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Abstract 

 
Electricity demand forecasts are required by companies who need to predict their 
customers’ demand, and by those wishing to trade electricity as a commodity on 
financial markets. It is hard to find the right prediction method for a given 
application if not a prediction expert. Recent works show that Liquid State 
Machines (LSMs) can be applied to the prediction of time series. The main 
advantage of the LSM is that it projects the input data in a high-dimensional 
dynamical space and therefore simple learning methods can be used to train the 
readout. In this paper we present an experimental investigation of an approach 
for the computation of time series prediction by employing LSMs in the modeling 
of a predictor in a case study for short-term and long-term electricity demand 
forecasting. Results of this investigation are promising, considering the error to 
stop training the readout, the number of iterations of training of the readout and 
that no strategy of seasonal adjustment or preprocessing of data was achieved to 
extract non-correlated data out of the time series. 
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1. INTRODUCTION 
Prediction of time series is a very important task in different scientific disciplines [1,2]. Temporal 
patterns is central to any domain in which time-series data are collected and analyzed with the 
purpose of making enhanced predictions about the likely outcomes of observed trends or 
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identifying recurrent patterns. Electricity demand forecasts are required by companies who need 
to predict their customers’ demand, and by those wishing to trade electricity as a commodity on 
financial markets. 
 
Weather forecasts involves matching a temporal pattern to a classification, whereas predicting 
the temperature, humidity and barometric pressure requires a more complex function, or at least 
a function with a greater range of outputs. In general, prediction infers the future states of multiple 
variables based on the historical states of those variables. This problem has been widely studied 
by researchers in different areas attempting to build models which will provide useful indications 
of the complex behaviors of systems like markets, populations, atmospheres and ecologies [3-5]. 
 
Artificial Neural Networks (ANNs) are a method used to simulate various traditional approaches to 
time-series prediction, such as curve-fitting, linear regression, and even AutoRegressive Moving 
Average (ARMA) stationary stochastic models [6]. The traditional application of these techniques, 
the building of time-series functions for specific phenomena, is difficult and time-consuming. 
Neural networks have shown reasonable success in approximating these non-linear functions 
and their parameters, and while they themselves can require the tuning of many parameters, they 
promise to greatly enhance the speed with which such analysis may be conducted. A popular 
approach using ANNs is to learn the prediction from previously collected data. The advantages 
are that knowledge of the internal structure is not necessarily needed, arbitrary nonlinear 
prediction could be learned and additionally some past observations could be integrated in the 
prediction. 
 
Although classical ANNs have been shown to be quite powerful in many domains, their structure 
is not very well suited to represent temporal patterns [7]. In order to deal with temporal data, one 
of the possible solutions is to use Recurrent Neural Networks (RNNs). In such recurrent networks 
connections are incorporated enable the flow of back information for future time steps. Using this 
recurrence, dynamic temporal patterns can be registered by the network over time. This produces 
some kind of internal memory that allows obtaining complex functions. This is a central feature for 
networks that will be used for prediction of time series, because a current output is not solely a 
function of the current sensory input, but a function of the current and previous sensory inputs 
and also of the current and previous internal network states. This makes possible a system to 
incorporate a much richer range of dynamic behaviors. 
 
However, exactly these internal temporal dynamics make it much harder to train the network. The 
training problem consists of adjusting the parameters (weights) of the network so that it can 
provide a specific answer for a series of inputs [8]. In order to solve the task of training in RNNs, 
[9,10] proposed an approach under the name of Reservoir Computing (RC) [11]. 
 
Reservoir Computing is a recent architecture for RNNs composed by two main modules. The first 
one is the ‘reservoir’ which is a RNN where the recurrent connections are not trained at all. The 
reservoir is a randomly generated dynamic system with unchanged weights. The training is 
performed only at the second stage, called ‘readout’ [10]. RC produces rich dynamics of temporal 
nature and has been used as a powerful tool for the computation on time series [1,12-14]. 
 
In recent years, data from neurobiological experiments have made it increasingly clear that 
biological neural networks, which communicate through pulses, use the timing of these pulses to 
transmit information and to perform computation. Based on the RC, Maass and colleagues [9] 
proposed the Liquid State Machine (LSM) using a reservoir of pulsed Neural Networks (NNs) with 
integrate-and-fire neurons in combination with simple learning algorithms at readout stage. 
However the temporal dynamic associated with the treatment of continuous time series is still a 
challenge for pulsed NN. 
 
