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Abstract 

 
In decision theoretic planning, a challenge for Markov decision processes (MDPs) 
and partially observable Markov decision processes (POMDPs) is, many problem 
domains contain big state spaces and complex tasks, which will result in poor 
solution performance. We develop a task analysis and modeling (TAM) approach, 
in which the (PO)MDP model is separated into a task view and an action view. In 
the task view, TAM models the problem domain using a task equivalence model, 
with task-dependent abstract states and observations. We provide a learning 
algorithm to obtain the parameter values of task equivalence models. We present 
three typical examples to explain the TAM approach. Experimental results 
indicate our approach can greatly improve the computational capacity of task 
planning in Markov stochastic domains. 
 
Keywords: Markov decision processes, POMDP, task planning, uncertainty, decision-making. 

 
 

1. INTRODUCTION 

We often refer to a specific process with goals or termination conditions as a task. Tasks are 
highly related to situation assessment, decision making, planning and execution. For each task, 
we achieve the goals by a series of actions. Complex task contains not only different kinds of 
actions, but also various internal relationships, such as causality, hierarchy, etc.  
 
Existing problems of (PO)MDPs have often been constrained in small state spaces and simple 
tasks. For example, Hallway is a task in which a robot tries to reach a target in a 15-grids 
apartment [11]. From the perspective of task, this process has only a single goal. The difficulties 
come from noisy observations by imprecise sensors equipped on the robot, instead of task. 
 
Although (PO)MDPs have been accepted as successful mathematical approaches to model 
planning and controlling processes, without an efficient solution for big state spaces and complex 
tasks, we cannot apply these models on more general problems in the real world. In a simple task 
of grasping an object, the number of states reaches |S| =1253 [8]. If the task domain becomes 
complex, it will be even harder to utilize these models. Suppose an agent aims to build a house, 
there will be thousands of tasks, with different configurations of states, actions and observations. 
It is hardly to rely simply on (PO)MDPs to solve this problem domain. Compared to other task 
planning approaches, such as STRIPS or Hierarchical Task Network [10], (PO)MDPs consider 
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the optimization for every step of the planning. Therefore, (PO)MDPs are more suitable for 
planning and controlling problems of intelligent agents. However, for task management, the 
(PO)MDP framework is not as powerful as Hierarchical Task Network (HTN) planning [3]. HTN is 
designed to handle problems with many tasks. Primitive tasks can be executed directly, and non-
primitive tasks will be decomposed into subtasks, until everyone becomes a primitive task. This 
idea is adopted in the hierarchical partially observable Markov decision processes (HPOMDPs) 
[12]. Actions in HPOMDPs are arranged in a tree. A task will be decomposed into subtasks. Each 
subtask has an action set containing primitive actions and/or abstract actions. In fact, a 
hierarchical framework for (PO)MDPs is an approach that builds up a hierarchical structure to 
invoke the abstract action sub-functions. Although inherited the merits of task management from 
HTN, it does not specially address the solving of the big state space problem.  
 
Another solution considers multiple tasks as a merging problem using multiple simultaneous 
MDPs [15]. This solution does not specially consider the characteristic of different tasks, and it 
limits the problem domains to be MDPs.  
 
To improve the computational capacity of complex tasks planning, we develop a task analysis 
and modeling approach. We decompose the model into a task view and an action view. This 
enables us to strip out the details, such that we can focus on the task view. After a learning 
process from the action view, the task view becomes an independent task equivalence model, 
with task-dependent abstract states and observations. If the problem domain is MDP, we have 
already solved it by the task view learning algorithm. If it is POMDP, we can solve it using any 
existing POMDP algorithms, without considering the hierarchical relationship anymore. We apply 
the TAM approach on existing MDP and POMDP problems. Experimental results indicate the 
TAM approach brings us closer to the optimum solution of multi-task planning and controlling 
problems.  
 
