
Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 47

Fuzzy Logic and Neuro-fuzzy Systems: A Systematic

Introduction

Yue Wu wuyue@enjoyor.cc

Enjoyor Inc

Hangzhou, 310030, China

Biaobiao Zhang zhangbb@enjoyor.net

Enjoyor Inc

Hangzhou, 310030, China

Jiabin Lu lujiabin@gdut.edu.cn

Faculty of Electromechanical Engineering

Guangdong University of Technology

Guangzhou, 510006, China

K. -L. Du kldu@ece.concordia.ca

Department of Electrical and Computer Engineering

Concordia University

Montreal, H3G 1M8, Canada

and

Enjoyor Inc

Hangzhou, 310030, China

Abstract

Fuzzy logic is a rigorous mathematical field, and it provides an effective vehicle for modeling the

uncertainty in human reasoning. In fuzzy logic, the knowledge of experts is modeled by linguistic

rules represented in the form of IF-THEN logic. Like neural network models such as the multilayer

perceptron (MLP) and the radial basis function network (RBFN), some fuzzy inference systems

(FISs) have the capability of universal approximation. Fuzzy logic can be used in most areas

where neural networks are applicable. In this paper, we first give an introduction to fuzzy sets and

logic. We then make a comparison between FISs and some neural network models. Rule

extraction from trained neural networks or numerical data is then described. We finally introduce

the synergy of neural and fuzzy systems, and describe some neuro-fuzzy models as well. Some

circuits implementations of neuro-fuzzy systems are also introduced. Examples are given to

illustrate the concepts of neuro-fuzzy systems.

Keywords: Fuzzy Set, Fuzzy Logic, Fuzzy Inference System, Neuro-fuzzy System, Neural

Network, Mamdani Model, Takagi-Sugeno-Kang Model.

1. INTRODUCTION

Fuzzy set, a concept first proposed by Zadeh [123], is a method for modeling the uncertainty in

human reasoning. Fuzzy logic is suitable for the representation of vague data and concepts on

an intuitive basis, such as human linguistic description, e.g. the expressions approximately, large,

young. The conventional set, also called the crisp set, can be treated as a special form of fuzzy

set. Unlike the binary logic, fuzzy logic uses the notion of membership. A fuzzy set is uniquely

determined by its membership function (MF), and it is also associated with a linguistically

meaningful term.

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 48

Fuzzy logic provides a systematic tool to incorporate human experience. It is based on three core

concepts, namely, fuzzy sets, linguistic variables, and possibility distributions. Fuzzy set is used

to characterize linguistic variables whose values can be described qualitatively using a linguistic

expression and quantitatively using an MF [124]. Linguistic expressions are useful for

communicating concepts and knowledge with human beings, whereas MFs are useful for

processing numeric input data. When a fuzzy set is assigned to a linguistic variable, it imposes an

elastic constraint, called a possibility distribution, on the possible values of the variable.

Fuzzy logic is a rigorous mathematical discipline. Fuzzy reasoning is a straightforward formalism

for encoding human knowledge or common sense in a numerical framework, and FISs can

approximate arbitrarily well any continuous function on a compact domain [55], [113]. FISs and

feedforward neural networks (FNNs) can approximate each other to any degree of accuracy [13].

Fuzzy logic first found popular applications in control systems, where an FIS is built up by

codifying human knowledge as linguistic IF-THEN rules. Since its first reported industrial

application in 1982 [41], it has aroused global interest in the industrial and scientific community,

and fuzzy logic has also been widely applied in data analysis, regression and prediction, as well

as signal and image processing. Many application-specific integrated circuits (ASICs) has also

been designed for fuzzy logic [31].

In this paper, we give a systematic introduction to fuzzy logic and neuro-fuzzy systems. The

paper is organized as follows. In Section 2, we provide a short tutorial on fuzzy logic. Section 3

compares fuzzy logic and neural network paradigms. Section 4 compares the relation between

fuzzy logic and MLP/RBFN, and rule generation from trained neural networks is introduced in this

section. Rule extraction from numerical data is introduced in Section 5. The paradigm of neuro-

fuzzy systems is described in Section 6. Some neuro-fuzzy models are introduced in Section 7. In

Section 8, we describe some fuzzy neural circuits. An illustration of using neuro-fuzzy systems is

given in Section 9. We summarize this paper in Section 10.

2. FUNDAMENTALS OF FUZZY LOGIC

2.1 Definitions

We list below some definitions and terminologies used in the fuzzy logic literature.

2.1.1 Universe of Discourse

The universal set 𝑋: 𝑋 → [0,1] is called the universe of discourse, or simply the universe. The

implication 𝑋 → [0,1] is the abbreviation for the IF-THEN rule: ―IF 𝑥 is in 𝑋, THEN its MF 𝜇𝑋(𝑥) is

in [0,1].‖, where 𝜇𝑋(𝑥) is the MF of 𝑥. The universe 𝑋 may contain either discrete or continuous

values.

2.1.2 Linguistic Variable

A linguistic variable is a variable whose values are linguistic terms in a natural or artificial

language. For example, the size of an object is a linguistic variable, whose value can be small,

medium, and big.

2.1.3 Fuzzy Set

A fuzzy set 𝐴 in 𝑋 is defined by

𝐴 = 𝑥, 𝜇𝐴 𝑥 𝑥 ∈ 𝑋 , (1)

where 𝜇𝐴 𝑥 ∈ [0,1] is the MF of 𝑥 in 𝐴. For 𝜇𝐴 𝑥 , the value 1 stands for complete membership

of the set 𝐴, while 0 represents that 𝑥 does not belong to the set at all. A fuzzy set can also be

syntactically represented by

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 49

𝐴 =

𝜇𝐴(𝑥𝑖)

𝑥𝑖
𝑥𝑖∈𝑋

, if 𝑋 is discrete

𝜇𝐴(𝑥)

𝑥𝑋

, if 𝑋 is continuous

 . (2)

2.1.4 Support

The elements on fuzzy set 𝐴 whose membership is larger than zero are called the support of 𝐴

sp 𝐴 = 𝑥 ∈ 𝐴 𝜇𝐴 𝑥 > 0 . (3)

2.1.5 Height

The height of a fuzzy set 𝐴 is defined by

hgt 𝐴 = sup 𝜇𝐴 𝑥 𝑥 ∈ 𝑋 . (4)

2.1.6 Normal Fuzzy Set and Non-normal Fuzzy Set

A fuzzy set 𝐴 is said to be normal if hgt(𝐴) = 1. If 0 < hgt(𝐴) < 1, the fuzzy set 𝐴 is said to be

non-normal. The non-normal fuzzy set can be normalized by dividing the height of 𝐴 , i.e.,

𝜇 𝐴(𝑥) =
𝜇𝐴 (𝑥)

hgt (𝐴)
.

2.1.7 Fuzzy Subset

A fuzzy set 𝐴 = 𝑥, 𝜇𝐴 𝑥 𝑥 ∈ 𝑋 is said to be a fuzzy subset of 𝐵 = 𝑥, 𝜇𝐵 𝑥 𝑥 ∈ 𝑋 if

𝜇𝐴 𝑥 ≤ 𝜇𝐵 𝑥 , denoted by 𝐴 ⊆ 𝐵.