In this paper we propose a predictor model using LSM for continuous temporal series prediction 
applied in electricity demand forecasting. We analyze the dynamic of the network, focusing in the 
treatment of the temporal memory reset and the conversion of the continuous temporal signal in a 
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set of pulses for pulsed NN. Our approach is validated in an electricity demand forecast, which is 
an important challenge for the economic and secure operation of power systems. We describes a 
prediction method based on LSM applied to a time-series of CEEE (Companhia Estadual de 
Energia Elétrica do Rio Grande do Sul, Brazil). 
 
The remainder of this paper is organized as follows. The next section provides an overview of the 
LSM. Section 3 presents the architecture of LSM used for this work and the description of the 
simulation carried out. The accomplished experiments and associated results are presented in 
Section 4. Finally, the last section summarizes and concludes this work. 
 

2. THE LIQUID STATE MACHINE 
2.1 The framework of a Liquid State Machine 
The Liquid State Machine (LSM) has been proposed by Maass and colleagues [9] as a new 
framework for neural computation based on perturbations [15]. A LSM uses an excitable medium 
to transform low-dimensional inputs into a high-dimensional ‘liquid’, so that simple readout unit 
can extract more detailed temporal features from the input data. Its function resembles a tank of 
liquid: as the inputs disturb the surface they create unique ripples that propagate, interact and 
eventually fade away. After learning how to read the water’s surface we can extract a lot of 
information about recent events, without having to do the complex input integration ourselves 
[16]. 
 
To understand the basic idea behind LSMs imagine a pool of water into which various objects are 
dropped. As the objects enter the liquid, they perturb its surface. The resulting splash and ripples 
that are created can be transformed in real-time into ‘liquid states’ (a spatio-temporal pattern of 
liquid displacement). These ripples propagate over the water’s surface for a while and will interact 
with the ripples caused by other recent events. The water can thus be said to retain and integrate 
information about recent events, so if we’re somehow able to ‘read’ the water’s surface we can 
extract information about what has been recently going on in this pool. We refer to this trained 
spectator as a readout unit that we can ask at any one time what’s going on in the pool, provided 
that we can show him a snapshot of the liquid’s surface [16]. 
 
Thus, LSMs are composed of two parts: a Dynamical Liquid Unit - a model of dynamic liquid flow 
that is used as a ‘reservoir’ of complex dynamics to transform the input time series u() into ‘liquid 
states’ – and a Readout Unit – a simple function which maps the liquid state at time t onto the 
output. 
 
The idea of the Maass’ LSM [9] is shown in figure 1. A continuous input stream u() of 
disturbances is injected into excitable medium LM that acts as a liquid filter. This liquid can be 
virtually anything from which we can read it’s current liquid state xM(t) at each time step t. The 
liquid state is mapped to target output function y(t) by means of a memory-less readout function 
fM. This readout map fM is in general chosen in a task-specific manner (and there may be many 
different readout maps, that extract different task-specific information in parallel from the current 
output of LM) [9,16]. 
 
2.2 The Dynamical Liquid Unit 
A model of dynamic liquid flow can be implemented using recurrent Spiking Neural Networks 
(SNNs) which are very powerful tools for solving complex temporal machine learning tasks [17]. 
 
The liquid is a non-linear dynamical system composed of a set of spiking neurons pool that 
receives time-varying input and transforms these different temporal inputs into significantly 
different liquid states. The task-dependent part is executed by the readout unit that can be trained 
to extract information from the liquid state transforming this information into a useful form, e.g. 
into a prediction. The pool of neurons (figure 2) is composed by N = nxnynz neurons placed on 
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a regular grid in 3D space. The number of neurons along the x, y and z axis, nx, ny and nz 
respectively, can be chosen freely [1]. 
 

 
FIGURE 1: Architecture of a LSM [9]. 

 

 
FIGURE 2: Example of the structure of liquid middle of a LSM, formed by a pool of 336 neurons [18]. 

 
2.3 The Readout Layer  
The readout units must be capable of detecting stable features between a set of patterns. This 
unit receives the high-dimensional inputs from the liquid and takes as input the instantaneous 
reservoir state, i.e. the collection of all of the states of the individual elements, and produces an 
output decision [16]. 
 