This paper is organized as follows. We begin by a brief review of MDPs and POMDPs. Then we 
discuss how to utilize the TAM method on (PO)MDP problems. Three typical examples from 
MDPs and POMDPs are presented in this part, to explain the design of task equivalence models. 
In the following section, we present a solution based on knowledge acquisition and model-
learning for the task equivalence models. We provide our experimental results for the comparison 
of the task equivalence model and the original POMDP model. Finally, we briefly introduce some 
related work and conclude the paper. 
 

2. BACKGROUND 

A Markov decision process (MDP) is a tuple , where the S is a set of 
states, the A is a set of actions, the T(s, a, s0) is the transition probability from state s to s0 using 
action a, R(s, a) is the reward when executing action a in state s, and  is the discount factor. 

The optimal situation-action mapping for the t
th
 step, denoted as , can be reached by the 

optimal (t-1)-step value function : 

. 
 
A POMDP models an agent action in uncertainty world. At each time step, the agent needs to 
make a decision based on the historical information from previous executions. A policy is a 
function of action selection under stochastic state transitions and noisy observations. A POMDP 

can be represented as , where  is a finite set of states,  is 

a set of actions,  is a set of observations. In each time step, the agent lies in a state . 

After taking an action , the agent goes into a new state s0. The transition is a conditional 
probability function T(s, a, s’) = p(s’|s, a), which presents the probability the agent lies in s’, after 

taking action a in state s. The agent makes an observation  to gather information. This 
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can be modeled as a conditional probability Ω(s, a, o) = p(o|s, a). 
 
When belief state is taken into consideration, the original partially observable POMDP model 

changes to a fully observable MDP model, denoted as . Here, 

the B is a set of belief states, i.e. belief space. The  is a probability the agent 

changes from b to b0 after taking action a. The  is the reward for belief 
state b. The b0 is an initial belief state. 
 
The POMDP framework is used as a control model of an agent. In a control problem, utility is 
defined as a real-valued reward to determine the action of an agent in each time step, denoted as 
R(s, a), which is a function of state s and action a. The optimal action selection becomes a 
problem to find a sequence of actions a1..t, in order to maximize the expected sum of rewards 

. In this process, what we concern is the controlling effect, achieved from the 
relative relationship of the values. When we use a discount factor , the relative relationship 
remains unchanged, but the values can converge to a fixed number. When states are not fully 
observable, the goal is changed to maximize expected reward for each belief state. The n

th
 

horizon value function can be built from previous value n
th
 using a backup operator H, i.e. V = HV’. 

The value function is formulated as the following Bellman equation 

. 
 
Here, b’ is the next step belief state, 

, 
where  is a normalizing constant. 
 
When optimized exactly, this value function is always piece-wise linear and convex in the belief 
space. 

 

3. EQUIVALENCE MODELS ON TASK DOMAINS 

Tasks serve as basic units of everyday activities of humans and intelligent agents. A task-
oriented agent builds its policies on the context of different tasks. Generally speaking, a task 
contains a series of actions and some certain relationships, with an initial state s0, where it starts 
from, and one or multiple absorbing states sg (goals and/or termination states), where the task 
ends in. (RockSample [16] is a typical example using termination state instead of goals. 
Theoretically, infinite tasks may not have goal or termination state, we can simply set sg = null). 
From this notion, every (PO)MDP problem can be described as a task (For POMDP, the initial 
state becomes b0, and absorbing states become bg). To improve the computational capacity of 
task planning, we develop a task analysis and modeling (TAM) approach. 

 
3.1 Task Analysis 
Due to the size of state space, and the complex relationships among task states, it is hard to 
analyze tasks. Therefore, we separate a task, which is a tuple M, into a task view and an action 
view. The task view, denoted as , reflects how we define an abstract model for the original task. 
Actions used in a task view is defined in an action view, denoted as . It contains all of the 
actions in the original task. Before further discussion about the task view and the action view, let 
us first go over some terms used in this framework.  
 