2.1.8 Fuzzy Partition

For a linguistic variable, a number of fuzzy subsets are enumerated as the value of the variable.

This collection of fuzzy subsets is called a fuzzy partition. Each fuzzy subset has a MF. For a

finite fuzzy partition {𝐴1, 𝐴2, ⋯ , 𝐴𝑛 } of a set 𝐴, the MF for each 𝑥 ∈ 𝐴 satisfies

 𝜇𝐴𝑖
 𝑥 = 1

𝑛

𝑖=1

, (5)

and 𝐴𝑖 is normal. A fuzzy partition is illustrated in Fig. 1.

FIGURE 1: A fuzzy partition of human age. The fuzzy set for representing the linguistic variable human age

is partitioned into three fuzzy subsets, namely, young, middle-age, old.

Each fuzzy subset is characterized by an MF.

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 50

2.1.9 Empty Set

The subset of 𝑋 having no element is called the empty set, denoted by ∅ .

2.1.10 Complement

The complement of 𝐴, written 𝐴 , ¬𝐴 or NOT 𝐴, is defined as 𝜇𝐴 (𝑥) = 1 − 𝜇𝐴(𝑥). Thus, 𝑋 = ∅ and

∅ = 𝑋.

2.1.11 𝜶-cut

The 𝛼-cut or 𝛼-level set of a fuzzy set 𝐴, written 𝜇𝐴[𝛼], is defined as

𝜇𝐴 𝛼 = 𝑥 ∈ 𝐴 𝜇𝐴 𝑥 ≥ 𝛼 , (6)

where 𝛼 ∈ [0,1]. For continuous sets, 𝜇𝐴 [𝛼] can be characterized by an interval or a union of

intervals.

2.1.12 Kernel or Core

All the elements in a fuzzy set 𝐴 with membership degree 1 constitute a subset called the kernel

or core of the fuzzy set, written as co(𝐴) = 𝜇𝐴 [1].

2.1.13 Convex Fuzzy Set

A fuzzy set 𝐴 is said to be convex if and only if

𝜇𝐴 𝜆𝑥1 + 1 − 𝜆 𝑥2 ≥ 𝜇𝐴 𝑥1 ∧ 𝜇𝐴 𝑥2 (7)

for 𝜆 ∈ [0,1], and 𝑥1, 𝑥2 ∈ 𝑋, where ∧ denotes the minimum operation. Any 𝛼-cut set of a convex

fuzzy set is a closed interval.

2.1.14 Concave Fuzzy Set

A fuzzy set 𝐴 is said to be concave if and only if

𝜇𝐴 𝜆𝑥1 + 1 − 𝜆 𝑥2 ≤ 𝜇𝐴 𝑥1 ∨ 𝜇𝐴 𝑥2 . (8)

For 𝜆 ∈ [0,1], and 𝑥1, 𝑥2 ∈ 𝑋, where ∨ denotes the maximum operation.

2.1.15 Fuzzy Number

A fuzzy number 𝐴 is a fuzzy set of the real line with a normal, convex and continuous MF of

bounded support. A fuzzy number is usually represented by a family of 𝛼-level sets or by a

discretized MF, as illustrated in Fig. 2.

(a) (b)

FIGURE 2: Representations of a fuzzy number. (a) 𝛼-level sets. (b) Discretized MF.

2.1.16 Fuzzy Singleton

A fuzzy set 𝐴 = 𝑥, 𝜇𝐴 𝑥 𝑥 ∈ 𝑋 is said to be a fuzzy singleton if 𝜇𝐴(𝑥) = 1 for 𝑥 ∈ 𝑋 and

𝜇𝐴(x′) = 0 for all x′ ∈ 𝑋 with x′ ≠ 𝑥.

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 51

2.1.17 Hedge

A hedge transforms a fuzzy set into a new fuzzy set. A hedge operator is comparable to an

adverb in English. Hedges are used to intensify or dilute the characteristic of a fuzzy set such as

very and quite, or to approximate a fuzzy set or convert a scalar to a fuzzy set such as roughly.

For example, for a fuzzy set strong with membership degree 𝜇𝐴 𝑥 , very strong can be described

using the membership degree 𝜇𝐴
2 𝑥 , while quite strong can be described using the membership

degree 𝜇𝐴

1

2 𝑥 .

2.1.18 Extension Principle

Given mapping 𝑓: 𝑋 → 𝑌 and a fuzzy set 𝐴 = 𝑥, 𝜇𝐴 𝑥 𝑥 ∈ 𝑋 , the extension principle is given

by

𝑓(𝐴) = 𝑓 𝑥 , 𝜇𝐴 𝑥 𝑥 ∈ 𝑋 . (9)

2.1.19 Cartesian Product

If 𝑋 and 𝑌 are two universal sets, then 𝑋 × 𝑌 is the set of all ordered pairs (𝑥, 𝑦) for 𝑥 ∈ 𝑋 and

𝑦 ∈ 𝑌. Let 𝐴 be a fuzzy set of 𝑋 and 𝐵 a fuzzy set of 𝑌. The Cartesian product is defined as

𝐴 × 𝐵 = 𝑧, 𝜇𝐴×𝐵 𝑧 𝑧 = 𝑥, 𝑦 ∈ 𝑍, 𝑍 = 𝑋 × 𝑌 , (10)

where 𝜇𝐴×𝐵 𝑧 = 𝜇𝐴 𝑥 ∧ 𝜇𝐵 𝑥 , ∧ denoting the 𝑡-norm operation.

2.1.20 Fuzzy Relation

Fuzzy relation is used to describe the association between two things. If 𝑅 is a subset of 𝑋 × 𝑌,

then 𝑅 is said to be a relation between 𝑋 and 𝑌, or a relation on 𝑋 × 𝑌. Mathematically,

𝑅 𝑥, 𝑦 = 𝑥, 𝑦 , 𝜇𝑅 𝑥, 𝑦 𝑥, 𝑦 ∈ 𝑋 × 𝑌, 𝜇𝑅 𝑥, 𝑦 ∈ [0,1] , (11)

where 𝜇𝑅 𝑥, 𝑦 is the degree of membership for association between 𝑥 and 𝑦. A fuzzy relation is

also a fuzzy set.

2.1.21 Fuzzy Matrix and Fuzzy Graph

Given finite, discrete fuzzy sets 𝑋 = { 𝑥1, 𝑥2 , ⋯ , 𝑥𝑚 } and Y = {𝑦1, … , 𝑦𝑛}, a fuzzy relation on 𝑋 × 𝑌

can be represented by an 𝑚 × 𝑛 matrix 𝐑 = [𝑅𝑖𝑗] = [𝜇𝑅 (𝑥𝑖 , 𝑦𝑗)]. This matrix is called a fuzzy

matrix. The fuzzy relation 𝑅 can be represented by a fuzzy graph. In a fuzzy graph, all 𝑥𝑖 and 𝑦𝑗

are vertices, and the grade 𝜇𝑅(𝑥𝑖 , 𝑦𝑗) is added to the connection from 𝑥𝑖 and 𝑦𝑗 .