A miscellaneous of implementations to the readout unit in LSMs can be achieved [16]. However, 
a readout unit consisting of just single neurons can obtain nearly the same results as more 
sophisticated units like pools of perceptrons [19]. Dual liquid-readout modules can also be 
implemented. In cases where the target output consists of slowly varying analog values, a single 
readout neuron can be trained to represent these values through its time-varying firing rate [9]. In 
addition, a low-pass filter can be applied to transform the spike trains into continuous output that 
can be weighted and fed to an analog readout [16]. In any case the readout neurons can be 
trained to perform a specific task by adjusting the strengths of synapses projected onto them from 
the liquid neurons [9]. 
 
2.4 Using a LSM: Features and Issues 
The LSM works as follows. The input signal u() feed the reservoir (pool of neurons). This signal 
stimulate the neurons in the pool which acts as a filter and the input signal is then transformed 
into another signal that encapsulates the dynamics of the liquid. Samples of the state of the liquid 
are taken and form a sequence of vectors, called state vector, which can then be used to train a 
readout function. Finally, the readout function can be trained using these state vectors to 
represent the inputs [20]. 
 
As a SNN projects the input into a high-dimensional space, the learned readout function can be 
simple. Also, any snapshot of the state of the network contains information about both current 
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and past inputs; the waves of spikes produced by input in the past continue to propagate for 
some time, intermingling with the waves from the current input. This process is referred to as 
integration of inputs over time. When a network properly integrates inputs over time, a readout 
function can be memory-less, relying on the network to remember and represent past and current 
inputs simultaneously [20]. 
 
2.4.1 Training  
The original LSM concept stated that the dynamic reservoir states can be processed by any 
statistical classification or regression technique [21]. The key idea underlying LSM (RC) is to 
train, by supervised learning, only the readout unit while the liquid has fixed weights [17]. The 
training thus consists of a linear regression problem, which can easily be solved in a way to find 
the global optimum (for a given reservoir). Therefore, only the readout needs to be trained 
according to the task. It is not necessary to take any temporal aspects into account for the 
supervised learning task since all temporal processing is done implicitly in the liquid [22]. Pruning 
connections from the liquid the readout unit can be used to selecting subsets of variables (i.e. 
neurons in the reservoir) which are the most relevant for a given target output [23]. 
 
2.4.2 Separation and Approximation Properties 
An essential requirement of the LSM architecture is that different inputs sequences into the liquid 
must result in separable outputs based on the liquid’s response. The amount of distance created 
between those is called the Separation Property (SP) of the liquid. The SP reflects the ability of 
the liquid to create different trajectories of internal states for each of the input classes. The ability 
of the readout unit to distinguish these trajectories, generalize and relate them to the target 
outputs is called the universal Approximation Property (AP) of the readout. This property depends 
on the adaptability of the chosen readout unit, whereas the SP is based directly on the liquid’s 
complexity [16]. 
 
Natschläger and colleagues [22] described these two conditions as necessary for computations in 
time series using LSMs. For this reason, it would be imperative is to create a liquid that effectively 
separates classes of input into different patterns of state vectors. Besides, the readout must have 
the capability to distinguish and transform different internal states of the liquid into given target 
outputs. Schrauwen and Verstraeten [21] mention that the approximation property is satisfied by 
a simple linear regression function. Since the AP was already close to optimal, the primary 
limitation in performance lay in the SP [9]. 
 
There are so far no design principles to create an ‘ideal’ liquid state for a special type of input 
[24]. SP can be engineered in many ways such as incorporating neuron diversity, implementing 
specific synaptic architectures, altering liquid connectivity, or simply recruiting more columns for 
neural implementations [9]. Although, Buonomano and Merzenich [25] had already shown that 
generic recurrent circuits of integrate-and-fire neurons are able to transform temporal input 
patterns into spatial activity patterns of the circuit. Consequently, it suffices to verify that such 
recurrent circuits have the SP [26]. 
 
The effectiveness of the liquid architecture is affected by a large number of parameters such as 
size of the reservoir, node types, input connectivity and recurrent connections. These parameters 
determine the short term memory and separation capability of a reservoir [27]. An inadequate set 
of parameters limits the potential of the liquid. Thus, the parameter selection has been the topic of 
much research [11,28,29]. In general, optimization of LSM parameters for applications is based 
on experience and heuristics and partly on a brute-force search of the parameter space [21]. 
 
