–840, 1977. | |
Grace Wahba, “Automatic Smoothing of the Log Periodogram”, JASA, Vol.75, Issue 369, Pages: 122-132. | |
H.-Y. Gao, “Choice of thresholds for wavelet shrinkage estimate of the spectrum” J. Time Series Anal., vol. 18, no. 3, pp. 231–251, 1997. | |
Herbert T. Davis and Richard H. Jones, “Estimation of the Innovation Variance of a Stationary Time Series”: Journal of the American Statistical Association, Vol. 63, No. 321 (Mar., 1968), pp. 141- 149. | |
John G. Proakis and Dimitris G. Manolakis, “Digital Signal Processing: Principles and Applications”, PHI publications, 2nd edition, Oct 1987. | |
M. Taniguchi, “On estimation of parameters of Gaussian stationary processes,” J. Appl. Prob., vol. 16, pp. 575–591, 1979. | |
M.B.Priestley, “Spectral Analysis and Time series” Volume-1, Academic Press, 1981. | |
Masanobu Taniguchi, “On selection of the order of the spectral density model for a stationary Process”, Ann.Inst.Statist.Math.32 (1980), part-A, 401-419. | |
P. Moulin, “Wavelet thresholding techniques for power spectrum estimation” IEEE Trans. Signal Processing, vol. 42, no. 11, pp. 3126–3136, 1994. | |
P. Stoica and R.Moses, “Spectral Analysis of Signals”, Englewood Cliffs, NJ: Prentice Hall, 2005. | |
P.Stoica and N. Sandgren, “Smoothed nonparametric spectral estimation via cepstrum Thresholding” IEEE Signal Processing Magazine, November, 2006, pp. 34-45. | |
PETR SYSEL JIRI MISUREC, “Estimation of Power Spectral Density using Wavelet Thresholding”, Proceedings of the 7th WSEAS International Conference on circuits, systems, electronics, control and signal processing (CSECS'08). | |
Petre Stoica and Niclas Sandgren, “Cepstrum Thresholding Scheme for Nonparametric Estimation of Smooth Spectra”, IMTC 2006 - Instrumentation and Measurement Technology Conference Sorrento, Italy 24-27 April 2006. | |
Y.Ephraim and M.Rahim, “On second-order statistics and linear estimation of cepstral Coefficiets”, IEEE Trans.Speech Audio Processing, vol.7, no.2, pp.162-176, 1999. | |
Yariv Ephraim and David Malah, “Speech Enhancement Using a Minimum Mean Square Error Short-Time Spectral Amplitude Estimator”, IEEE trans., on ASSP, vol.32, No.6, December, 1984. | |
Associate Professor Moram Venkatanarayana
K.S.R.M.College of Engg., - India
narayanamoram@yahoo.co.in
Dr. T. Jayachandra Prasad
RGMCET - India
|
|
|
|
View all special issues >> | |
|
|