An action a is a single or a set of operational instructions an agent takes to finish a primitive task. 
A Markov decision model is a framework to decide which action should be taken in each state. If 
an action defined in a Markov stochastic domain is used by a primitive task, we assume it to be a 
primitive action. 
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We define an abstract action ac as a set of actions. We want to find out the ac that is related with a 
set of abstract states in , with transitional relationship. Only this kind of ac will contribute to our 
model. In , ac is like a subtask. It has an initial state s0, an absorbing state sg (goal or 
termination state). In , we deal ac the same as a primitive action. 
 
With the help of abstract actions, we build an equivalence model for the original task M on the 

abstract task domain, using . Our purpose is to find out a set of policies, such that the 

overall cost is minimized, and the solution is optimum. Denote the optimal policies as . 
 
Definition 1. Given a Markov stochastic model , if there exist a pair of task view  and action 

view , such that , we say  is an equivalence model of , 

denoted as . 
 
Let us introduce the equivalence model for MDP and POMDP task domains respectively. 
 
3.2 MDP Task 

For an MDP task , a well-defined task view , and a well-defined 

ac in action view  are both MDP models. For the task view, , 

where is a set of states for the task,  is a set of actions for the task, including primitive 

actions  and abstract actions . The  is the transition array, and  is a set of rewards. For 

the action view, . For each . 
 

Up to now, we still have not explained how to build the model of task view . In order to know 
the details of task states, in the TAM approach, we develop a Task State Navigation (TSN) graph 
to clearly depict the task relationship. A TSN graph contains a set of grids. Each grid represents a 
state of the task, labeled by the state ID. Neighboring grids with ordinary line indicate there is a 
transitional relationship among these states. Neighboring grids with bold line indicate there is no 
transitional relationship.  
 
Let us take the taxi task [5] as an example, to interpret how to build the TSN graph, as well as 

how to construct the equivalence model . The taxi task is introduced as an episodic 
task. A taxi inhabits a 5×5 grid world. There are four specially-designated locations {R, B, G, Y} in 
the world. In each episode, the taxi starts in a randomly-chosen state. There is a passenger at 
one of the four randomly chosen locations, and he wishes to be transported to one of four 
locations. The taxi has six actions {North, South, East, West, Pickup, Putdown}. The episode 
ends when the passenger has been putdown at the destination.  
 
This is a classical problem, used by many hierarchical MDP algorithms to build the models. We 
present the TAM solution here. First, we build the TSN graph for taxi task in Figure 1. Label Te 
represents the taxi is empty, and Tu indicates the taxi has user. Lt is the start location of taxi, Lu is 
the location of user, and Ld is the location of destination. There are 5 task states in the TSN graph, 
{TeLt, TeLu, TuLu, TuLd, TeLd}. The initial state is s0 = TeLt, representing an empty taxi in the random 
location. The absorbing state (goal) is sg = TeLd, representing the taxi is empty and at the user's 
destination. We mark a star in the grid of the absorbing state. A reward of +20 is given for a 
successful passenger delivery, a penalty of -10 for performing Pickup or Putdown at wrong 
locations, and -1 for all other actions. 
 
From the TSN graph, it is clear that the taxi task is a simple linear problem. The transition 

probabilities for the neighboring states are 1. There are four actions in the task domain,    

 Pickup, Putdown}, where  is the abstract action going from Lt to Lu, and 

 is the abstract action going from Lu to Ld. This model has two abstract actions , 

and it is easy to know that . However,  and 
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 have different s0 and sg. We call this kind of abstract actions isomorphic action. 

 
 

Details about how to solve  are discussed in next section. In this section, we will 
continue to introduce the TAM approach for POMDP task. 
 
3.3 POMDP Task 

For a POMDP task , where b0 is the initial belief state, bg 
are the absorbing belief states (goal belief states and/or termination belief states). The 

equivalence model can be . In this work, we 

only consider the most common model, . 
 