2.1.22 𝒕-norm

A mapping 𝑇: 0,1 × 0,1 → [0,1] with the following four properties is called 𝑡 -norm. For all

𝑥, 𝑦, 𝑧 ∈ [0,1],

 Commutativity: 𝑇(𝑥, 𝑦) = 𝑇(𝑦, 𝑥);

 Monotonicity: 𝑇 𝑥, 𝑦 ≤ 𝑇 𝑥, 𝑧 , if 𝑦 ≤ 𝑧;

 Associativity: 𝑇(𝑥, 𝑇(𝑦, 𝑧)) = 𝑇(𝑇(𝑥, 𝑦), 𝑧);

 Linearity: 𝑇(𝑥, 1) = 𝑥.

2.1.23 𝒕-conorm

A mapping C: 0,1 × 0,1 → [0,1] having the following four properties is called 𝑡-conorm. For all

𝑥, 𝑦, 𝑧 ∈ [0,1],

 Commutativity: 𝐶(𝑥, 𝑦) = 𝐶(𝑦, 𝑥);

 Monotonicity: 𝐶 𝑥, 𝑦 ≤ 𝐶(𝑥, 𝑧), if 𝑦 ≤ 𝑧;

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 52

 Associativity: 𝐶(𝑥, 𝐶(𝑦, 𝑧)) = 𝐶(𝐶(𝑥, 𝑦), 𝑧);

 Linearity: 𝐶(𝑥, 0) = 𝑥.

2.2 Membership Function

A fuzzy set 𝐴 over the universe of discourse 𝑋, 𝐴 ⊆ 𝑋 → [0,1], is described by the degree of

membership 𝜇𝐴 𝑥 ∈ [0,1] for each 𝑥 ∈ 𝑋. Unimodality and normality are two important aspects of

the MFs [23]. Piecewise-linear functions such as triangles and trapezoids are popular MFs. The

triangular MFs can be defined by

𝜇 𝑥; 𝑎, 𝑏, 𝑐 =

𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 < 𝑥 ≤ 𝑐

0, otherwise

 , (12)

where the shape parameters satisfies 𝑎 ≤ 𝑏 ≤ 𝑐 , and 𝑏 ∈ 𝑋 . Triangular MFs are useful for

modeling fuzzy numbers or linguistic terms such as ―The temperature is about 20∘ C‖. The

trapezoid MFs have flat top with constant value 1. Trapezoid MFs are suitable for modeling such

linguistic terms as ―He looks like a teenager‖.

The Gaussian and bell-shaped functions have continuous derivatives, and are usually used to

replace the triangular MF when shape parameters are adapted using the gradient-descent

procedure. Another popular MF is a sigmoidal functions of the form

𝜇 𝑥; 𝑐, 𝛽 =
1

1 + e−𝛽(𝑥−𝑐)
, (13)

where 𝑐 shifts the function to the left or to the right, and 𝛽 controls the shape of the function.

When 𝛽 > 1 it is an S-shaped function, and when 𝛽 < −1 it is a Z-shaped function. By multiplying

an S-shaped function by a Z-shaped function, a 𝜋-shaped function is obtained [29]. 𝜋-shaped

MFs can be used in situations similar to that where trapezoid MFs are used.

2.3 Intersection and Union

The set operations intersection and union correspond to the logic operations conjunction (AND)

and disjunction (OR), respectively. Intersection is described by the so-called triangular norm (𝑡-

norm), denoted by 𝑇(𝑥, 𝑦), whereas union is described by the so-called triangular conorm (𝑡-

conorm), denoted by 𝐶(𝑥, 𝑦).

If 𝐴 and 𝐵 are fuzzy subsets of 𝑋, then intersection 𝐼 = 𝐴 ∩ 𝐵 is defined by

𝜇𝐼 𝑥 = 𝑇 𝜇𝐴 𝑥 , 𝜇𝐵 𝑥 . (14)

Basic 𝑡-norms are given as the standard intersection, the bound sum, the algebraic product and

the drastic intersection [14]. The popular standard intersection and algebraic product are

respectively defined by

𝑇m 𝑥, 𝑦 = min 𝑥, 𝑦 , (15)

𝑇p 𝑥, 𝑦 = 𝑥𝑦. (16)

Similarly, union 𝑈 = 𝐴 ∪ 𝐵 is defined by

𝜇𝑈(𝑥) = 𝐶 𝜇𝐴 𝑥 , 𝜇𝐵 𝑥 . (17)

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 53

The corresponding basic 𝑡-conorms are given as the standard union, the bounded sum, the

algebraic sum, and the drastic union [14]. Corresponding to the standard intersection and

algebraic product, the two popular 𝑡 -conorms are respectively the standard union and the

algebraic sum

𝐶m 𝑥, 𝑦 = max 𝑥, 𝑦 , (18)

𝐶p 𝑥, 𝑦 = 𝑥 + 𝑦 − 𝑥𝑦. (19)

When the 𝑡-norm and the 𝑡-conorm satisfy 1 − 𝑇(𝑥, 𝑦) = 𝐶(1 − 𝑥, 1 − 𝑦), they are said to be dual.

This makes De Morgan's laws A ∩ B = A ∪ B and A ∪ B = A ∩ B to still hold in fuzzy set theory.

The above 𝑡-norms and 𝑡-conorms with the same subscripts are dual. To satisfy the principle of

duality, they are usually used in pairs.

2.4 Aggregation, Fuzzy Implication, and Fuzzy Reasoning

Aggregation or composition operations on fuzzy sets provide a means for combining several sets

in order to produce a single fuzzy set. 𝑇-conorms are usually used as aggregation operators.

Consider the relations

𝑅1 𝑥, 𝑦 = 𝑥, 𝑦 , 𝜇𝑅1
 𝑥, 𝑦 𝑥, 𝑦 ∈ 𝑋 × 𝑌, 𝜇𝑅1

 𝑥, 𝑦 ∈ 0,1 , (20)

𝑅2 𝑦, 𝑧 = 𝑦, 𝑧 , 𝜇𝑅2
 𝑦, 𝑧 𝑦, 𝑧 ∈ 𝑌 × 𝑍, 𝜇𝑅2

 𝑦, 𝑧 ∈ 0,1 . (21)

The max-min composition, denoted by 𝑅1 ∘ 𝑅2 with MF 𝜇𝑅1∘ 𝑅2
, is defined by

𝑅1 ∘ 𝑅2 = 𝑥, 𝑧 , max
𝑦

 min 𝜇𝑅1
 𝑥, 𝑦 , 𝜇𝑅2

 𝑦, 𝑧 𝑥, 𝑧 ∈ 𝑋 × 𝑍, 𝑦 ∈ 𝑌 . (22)

There are some other composition operations, such as the min-max composition, denoted by

𝑅1 ⋄ 𝑅2 with the difference that the role of max and min are interchanged. The two compositions

are related by 𝑅1 ⋄ 𝑅2
 = 𝑅1

 ∘ 𝑅2
 .

Fuzzy implication is used to represent fuzzy rules. It is a mapping 𝑓: 𝐴 → 𝐵 according to the fuzzy

relation 𝑅 on 𝐴 × 𝐵

 𝑦, 𝜇𝐵 𝑦 = 𝑓 𝑥, 𝜇𝐴 𝑥 . (23)

Denote 𝑝 as ―𝑥 is 𝐴‖ and 𝑞 as ―𝑦 is 𝐵‖, then (23) can be stated as 𝑝 → 𝑞 (if 𝑝 then 𝑞). For a fuzzy

rule expressed as a fuzzy implication using the defined fuzzy relation 𝑅, the output linguistic

variable 𝐵 is denoted by 𝐵 = 𝐴 ∘ 𝑅, which is characterized by 𝜇𝐵 𝑦 =∨𝑥 (𝜇𝐴 𝑥 ∧ 𝜇𝑅(𝑥, 𝑦)).