2.4.3 Interference and Initalization 
Closely related to the effectiveness of the liquid is a characteristic of the LSM which generates 
interference between successive input signals, so that they are merged and transformed into a 
combined representation. Consequently, the current input and the input history determine the 
liquid response, due to the recurrent connections. Knüsel and colleagues [30] and Vink [31] 
showed that a reset mechanism is an essential component to improve the network performance, 
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since the temporal mixing of information from past and present stimuli can compromise the 
results. They verified a critical dependence between the initial state of the network at stimulus 
onset and its internal state after stimulus presentation. Thus, in order to improve the performance, 
a system initialization at stimulus onset could be required. 
 
2.4.4 Features and Issues associated with the use of LSM 
In the next section we propose an approach to predict continuous time series. We introduce the 
general setup that was used during our experiments to solve the prediction with real-world data 
from the time series provided by the CEEE (Companhia Estadual de Energia Elétrica do Rio 
Grande do Sul, Brazil). 
 

3.  LSM PREDICTION 
3.1 A LSM Architecture to Deal with Continuous Time Series Forecast 
This paper describes a model for predicting continuous time series using LSM. The proposal is 
applied to a case study associated with forecasting future electricity demand. 
 
The architecture of the LSM used in our approach consists of four different modules as seen in 
figure 3: an input layer that is used to feed data into the liquid, a pool of neurons forming the 
liquid, an exponential filter that decode the liquid response, and the readout unit which computes 
an output using the membrane potentials obtained from the liquid neurons. 
 

 
FIGURE 3: Architecture of LSM used in experiments. 

 
The Input Layer. The input layer is an excitatory analog input neuron connected by a static 
analog synapse to all neurons in the liquid middle scaled to a spectral radius of |max| = +, and 
CScale = + with the strength of the synaptic connections scaled to  = 0.05. The parameter CScale 
specifies how to scale the overall connection probability [9,32], CScale = + ensures that there will 
be a synaptic connection between each pair of neurons in the source region and the destination 
region [18]. 
 
The Dynamical Liquid Unit. The liquid LM (reservoir) consists of a recurrent network composed 
by a pool of dimension 3315 (135) integrate-and-fire neurons randomly connected via 
dynamic spiking synapses scaled to a spectral radius of |max| = 3 and CScale = 1 with the strength 
of the synaptic connections scaled to  = 1. Randomly, 20% of the neurons are chosen to be 
inhibitory. 
 
The Decoder Filter. The liquid response xM(t) (i.e. the set of all spike times of the neurons in the 
liquid) is decoded into the liquid state )(tx M

o  (analog values) using an exponential filter M
of  

before being fed into the readout unit fM. 
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The Readout Unit. The readout unit consists of a Multi-Layer Perceptron (MLP) network. The 
input layer of the readout consists of n135 sigmoidal neurons, where n is the number of sample 
time points. We sample the state every 100ms. The output layer is a single linear neuron. The 
hidden layer is composed by 50 sigmoidal neurons. This number of neurons was defined 
empirically. The readout unit was trained by the Resilient Backpropagation (RPROP) algorithm. It 
is possible to use a feedback to store the context of the sequence dynamically. In this context a 
feedback loop is incorporated in order to flow back information for future time steps. 
 
The experiments were done using CSIM (a neural Circuit SIMulator) which is a tool that can 
simulate heterogeneous networks constituted by different neurons and the synapses, it is written 
in C++ language with an interface to Matlab[32]. The multi-‘column’ neural microcircuits 
construction is allowed by the Circuit-Tool while the Learning-Tool can analyses the real-time 
computing in the neural microcircuit models [18,33]. 
 
3.2 Simulation 
For training and testing the analog time series is split in two parts: 80% for training, and 20% for 
validation and testing. The time series needs to be normalized to the interval [0, 1], otherwise all 
neurons would be saturated and thus loosing information. The input vector u(t) is composed of 
the current input at time step t and the last 14 inputs in the sequence resulting in a vector of fixed 
length (15 inputs) to represent the past context. This approach builds a predictive model that uses 
information from the entire sequence, although the vector has a finite length. The size of the 
vector u(t) was defined by inspecting the seasonality of the time series. 
 