 
 
Some existing POMDP problems have simple relationship in task domain, such that there is no 

abstract action. Thereafter, the equivalence model becomes a single model, . The coffee 
task [1] has this kind of equivalence task model. It can be solved using action network and 
decision tree in [1]. Here, we propose the TAM approach for coffee task. The TSN graph for 
coffee task is shown in Figure 2. The L is an appointed as the initial state in the coffee. From the 
beginning O, since the weather has 0.8 probability to be rainy, denoted as R, and 0.2 probability 
to be sunny, denoted as ¬R, we get the transition probability from L to R and ¬R. If the weather is 
rainy, the agent needs to take umbrella with successful probability of 0.8, and 0.2 to fail. We 
denote the agent with umbrella as U, and ¬U if it fails to take umbrella. If the agent has umbrella, 
it has probability 1 to be ¬L/¬W (dry when it comes to the shop). If it has no umbrella and the 
weather is rainy, the agent will be ¬L/¬W for 0.2, and be ¬L/W (wet in shop) for 0.8. The ¬L/W 
has probability 1 to be C/W (coffee wet), and the ¬L/¬W has probability 1 to be C/¬W. Whether it 
be C/W or C/¬W, the agent has 0.9 probability to deliver the coffee to the user H/W (user has wet 
coffee), and the H/¬W (user has dry coffee). The agent has 0.1 probability to fail to deliver the 
coffee ¬H/W (user does not have coffee and coffee wet), ¬H/¬W (user does not have coffee and 
coffee dry). 
 
There are 11 observations for this problem: r (rainy), ¬r (sunny), u (agent with umbrella), ¬u 
(agent without umbrella), w (agent wet), ¬w (agent dry), nil (none), h/w (user with coffee and 
coffee wet), ¬h/w (user without coffee and coffee wet), ¬h/¬w (user without coffee and coffee dry), 
h/¬w (user with coffee and coffee wet). The observation probability for rainy when it is raining is 
0.8, and the observation probability is 0.8 for sunny when it is sunshine. The agent gets a reward 
of 0.9 if the user has coffee and 0.1 if it stays dry. 
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The POMDP problem of RockSample[n, k] [16] has the task domain model of . 
Difficulty of RockSample POMDP problems relies on the big state spaces. RockSample[n, k] 
describes a rover samples rocks in a map of size n×n. The k rocks have equally probability to be 
Good and Bad. If the rover samples a Good rock, the rock will become Bad, and the rover 
receives a reward of 10. If the rock is bad, the rover receives a reward of -10. All other moves 
have no cost or reward. The observation probability p for Checki is determined by the efficiency η, 
which decreases exponentially as a function of Euclidean distance from the target. The η=1 
always returns correct value, and η=0 has equal chance to return Good or Bad. 
 
In the TSN graph for RockSample[4, 4] (Figure 3), the S0 represents the rover in initial location, 
the Ri represents the rover stays with rocki, the Exit is the absorbing state. Except for the Exit, 
there are 16 task states related with each grid, indicating {Good, Bad} states for 4 rocks. Thus, 
|S

t
|=81. For  observations, |O

t
| = 3k+2: 1 observation for the rover residing on place without rock, 

k observations for the rover residing with a rock, 2k observations for Good and Bad of each rock, 
and 1 observation for the Exit. 
 
There are 2k

2
+k+1 actions in the task domain: Check1,…,Checkk, Sample; For each Ri, there are 

k-1 abstract actions going to Rj (i ǂ j), 1 abstract action going to Exit, and there are k-1 abstract 
actions going from Rj to Ri (i ǂ j), 1 abstract action going from S0 to Ri. All abstract actions for a 
specific RockSample[n, k] problem are isomorphic. It is possible that an isomorphic abstract 
action ac relates with multiple states. We assign an index for each state related with ac, and call it 
y index, denoted as y(s), where s is the state. 
 