Fuzzy reasoning, also called approximate reasoning, is an inference procedure for deriving

conclusions from a set of fuzzy rules and one or more conditions [51]. The compositional rule of

inference is the essential rational behind fuzzy reasoning. A simple example of fuzzy reasoning is

described here. Consider the fuzzy set 𝐴 = 𝑥, 𝜇𝐴 𝑥 𝑥 ∈ 𝑋 } and the fuzzy relation 𝑅 on 𝐴 × 𝐵,

given by 𝑅 𝑥, 𝑦 = 𝑥, 𝑦 , 𝜇𝑅 𝑥, 𝑦 𝑥, 𝑦 ∈ 𝑋 × 𝑌} . Fuzzy set 𝐵 can be inferred from fuzzy set

𝐴 and their fuzzy relation 𝑅 𝑥, 𝑦 by the max-min composition

𝐵 = 𝐴 ∘ 𝑅 = 𝑦, max
𝑥

 min 𝜇𝐴 𝑥 , 𝜇𝑅 𝑥, 𝑦 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 . (24)

2.5 Fuzzy Inference Systems

In control systems, the inputs to the systems are the error and the change in the error of the

feedback loop, while the output is the control action. Fuzzy logic-based controllers are popular

control systems. The general architecture of a fuzzy controller is depicted in Fig. 3. The core of a

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 54

fuzzy controller is an FIS, in which the data flow involves fuzzification, knowledge base evaluation,

and defuzzification. In an FIS, sometimes termed a fuzzy system or a fuzzy model, the knowledge

base is comprised of the fuzzy rule base and the database. The database contains the linguistic

term sets considered in the linguistic rules and the MFs defining the semantics of the linguistic

variables, and information about domains. The rule base contains a collection of linguistic rules

that are joined by the ALSO operator. Expert provides his knowledge in the form of linguistic rules.

The fuzzification process collects the inputs and then converts them into linguistic values or fuzzy

sets. The decision logic, called fuzzy inference engine, generates output from the input, and

finally the defuzzification process produces a crisp output for control action.

FIGURE 3: The architecture of a fuzzy controller. The core of the fuzzy controller is an FIS.

Interpretations of a certain rule or the rule base depends on the FIS model. The Mamdani [69]

and the TSK [103] models are two popular FISs. The Mamdani model is a nonadditive fuzzy

model that aggregates the output of fuzzy rules using the maximum operator, while the TSK

model is an additive fuzzy model that aggregates the output of rules using the addition operator.

Kosko's standard additive model (SAM) [56] is another additive fuzzy model. All these models

can be derived from fuzzy graph [122], and are universal approximators [55], [113], [13], [15], [75].

When approximating an unknown control function, neural networks achieve a solution using the

learning process, while FISs apply a vague interpolation technique. Unlike neural networks and

other numerical models, fuzzy models operate at a level of information granules––fuzzy sets.

2.6 Fuzzy Rules and Fuzzy Interference

Fuzzy mapping rules and fuzzy implication rules are the two types of fuzzy rules [122]. A fuzzy

mapping rule describes a functional mapping relationship between inputs and an output using

linguistic terms, while a fuzzy implication rule describes a generalized logic implication

relationship between two logic formulas involving linguistic variables. Fuzzy implication rules

generalize set-to-set implications, whereas fuzzy mapping rules generalize set-to-set associations.

The former was motivated to allow intelligent systems to draw plausible conclusions in a way

similar to human reasoning, while the latter was motivated to approximate complex relationships

such as nonlinear functions in a cost-effective and easily comprehensible way. The foundation of

fuzzy mapping rule is fuzzy graph, while the foundation of fuzzy implication rule is a

generalization to two-valued logic.

A rule base consists of a number of rules given in the form ―IF 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, THEN 𝑎𝑐𝑡𝑖𝑜𝑛”. The

condition, also called premise, is made up of a number of antecedents that are negated or

combined by different operators such as AND or OR computed with 𝑡-norms or 𝑡-conorms. In a

fuzzy rule system, MFs for fuzzy subsets can be selected according to human intuition, or by

learning from training data.

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 55

A fuzzy inference is made up of several rules with the same output variables. Given a set of fuzzy

rules, the inference result is a combination of the fuzzy values of the conditions and the

corresponding actions. For example, we have a set of 𝑁r rules

R𝑖: IF (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝐶𝑖) THEN (𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐴𝑖)

for 𝑖 = 1, … , 𝑁r , where 𝐶𝑖 is a fuzzy set. Assuming that a condition has a membership degree of 𝜇𝑖

associated with the set 𝐶𝑖 . The condition is first converted into a fuzzy category using a

syntactical representation, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 =
𝐶𝑖

𝜇 𝑖

𝑁r
𝑖 . We can see each rule is valid to a certain extent. A

fuzzy inference is the combination of all the possible consequences. The action coming from a

fuzzy inference is also a fuzzy category, with a syntactical representation

𝑎𝑐𝑡𝑖𝑜𝑛 =
𝐴1

𝜇1
+

𝐴2

𝜇2
+ ⋯ +

𝐴𝑁r

𝜇𝑁r

. (25)

The inference procedure depends on fuzzy reasoning. This result can be further processed or

transformed into a crisp value.

2.7 Fuzzification and Defuzzification

Fuzzification is to transform crisp inputs into fuzzy subsets. Given crisp inputs 𝑥𝑖 , 𝑖 = 1, … , 𝑛,

fuzzification is to construct the same number of fuzzy sets 𝐴𝑖,

𝐴𝑖 = fuzz 𝑥𝑖 , (26)

where fuzz ⋅ is a fuzzification operator. Fuzzification is determined according to the defined MFs.

Defuzzification is to map fuzzy subsets of real numbers into real numbers. In an FIS,

defuzzification is applied after aggregation. Popular defuzzification methods include the centroid

defuzzifier [69], and the mean-of-maxima defuzzifier [69]. The centroid defuzzifier is the best-

known method, which is to find the centroid of the area surrounded by the MF and the horizontal

axis [52]. Aggregation and defuzzification can be combined into a single phase, such as the

weighted-mean method [36]

defuzz 𝐵 =
 𝜇𝑖𝑏𝑖

𝑁r
𝑖=1

 𝜇𝑖
𝑁r
𝑖=1

, (27)

where 𝑁r is the number of rules, 𝜇𝑖 is the degree of activation of the 𝑖th rule, and 𝑏𝑖 is a numeric

value associated with the consequent of the 𝑖th rule, 𝐵𝑖. The parameter 𝑏𝑖 can be selected as the

mean value of the 𝛼-level set when 𝛼 is equal to 𝜇𝑖 [36].

2.8 Mamdani Model

Given a set of 𝑁 examples 𝐱𝑝 , 𝐲𝑝 𝐱𝑝 ∈ 𝑅𝑛 , 𝐲𝑝 ∈ 𝑅𝑚 , the underlying system can be identified by

using the Mamdani or the TSK model.