To feed activation sequences into the liquid the input data are provided as vectors of continuous 
values between 0 and 1, from a single input neuron. The liquid's activity generates a set of 135 
state vectors xM(t) as output. These state vectors are decoded by the filter M

of  and projected 
onto the readout unit fM which predict the value at the time step t+1. The LSM is initialized and 
reset prior to the presentation of each sequence. Comparing the prediction performance with and 
without resetting the network reveals that the latter outperforms the former. 
 
The Mean Square Error (MSE) was introduced to evaluate the performance of the method. The 
evaluation of time series y and its prediction ŷ considering N predictions is done by: 
 

  




N

t
tt

N
yyMSE

1
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4. EXPERIMENTAL RESULTS 
The approach described in the previous section has been applied in seven different experiments 
to obtain the forecast of electric energy demand in state of Rio Grande do Sul (Brazil). Figure 4 
presents the electric energy demand in Rio Grande do Sul (Brazil) for ten years (1998 – 2008). 
The plot shows that data are marked by a temporal dependence characterizing seasonality. The 
period November 2006 – September 2008 (20% of the analog time series) has been chosen as a 
test set to check the forecasting errors and to validate the proposed method. 
 
The experiments 1 and 2 consisted in to predict one time step ahead based on an input vector 
u(t) composed of the currrent input at time step t and the last 14 inputs in the sequence resulting 
in a vector of fixed length (15 inputs) representing the past context. The experiments 1 and 2 
were achieved without feedback and with feedback respectively. The next 23 samples were 
predicted based on training set of 92 samples. We used the sigmoidal normalization. The readout 
was trained until the convergence to the goal after 60 epochs considering an error of 0.001. 
Figure 5 shows a plot of the network output compared to the target output with feedback and 
without feedback. 



N. Grando, T. M. Centeno, S. S. C. Botelho & F. M. Fontoura 

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (1): Issue (2) 47 

The experiments 3 and 4 were carried out using the same data as described for the experiments 
1 e 2, but the readout was trained until the convergence to the goal after 68 epochs considering 
an error of 0.0005. The experiments 3 and 4 were achieved without feedback and with feedback 
respectively. Figure 6 shows a plot of the network output compared to the target output. 
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FIGURE 4: Rio Grande do Sul (Brazil) electric energy consumption for ten years (1998 – 2008). 

 

 
FIGURE 5: Network output versus the desired output for the experiments 1 and 2 training the readout to an 

error of 0.001. Solid dark gray line: original series, gray points: output of the network for the 
training set, dashed line: network output without feedback (experiment 1), light gray line: 
network output with feedback (experiment 2). 
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FIGURE 6: Network output versus the desired output for the experiments 3 and 4 training the readout to an 

error of 0.0005. Solid dark gray line: original series, gray points: output of the network for the 
training set, dashed line: network output without feedback (experiment 3), light gray line: 
network output with feedback (experiment 4). 

 
The experiments 5 and 6 were performed to determine the accuracy of the long-term prediction 
(experiment 5 and 6). These experiments were done to predict the demand for the next 18 years 
using the same data as described for the previous experiments without feedback (experiment 5) 
and with feedback (experiment 6). The readout was trained until the convergence to the goal after 
134 epochs considering an error of 0.0001. Figure 7 shows the results for these experiments. 
 

 
FIGURE 7: Results for the next 18 years with feedback, training the readout to an error of 0.0001. Solid dark 

gray line: original series, gray points: output of the network for the training set, dashed line: 
network output without feedback (experiment 5), light gray line: network output with feedback 
(experiment 6). 
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An additional experiment (experiment 7) was carried out to predict the demand for the next 20 
years. For this experiment we used the same data sets as described for the experiments 1 e 2, 
but employing all the data contained in the time series for training. The readout was trained with 
feedback until the convergence to the goal after 280 epochs considering an error of 0.00001. 
Figure 8 shows a plot of the network output. 
 

 
FIGURE 8: Results for the next 20 years with feedback, training the readout to an error of 0.00001. Black 

line: original series, gray line: output of the network. 
 
The table 1 summarizes the results for the experiments with feedback and without feedback 
showing the MSE averaged for each experiment and the number of iterations reached. The MSE 
is not presented for the experiment 7, since the desired output is not available. 
 

Experiment MSE without feedback MSE with feedback MSE readout N iterations 
1, 2 0.0120 0.0249 0.001 60 
3, 4 0.0289 0.0502 0.0005 68 
5, 6 0.0274 0.0413 0.0001 134 

7 - - 0.00001 280 

Table 1: Comparison of results for the experiments 1-7. 
 