4. SOLVING TASK EQUIVALENCE MODELS BY KNOWLEDGE 
ACQUISITION 

For a simple task domain problem, such as coffee task, it only has , without abstract action. 
The solution is the same with any other POMDP problems. The difference between task 
equivalence models and the original POMDPs relies on the task models, instead of the algorithms. 
 
4.1 Learning Knowledge for Model from TMDP 
Our purpose in the designing of task domains is to handle complex task problems efficiently. This 

can be achieved by a learning process. The taxi task has an equivalence model , 
with two isomorphic abstract actions. The idea is, with the knowledge of ac, which can be 

acquired from ,  will be solved using standard MDP algorithms. Currently, the only 

knowledge missing for  is the reward . Next, we will obtain  by a Task MDP 
(TMDP) value iteration. 
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Details about TMDP value iteration are listed in Algorithm 1. The difference between TMDP 

algorithm and MDP algorithm is, there is an action view single step value iteration , 
which is shown in Algorithm 2. When T(s, a, s) = 1, action a is not related with state s. Thus we 
rely on T(s, a, s) < 1 to bypass these unrelated actions. For state s in the MDP model of ac, the 

optimal policy  in the action view is determined. The value  is influenced 

by y index. Finally, we obtain the reward R
t
(s; a) by the difference . 

 

 
 
4.2 Improved Computational Capacity by Task Equivalence Models 

As a result of the learning process, we got the knowledge about  for the task view, and 

 for the action view. Thus, we can focus on the task view  alone in future computation 

of POMDP problems. After the fully observable task view  is learned, the partially observable 

task view  becomes a general POMDP problem. We can solve it using any existing 
POMDP algorithms.  
 

RockSample[n, k] is an example of the equivalence model . In our POMDP value 

iteration algorithm, the computational cost is ，
. The sizes for different arrays are listed in 

Table 1: 
 

 
 

In each round of value iteration, by rough estimation, we get the computational complexity of 

 as , and  as . This conclusion can be utilized to general 

POMDP problems that can be transformed to a task equivalence model with abstract action  

(the number of states being ), and a task view has k task nodes (not including the initial and 
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absorbing nodes). When , the equivalence model created by TAM approach can 

greatly improve the computational capacity. However, if , the equivalence model 
cannot improve the performance. Alternatively, it may degrade a little the computational capacity. 
We can take this conclusion as a condition for applying the TAM approach on POMDP tasks, to 
improve the performance, although it can be used on every existing POMDP problem. 
 
In sum, the TAM approach first analyzes the task model, and creates a task view and an action 
view. The action view is responsible for learning the model knowledge. The trained action view 
will then be saved for future computing in task view. The task view is an equivalence model with 
better computational capacity than the original POMDP model. 
 

5. EXPERIMENTAL RESULTS 

In order to provide a better understanding and detailed evaluation of the TAM approach, we 
implement several experiments in simulation domains using MATLAB.  
 
In the experiments, we aim to find out the reward and execution time for the task equivalence 
model for the aforementioned problems. Results are achieved by 10 times of execution for each 

problem, except for  RockSample[10, 10]. The execution of  RockSample[10, 10] 
is over one week in our system. Therefore, it is only executed once. 
 

 
 
All of the experiments are implemented in the same software and hardware environment, with the 

same POMDP algorithm. For the equivalence models,  is pre-computed. The system uses 

the trained data of . In the experiments, the performance of every task equivalence model 

 improves greatly than the original POMDP model , except for the RockSample[5, 
7]. The performance comparison of different models is presented in Table 2. Since the execution 

of Taxi and Coffee domains are fast enough, we implement it directly by . The detailed 

comparison is made on the RockSample domains. The equivalence model  has much 
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smaller state space than the original plain POMDP . Although it increases the size of 
action space, the observation space is also smaller than plain POMDP models. As a result, the 
performance has been improved for each domain. Especially for the RockSample[10,10], its 
execution time is only 1/707 of the original model.  
 