For the Mamdani model with 𝑁r rules, the 𝑖th rule is given by

R𝑖: IF 𝐱 is 𝐴𝑖, THEN 𝐲 is 𝐵𝑖

for 𝑖 = 1, … , 𝑁r , where 𝐴𝑖 = { 𝐴𝑖
1, 𝐴𝑖

2, … , 𝐴𝑖
𝑛 }, 𝐵𝑖 = 𝐵𝑖

1, 𝐵𝑖
2, … , 𝐵𝑖

𝑚 , and 𝐴𝑖
𝑗
 and 𝐵𝑖

𝑘 are respectively

fuzzy sets that define an input and output space partitioning.

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 56

For an 𝑛-tuple input in the form of ―𝐱 is A′‖, the system output ― 𝐲 is B′‖ is characterized by

combining the rules according to

𝜇𝐵′ 𝐲 = 𝜇𝐴𝑖
′ 𝐱 ∧ 𝜇𝐵𝑖

 𝐲

𝑁r

𝑖=1

, (28)

where the fuzzy partitioning 𝐴′ = {𝐴′1, 𝐴′2, … , 𝐴′𝑛 } and 𝐵′ = { 𝐵′1, 𝐵′2, … , 𝐵′𝑚 } ,

𝜇𝐴𝑖
′ 𝐱 = 𝜇𝐴′ 𝐱 ∧ 𝜇𝐴𝑖

 𝐱 = 𝜇𝐴′ 𝑗 ∧ 𝜇
𝐴𝑖

𝑗

𝑛

𝑖=1

. (29)

𝜇𝐴′ 𝐱 = 𝜇𝐴′ 𝑗
𝑛
𝑗 =1 and 𝜇𝐴𝑖

 𝐱 = 𝜇
𝐴𝑖

𝑗
𝑛
𝑗=1 being respectively the membership degrees of 𝐱 to the

fuzzy sets 𝐴′ and 𝐴𝑖, 𝜇𝐵𝑖
 𝐲 = 𝜇

𝐵𝑖
𝑘

𝑚
𝑘=1 is the membership degree of 𝐲 to the fuzzy set 𝐵𝑖, 𝜇𝐴′

𝑖
𝑗 is

the association between the 𝑗th input of 𝐴′ and the 𝑖th rule, 𝜇
𝐵𝑖

𝑘 is the association between the 𝑘th

input of 𝐵 and the 𝑖th rule, ∧ is the intersection operator, and ∨ is the union operator.

When minimum and maximum are respectively used as the intersection and union operators, the

Mamdani model is called a max-min model. We now illustrate the inference procedure for the

Mamdani model. Assume that we have a two-rule Mamdani FIS with the rules of the form

R𝑖: IF 𝑥1 is 𝐴𝑖 and 𝑥2 is 𝐵𝑖, THEN 𝑦 is 𝐶𝑖

for 𝑖 = 1,2. When the max-min composition is employed, for the inputs ―𝑥1 is 𝐴′‖ and ―𝑥2 is B′ ―,

the fuzzy reasoning procedure for the output 𝑦 is illustrated in Fig. 4. A defuzzification strategy is

needed to get crisp output value.

FIGURE 4: The inference procedure of the Mamdani model

with the min and max operators and fuzzy inputs.

The Mamdani model offers a high semantic level and a good generalization capability. It contains

fuzzy rules built from expert knowledge. However, FISs based only on expert knowledge may

result in insufficient accuracy. For accurate numerical approximation, the TSK model can usually

generate a better performance.

2.9 Takagi-Sugeno-Kang Model

In the TSK model [103], for the same set of examples 𝐱p , 𝐲p , fuzzy rules are given in the form

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 57

R𝑖: IF 𝐱 is 𝐴𝑖, THEN 𝐲 = 𝐟𝑖(𝐱)

for 𝑖 = 1,2, … , 𝑁r, where 𝐟𝑖 𝐱 = 𝑓𝑖
1 𝐱 , … , 𝑓𝑖

𝑚 𝐱
𝑇

 is a crisp vector function of 𝐱; usually 𝑓𝑖
𝑗 𝐱 is

selected as a linear relation with 𝑓𝑖
𝑗 𝐱 = 𝐚𝑖

𝑗

𝑇
𝐱 + 𝑏𝑖

𝑗
, where 𝐚𝑖

𝑗
 and 𝑏𝑖

𝑗
 are adjustable parameters.

For an 𝑛-tuple input in the form of ―𝐱 is 𝐴′‖, the output 𝐲′ is obtained by combining the rules

according to

𝐲′ =
 𝜇𝐴𝑖

′ 𝐱 𝐟𝑖(𝐱)
𝑁r
𝑖=1

 𝜇𝐴𝑖
′ 𝐱 𝑁r

𝑖=1

, (30)

where 𝜇𝐴𝑖
′ 𝐱 is defined by (29), and can be derived by the procedure shown in the left part of Fig.

4. This model produces a real-valued function, and it is essentially a model-based fuzzy control

method. The stability analysis of the TSK model is given in [104]. The TSK model typically selects

𝑓𝑖
𝑗
 (⋅) as first-order polynomials, hence the model termed the first-order TSK model. When 𝑓𝑖

𝑗
 (⋅)

are selected as constants, it is called the zero-order TSK model and can be regarded as a special

case of the Mamdani model.

In comparison with the Mamdani model, the TSK model, which is based on automatic learning

from the data, can accurately approximate a function using fewer rules. It has a stronger and

more flexible representation capability than the Mamdani mode. In the TSK model, rules are

extracted from the data, but the generated rules may have no meaning for experts. The TSK

model has found more successful applications in building fuzzy systems.

2.10 Complex Fuzzy Logic

Complex fuzzy sets and logic are mathematical extensions of fuzzy sets and logic from the real

domain to the complex domain [87], [86]. A complex fuzzy set 𝑆 is characterized by a complex-

valued MF, and membership of any element 𝑥 in 𝑆 is given by a complex-valued membership

degree of the form

𝜇𝑆 𝑥 = 𝑟𝑆 𝑥 ej𝜑𝑆(𝑥), (31)

where the amplitude 𝑟𝑆 𝑥 ∈ [0,1], and 𝜑𝑆 is the phase. Thus, 𝜇𝑆 𝑥 is within a unit circle in the

complex plane.

In [87], [86], basic set operators for fuzzy logic have been extended for the complex fuzzy logic,

and some additional operators such as the vector aggregation, set rotation and set reflection, are

also defined. The operations of intersection, union and complement for complex fuzzy sets are

defined only on the modulus of the complex membership degree. In [27], the complex fuzzy logic

is extended to a logic of vectors in the plane, rather than scalar quantities. In [74], a complex

fuzzy set is defined as an MF mapping the complex plane into 0,1 × [0,1].

Complex fuzzy sets are superior to the Cartesian products of two fuzzy sets. Complex fuzzy logic

maintains both the advantages of the fuzzy logic and the properties of complex fuzzy sets. In

complex fuzzy logic, rules constructed are strongly related and a relation manifested in the phase

term is associated with complex fuzzy implications. In a complex FIS, the output of each rule is a

complex fuzzy set, and phase terms are necessary when combining multiple rules so as to

generate the final output. Complex FISs are useful for solving some hard problems for traditional

fuzzy methods, in which rules are related to one another with the nature of the relation varying as

a function of the input to the system [86].