Results shown in Table 1 show us that the model prediction reaches the error minimum in a small 
number of iterations. What is worth mentioning here is that no strategy of seasonal adjustment or 
preprocessing of data was achieved to extract non-correlated data out of the time series. 
Moreover, the data set comprises a small number of samples. Considering the predetermined 
error (MSE readout) to stop training the readout and the low number of iterations of training 
achieved by the readout, results of our prediction model are reasonable good. 
 
The model with feedback results in a moderate performance, even for short periods of time. 
Feedback connections can cause oscillations. Since previous states are used in predictions of 
future states, these oscillations propagate and cause a degradation of performance. 
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Not surprisingly, the performance of the model for long periods of time is lower. RC methods tend 
to be sensitive to a small temporal range [34] which could be one of the reasons of this loss in 
performance. In addition, the lack of a seasonal adjustment can compromise the performance for 
the long term prediction since the monthly time series reveal strong seasonal components [2]. 
This probably produces the saturation of neurons that lose processing power. 
 

5. CONCLUSION & FUTURE WORKS 
Demand prediction is of great importance in the electricity supply industry. It is hard to find the 
right prediction method for a given application if not a prediction expert. This problem has been 
widely studied by researchers in different areas attempting to devise strategies to obtain accurate 
time series predictions. Recent works show that LSMs can be applied to the prediction of time 
series. The main advantage of the LSM is that it projects the input data in a high-dimensional 
space incorporating valuable information about recent inputs into input signal. This meaningful 
information allows that simple learning methods can be used to train the readout. As a result we 
can effectively apply the approach in temporal prediction. 
 
In this paper we have presented an experimental investigation of an approach for the 
computation of time series prediction by employing LSMs in the modeling of a predictor in a case 
study for short-term and long-term electricity demand forecasting.  
 
Four different modules composed the architecture of the LSM used in our approach: an input 
layer that is an excitatory analog input neuron used to feed data into the liquid, a pool of neurons 
of dimension 3315 (135) integrate-and-fire neurons formed the liquid, an exponential filter that 
decoded the liquid response, and a readout unit which computed an output obtained from the 
liquid neurons. 
 
The approach was applied in seven different experiments to obtain the forecast of electric energy 
demand in state of Rio Grande do Sul (Brazil). The experiments evaluated short-term prediction 
with and without feedback and long-term prediction with feedback. The input vector of LSM was 
composed of a sequence of values whose size was defined by inspecting the seasonality of the 
time series. The information was presented to the LSM in short sequences u(t) of 15 inputs, the 
current input at time step t and the last 14 inputs. The comparison of prediction performance with 
and without resetting the network reveals that the latter outperforms the former. 
 
Each sequence was fed into the input layer; this sequence generates a signal of high 
dimensionality that encapsulates the dynamics of the liquid. Samples of the state of the liquid 
were taken in different instants of time forming a sequence of vectors, called state vector. The 
state vector representing the state of LSM for that sequence was decoded by the filter and 
projected onto the readout unit which predicted the value at the time step t+1 based on the input 
sequence u(t). After that, the internal states of LSM were reset; a new sequence was presented 
to the LSM and so successively until all the information has been processed. 
 
Results of this investigation are promising, considering the predetermined error (MSE readout) to 
stop training the readout, the low number of iterations of training reached by the readout and that 
no strategy of seasonal adjustment or preprocessing of data was achieved to extract non-
correlated data out of the time series. 
 
The results with feedback show a moderate performance even for short periods of time. Probably 
the oscillations generated by the feedback connections are propagated by the network resulting 
in a degradation of performance. The same fact occurs for long-term prediction for which the 
performance was still lower increasing the oscillations on the long timescale. In addition, RC 
methods tend to be sensitive to a small temporal range which could be another reason of this loss 
in performance. 
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The experiments show a reasonable performance of the LSM in predicting the “continuously” 
streams and that although our predictor model isn’t perfect it may be used for prediction of 
temporal time series problems and can serve as a powerful model for short-term and long-term 
prediction and pattern classification [35]. 
 
Many questions concerning the structure of the LSM are still open, due predominantly to the 
newness of the conception, which new research will have to address. Further research is 
encouraged to improve the performance of the LSM by investigating the size, topology and 
optimal parameters settings of the reservoir for prediction tasks. Also a larger data set is needed 
for a better comparison. 
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