These results adapts perfectly with our previous analysis. Considering RockSample[n, k], the 

greater of n and k, the greater the performance of  comparing with .  
 
Considering the results from prior works, HSVI2 algorithm is able to finish RockSample[10, 10] in 

10014 seconds [17]. It is more efficient than the  implemented in our platform, and close 

to , which is a more effective model than that is used in HSVI2. As is discussed in [9], 
HSVI2 implements an α-vector masking technique, which opportunistically computes selected 
entries in the α-vectors. This technique is beneficial for the special problems of Rock Sample, in 
which movement of the robot is certain and the position is fully observable. Effectiveness of the 
masking technique will degrade for uncertain movements and noisy observations. Our 
experimental results imply, even if not incorporating the masking technique in the implementation, 
we can still achieve the same performance using the efficient task equivalence model. The task 
equivalence model is a general approach. We can apply it on general problem domains to 
improve the performance. 
 

6. RELATED WORK 

Hierarchical Task Network (HTN) planning [3] is an approach concerning a set of tasks to be 
carried out, together with constraints on ordering of the tasks, and the possible assignments of 
task variables. The HTN does not maintain the Markov properties we utilize in the POMDP 
problem domains.  
 
Several hierarchical approaches for POMDP have been proposed [7,12]. From some perspective, 
our approach also has some hierarchical features. However, we try to weak the hierarchy in the 
TAM approach. Our optimal solution is mainly achieved in the task view. The action view is finally 
used as knowledge to build up the task view, by a learning process. Thus, what we use to solve a 
problem does not belong to the hierarchical model. This will be helpful for the modeling of 
complex tasks, because complex tasks themselves may have inherent hierarchy or network 
relationships, rather than the hierarchy between task and action.  
 
The MAXQ [5] is a successful approach defined for the MDP problems. Primitive actions and 
subtasks are all organized as nodes in the MAXQ graph, which is called subroutines. An 
alternative algorithm is the HEXQ [13]. It automates the decomposition of a POMDP problem 
from bottom up, by finding repetitive regions of states and actions. Policy iteration is used for 
hierarchical planning, called hierarchical Finite-State Controller (FSC) [7]. The FSC method 
leverages a programmer-defined task hierarchy to decompose a POMDP into a number of 
smaller, related POMDPs.  
 
A similar approach concerning the solving of complex tasks is the decomposition techniques for 
POMDP problems [4]. It decomposes global planning problems into a number of local problems, 
and solves these local problems respectively.  
 
Another approach helps to improve the efficiency of the POMDPs is to reduce the state space, 
called the value-directed compression. A linear loss compressions technique is proposed in [14]. 
This approach does not concern task domains and task relationship.  
 
An equivalence model for MDP is discussed in [6]. It tries to utilize a model minimization 
technique to reduce the big state space. However, as stated in the same paper, most MDP 
problems cannot use this approach to find out minimized models.  
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The goal achievement issue for tasks is discussed in [2]. In that paper, the planning and 
execution algorithm is defined within the scope of STRIPS. 
 

7. CONSLUSIONS 

We propose the TAM approach to create task equivalence models for MDP and POMDP 
problems. Parameter values for a task equivalence model can be learned as model knowledge 
using TMDP. As a result, we can solve the problem in the task view, which is not hierarchical any 
more. We demonstrate the effectiveness of the task view approach for (PO)MDP problems. This 
can greatly reduce the size of state space and improve the computational capacity of (PO)MDP 
algorithms. 
 
Current research works relating with (PO)MDP problems still addresses simple tasks. We hope 
the introduction of the TAM approach can be a breakthrough, so that (PO)MDPs can be applied 
on the planning and execution of complex task domains. 
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