The fuzzy complex number [11], introduced by incorporating the complex number into the support

of the fuzzy set, is a different concept from the complex fuzzy set [87]. A fuzzy complex number is

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 58

a fuzzy set of complex numbers, which have real-valued membership degree in the range [0,1].
An 𝛼-cut of a fuzzy complex number is based on the modulus of the complex numbers in the

fuzzy set. A fuzzy complex number is a fuzzy set in one dimension, while a complex fuzzy set or

number is a fuzzy set in two dimensions.

3. FUZZY LOGIC VS. NEURAL NETWORKS
Like FNNs, many fuzzy systems are proved to be universal approximators [63], [50], [13], [35],

[57], [118]. In [63], the Mamdani model and FNNs are shown to be able to approximate each

other to an arbitrary accuracy. The equivalence between the TSK model and the RBFN under

certain conditions has been established in [50], [43] and the equivalence between fuzzy expert

systems and neural networks has been proved in [13]. Gaussian-based Mamdani systems have

the ability of approximating any sufficiently smooth function and reproducing its derivatives up to

any order [35]. In [57], fuzzy systems with Gaussian MFs have been proved to be universal

approximators for a smooth function and its derivatives.

From the viewpoint of an expert system, fuzzy systems and neural networks are quite similar as

inference systems. An inference system involves knowledge representation, reasoning, and

knowledge acquisition: (1) A trained neural network represents knowledge using connection

weights and neurons in a distributed manner, while in a fuzzy system knowledge is represented

using IF-THEN rules; (2) For each input, the trained neural network generates an output and this

pure numerical procedure can be treated as a reasoning process, while reasoning in a fuzzy

system is logic-based; (3) Knowledge acquisition is via learning in a neural network, while for a

fuzzy system knowledge is encoded by a human expert. Both neural networks and fuzzy systems

are dynamic, parallel distributed processing systems that estimate functions without any

mathematical model and learn from experience with sample data.

Fuzzy systems can be applied to problems with knowledge represented in the form of IF-THEN

rules. Problem-specific a priori knowledge can be integrated into the systems. Training pattern set

and system modeling are not needed, and only heuristics are used. During the tuning process,

one needs to add, remove, or change a rule, or even change the weight of a rule. This process,

however, requires the knowledge of experts. On the other hand, neural networks are useful when

we have training pattern set. We do not need any knowledge of the modeling of the problem. A

trained neural network is a black box that represents knowledge in its distributed structure.

However, any prior knowledge of the problem cannot be incorporated into the learning process. It

is difficult for human beings to understand the internal logic of the system. Nevertheless, by

extracting rules from neural networks, users can understand what neural networks have learned

and how neural networks predict.

4. FUZZY INFERENCE SYSTEMS AND NEURAL NETWORKS

4.1 Fuzzy Inference Systems and Multilayer Perceptrons

For a three-layer (𝐽1-𝐽2-𝐽3) MLP, if the activation function in the hidden layer 𝜙(1)(⋅) is selected as

the logistic function 𝜙 1 𝑥 =
1

1+e−𝑥 and the activation function in the output layer 𝜙(2)(⋅) is

selected as the linear function 𝜙(2)(𝑥) = 𝑥 , there always exists a fuzzy additive system that

calculates the same function as the network does [7]. In [7], a fuzzy logic operator, called

interactive-or (𝑖-or), is defined by applying the concept of 𝑓-duality to the logistic function. The use

of the 𝑖-or operator explains clearly the acquired knowledge of a trained MLP. The 𝑖-or operator is

defined by [7]

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 59

𝑎 ⊗ 𝑏 =
𝑎⋅ 𝑏

 1−𝑎 ⋅ 1−𝑏 +𝑎⋅ 𝑏
. (32)

The 𝑖-or operator works on (0,1). It is a hybrid between both a 𝑡-norm and a 𝑡-conorm. Based on

the 𝑖-or operator, the equality between MLPs and FISs is thus established [7]. The equality proof

also yields an automated procedure for knowledge acquisition. An extension of the method has

been presented in [16], where the fuzzy rules obtained are in agreement with the domain of the

input variables and a new logical operator, similar to, but with a higher representational power

than the 𝑖-or, is defined.

In [32], relations between input uncertainties and fuzzy rules have been established. Sets of crisp

logic rules applied to uncertain inputs are shown to be equivalent to fuzzy rules with sigmoidal

MFs applied to crisp inputs. Integration of a reasonable uncertainty distribution for a fixed rule

threshold or interval gives a sigmoidal MF. Crisp logic and fuzzy rule systems are shown to be

respectively equivalent to the logical network and the three-layer MLP. Keeping fuzziness on the

input side enables easier understanding of the networks or the rule systems. In [17], [100], MLPs

are interpreted by fuzzy rules in such a way that the sigmoidal activation function is decomposed

into three partitions, and represented by three TSK fuzzy rules with one TSK fuzzy rule for each

partition. Each partition has its own MF. Accordingly, the value of the activation function at a point

can be derived by the TSK model.

A fuzzy set is usually represented by a finite number of its supports. In comparison with

conventional MF based FISs, 𝛼-cut based FISs [109] have a number of advantages. They can

considerably reduce the required memory and time complexity, since they depend on the number

of membership-grade levels, and not on the number of elements in the universes of discourse.

Secondly, the inference operations can be performed for each 𝛼-cut set independently, and this

enables parallel implementation. An 𝛼-cut based FIS can also easily interface with two-valued

logic since the 𝛼-level sets themselves are crisp sets. In addition, fuzzy set operations based on

the extension principle can be performed efficiently using 𝛼-level sets [109], [64]. For 𝛼-cut based

FISs, each fuzzy rules can be represented as a pattern pair of degrees of membership at those

points of the MFs obtained by dividing the intervals of the fuzzy sets linearly or by 𝛼-cut can be

implemented by an MLP with the backpropagation (BP) rule. This is a learning problem of 𝑁r

samples with 𝑛 inputs and 𝑚 outputs.

4.2 Fuzzy Inference Systems and Radial Basis Function Networks

When the 𝑡-norm in the TSK model is selected as multiplication and the MFs are selected the

same as RBFs in the normalized RBFN model, the two models are mathematically equivalent [50],

[48]. Note that each hidden unit corresponds to a fuzzy rule. Normalized RBFNs provide a

localized solution that is amenable to rule extraction. The receptive fields of some RBFs should

overlap to prevent incompleteness of fuzzy partitions. To have a perfect match between the RBFs

𝜙 𝐱 − 𝐜𝑖 and 𝜇𝐴𝑖
′ (𝐱) in (30), 𝜙 𝐱 − 𝐜𝑖 should be factorizable in each dimension such that

each component 𝜙 |𝑥𝑗 − 𝑐𝑖 ,𝑗 | corresponds to an MF 𝜇
𝑨′

𝑗 . The Gaussian RBF is the only strictly

factorizable function.

In the normalized RBFN, 𝑤𝑖𝑗 ’s typically take constant values and the normalized RBFN

corresponds to the zero-order TSK model. When the RBF weights are linear regression functions

of the input variables [59], [91], the model is functionally equivalent to the first-order TSK model.

When implementing the TSK model, one can select some 𝜇
𝐴′ 𝑖

𝑗 = 1 or some 𝜇
𝐴′ 𝑖

𝑗 = 𝜇
𝐴′𝑘

𝑗 in order to

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 60

increase the distinguishability of the fuzzy partitions. Correspondingly, one should share some

component RBFs or set some component RBFs to unity [52]. This considerably reduces the

effective number of free parameters in the RBFN. A distance measure like the Euclidean distance

is used to describe the similarity between two component RBFs. After applying a clustering

technique to locate prototypes and adding a regularization term describing the total similarity

between all the RBFs and the shared RBF to the MSE function, a gradient-descent procedure is

conducted so as to extract interpretable fuzzy rules from a trained RBFN [52]. The method can be

applied to RBFNs with constant or linear regression weights. A fuzzy system can be first

constructed according to heuristic knowledge and existing data, and then converted into an RBFN.

This is followed by a refinement of the RBFN using a learning algorithm. Due to this learning

procedure, the interpretability of the original fuzzy system may be lost. The RBFN is then again

converted into interpretable fuzzy system, and knowledge is extracted from the network. This

process refines the original fuzzy system design. The algorithm for rule extraction from the RBFN

is given in [52].

In [107], normalized Gaussian RBFNs can be generated from simple probabilistic rules and

probabilistic rules can also be extracted from trained RBFNs. Methods for reducing network

complexity have been presented in order to obtain concise and meaningful rules. Two algorithms

for rule extraction from RBFNs, which respectively generate a single rule describing each class

and a single rule from each hidden unit, are given in [70]. Existing domain knowledge in rule

format can be inserted into an RBFN as an initialization of optimal network training.

4.3 Rule Generation from Trained Neural Networks

In addition to rule generation from trained MLPs and RBFNs, rule generation can also be

performed on other trained neural networks [46], [106]). Rule generation involves rule extraction

and rule refinement. Rule extraction is to extract knowledge from trained neural networks, while

rule refinement is to refine the rules that are extracted from neural networks and initialized with

crude domain knowledge.

Recurrent neural networks (RNNs) have the ability to store information over indefinite periods of

time, develop hidden states through learning, and thus conveniently represent recursive linguistic

rules [72]. They are particularly well-suited for problem domains, where incomplete or

contradictory prior knowledge is available. In such cases, knowledge revision or refinement is

also possible. Discrete-time RNNs can correctly classify strings of a regular language [80]. Rules

defining the learned grammar can be extracted in the form of deterministic finite-state automata

(DFAs) by applying clustering algorithms [29] in the output space of neurons. Starting from an

initial network state, the algorithm searches the equally partitioned output space of 𝑁 state

neurons in a breadth-first manner. A heuristic is used to choose among the consistent DFAs that

model, which best approximates the learned regular grammar. The extracted rules demonstrate

high accuracy and fidelity and the algorithm is portable. Based on [80], an augmented RNN that

encodes fuzzy finite-state automata (FFAs) and recognizes a given fuzzy regular language with

an arbitrary accuracy has been constructed in [81]. FFAs are transformed into equivalent DFAs

by using an algorithm that computes fuzzy string membership. FFAs can model dynamical

processes whose current state depends on the current input and previous states. The granularity

within both extraction techniques is at the level of ensemble of neurons, and thus, the approaches

are not strictly decompositional.

RNNs are suitable for crisp/fuzzy grammatical inference. A method that uses a SOM for

extracting knowledge from an RNN [9] is able to infer a crisp/fuzzy regular language. Rule

extraction is also carried out upon Kohonen networks [110]. A comprehensive survey on rule

generation from trained neural networks is given from a softcomputing perspective in [72], where

the optimization capability of evolutionary algorithms (EAs) are emphasized for rule refinement.

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 61

Rule extraction from RNNs aims to find models of an RNN, typically in the form of finite state

machines. A recent overview of rule extraction from RNNs is given in [47].

4.4 Extracting Rules from Numerical Data

FISs can be designed directly from expert knowledge and data. The design process is usually

decomposed into two phases, namely, rule generation and system optimization [39]. Rule

generation leads to a basic system with a given space partitioning and the corresponding set of

rules, while system optimization gives the optimal membership parameters and rule base. Design

of fuzzy rules can be performed in one of three ways, namely, all the possible combinations of

fuzzy partitions, one rule for each data pair, or dynamically choosing the number of fuzzy sets.

For good interpretability, a suitable selection of variables and the reduction of the rule base are

necessary. During the system optimization phase, merging techniques such as cluster merging

and fuzzy set merging are usually used for interpretability purposes. Fuzzy set merging leads to a

higher interpretability than cluster merging. The reduction of a set of rules results in a loss of

numerical performance on the training data set, but a more compact rule base has a better

generalization capability and is also easier for human understanding. EAs [93] or learning [50] are

also used for extracting fuzzy rules and optimizing MFs and rule base. Methods for designing

FISs from data are analyzed and surveyed in [39]. They are grouped into several families and

compared based on rule interpretability.

4.5 Rule Generation Based on Fuzzy Partitioning

Rule generation can be based on a partitioning of the multidimensional space. Fuzzy partitioning

corresponds to structure identification for FISs, followed by parameter identification using a

learning algorithm. There are usually three methods for partitioning the input space, namely, grid

partitioning, tree partitioning, and scatter partitioning. These partitioning methods in the two-

dimensional input space are illustrated in Fig. 5.

(a) (b) (c) (d)

FIGURE 5: Partitioning of the two-dimensional input space. (a) Grid partitioning.

(b) 𝑘-𝑑 tree partitioning. (c) Multilevel grid partitioning. (d) Scatter partitioning.

4.6 Grid Partitioning

The grid structure has easy interpretability and is most widely used for generating fuzzy rules.

Fuzzy sets of each variable are shared by all the rules. However, the number of fuzzy rules grows

exponentially with input dimension, namely, the curse-of-dimensionality problem. For 𝑛 input

variables, each being partitioned into 𝑚𝑖 fuzzy sets, a total of 𝑚𝑖
𝑛
𝑖=1 rules are needed to cover

the whole input space. Since each rule has a few parameters to adjust, there are too many

parameters to adapt during the learning process. Too many fuzzy rules also harm the

interpretability of the fuzzy system. Thus, the method is appropriate for a small dimensional data

set with a good coverage. A training procedure can be applied to optimize the grid structure and

the rule consequences [50]. The grid structure is illustrated in Fig. 5 (a).

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 62

4.7 Tree Partitioning

𝑘-𝑑 tree and multilevel grid structures are two hierarchical partitioning techniques that effectively

relieve the problem of rule explosion [101]. The input space is first partitioned roughly, and a

subspace is recursively divided until a desired approximation performance is achieved. The 𝑘-𝑑

tree results from a series of guillotine cuts. A guillotine cut is a cut that is entirely across the

subspace to be partitioned. After the 𝑖th guillotine cut, the entire space is partitioned into 𝑖 + 1

regions. Heuristics based on the distribution of training examples or parameter identification

methods can usually be employed to find a proper 𝑘-𝑑 tree structure [101]. For the multilevel grid

structure [101], the top-level grid coarsely partitions the whole space into equal-sized and evenly

spaced fuzzy boxes, which are recursively partitioned into finer grids until a criterion is met.

Hence, a multilevel grid structure is also called a box tree. The criterion can be that the resulting

boxes have similar number of training examples or that an application-specific evaluation in each

grid is below a threshold. A 𝑘-𝑑 tree partitioning and a multilevel grid partitioning are respectively

illustrated in Fig. 5 (b) and (c). A multilevel grid in the two-dimensional space is called a quad tree.

Tree partitioning needs some heuristics to extract rules and its application to high-dimensional

problems faces practical difficulties.

4.8 Scatter Partitioning

Scatter partitioning usually generates fewer fuzzy regions than the grid and tree partitioning

techniques owing to the natural clustering property of training patterns. Fuzzy clustering

algorithms form a family of rule generation techniques. The training examples are gathered into

homogeneous groups and a rule is associated to each group. The fuzzy sets are not shared by

the rules, but each of them is tailored for one particular rule. Thus, the resulting fuzzy sets are

usually difficult to interpret [39]. Clustering is well adapted for large work spaces with a small

amount of training examples. However, scatter partitioning of high-dimensional feature spaces is

difficult, and some learning or evolutionary procedures may be necessary. Clustering algorithms

[29] can be applied for scatter partitioning. A scatter partitioning is illustrated in Fig. 5 (d). The

curse of dimensionality can also be alleviated by reducing the input dimensions by discarding

some irrelevant inputs or compressing the input space using feature selection or feature

extraction techniques. Some clustering-based methods for extracting fuzzy rule for function

approximation are proposed in [121], [20], [21], [4]. These methods are based on the TSK model.

Clustering can be used for identification of the antecedent part of the model such as

determination of the number of rules and initial rule parameters. The consequent part of the

model can be estimated by the linear LS method. In [21], the combination of the subtractive

clustering with the linear LS method provides an extremely fast and accurate method for fuzzy

system identification, which is better than the adaptive-network-based FIS (ANFIS) [48]. Based

on the Mamdani model, a clustering-based method for nonlinear regression is also given in [117].

4.9 Hierarchical Rule Generation

Hierarchical structure for fuzzy rule systems can also effectively solve the rule explosion problem

[85], [114], [68]. A hierarchical fuzzy system is comprised of a number of low-dimensional fuzzy

systems such as TSK systems connected in a hierarchical fashion. The total number of rules

increases only linearly with the number of input variables. For example, for a hierarchical fuzzy

system shown in Fig. 6, if there are 𝑛 variables each of which is partitioned into 𝑚𝑖 fuzzy subsets,

the total number of rule is only 𝑚𝑖 𝑚𝑖+1
𝑛−1
𝑖=1 . Hierarchical TSK systems [114] and generalized

hierarchical TSK systems [68] are universal approximators of any continuous function defined on

a compact set.

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 63

FIGURE 6: Example of a hierarchical fuzzy system with 𝑛 inputs and one output. The system is comprised

of 𝑛 − 1 two-input TSK systems. The 𝑛 input variables are 𝑥𝑖 , 𝑖 = 1, … , 𝑛,

the output is denoted by 𝑦, and 𝑦𝑖 is the output of the 𝑖th TSK system.

In Fig. 6, the 𝑛 input variables are 𝑥𝑖 , 𝑖 = 1, … , 𝑛, and the output is denoted by 𝑦. There exist

relations

𝑦𝑖 = 𝑓𝑖 𝑦𝑖−1, 𝑥𝑖+1 (33)

for 𝑖 = 1, … , 𝑛 − 1, where 𝑓𝑖 is the nonlinear relation described by the 𝑖th TSK system, 𝑦𝑖 is the

output of the 𝑖th TSK system, and 𝑦0 = 𝑥1. The final output is 𝑦 = 𝑦𝑛−1. The output 𝑦 is easily

obtained by a recursive procedure. Thus, the inference in the hierarchical fuzzy system is in a

recursive manner.

The hierarchical fuzzy system reduces the number of rules, however, the curse of dimensionality

is inherent in the system. In the standard fuzzy system, the degree of freedom is unevenly

distributed over the IF and THEN parts of the rules, with a comprehensive IF part to cover the

whole domain and a simple THEN part. The hierarchical fuzzy system, on the other hand,

provides with an incomplete IF part but a more complex THEN part. The gradient-descent method

can be applied to parameter learning of these systems. Generally, conventional fuzzy systems

achieve universal approximation using piecewise-linear functions, while the hierarchical fuzzy

system achieves it through piecewise-polynomial functions [114], [68].

4.10 Rule Generation Based on Look-up Table

Designing fuzzy systems from pattern pairs is a nonlinear regression problem. In the simple look-

up table (LUT) technique [115], [117], each pattern pair generates one fuzzy rule and then a

selection process determines the important rules, which are used to construct the final fuzzy

system. In the LUT technique, the input MFs do not change with the sampling data, thus the

designed fuzzy system uniformly covers the domain of interest.

In the LUT technique, the input and output spaces are first divided into fuzzy regions, then a fuzzy

rule is generated from a given pattern pair, and finally a degree is assigned to each rule to

resolve rule conflicts and reduce the number of rules. When the number of examples is large,

there is a high probability of conflicting rules, i.e., rules with the same IF parts but different THEN

parts. Each rule is assigned a degree of fulfillment. For a group of conflicting rules, only the rule

with the maximum degree is retained. When a new pattern pair becomes available, a rule is

created for this pattern pair and the fuzzy rule base is updated. The generated rules as well as

human expert's knowledge in the form of linguistic rules can be combined so as to produce a

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 64

fuzzy rule base. Finally a fuzzy system is built. The LUT technique is implemented in five steps

given in [29], [115], [117].

The fuzzy system thus constructed is proved to be a universal approximator by using the Stone-

Weierstrass theorem [115]. The approach has the advantage that modification of the rule base is

very easy as new examples are available. It is a simple and fast one-pass procedure, since no

iterative training is required. Naturally, this algorithm produces an enormous number of rules,

when the total input data is considerable. There also arises the problem of contradictory rules,

and noisy data in the training examples will affect the consequence of a rule. A similar grid

partitioning-based method in which each datum generates one rule has also been derived in [1].

4.11 Other Methods

Many other general methods can be used to automatically extract fuzzy rules from a set of

numerical examples and to build a fuzzy system for function approximation; some of these are

heuristics-based approaches [42], [92], [28], [105], and hybrid neural-fuzzy approaches such as

the ANFIS [48]. In [42], a framework for quickly prototyping an expert system from a set of

numerical examples is established. In [92], the fuzzy system can be built in a constructive way.

Starting from an initially simple system, the number of MFs in the input domain and the number of

rules are adapted in order to reduce the approximation error. A function approximation problem

can also be first converted into a pattern classification problem, and then solved by using a fuzzy

system [28], [105].

5. FUZZY AND NEURAL: A SYNERGY
While neural networks have strong learning capabilities at the numerical level, it is difficult for the

users to understand them at the logic level. Fuzzy logic, on the other hand, has a good capability

of interpretability and can also integrate expert's knowledge. The hybridization of both the

paradigms yields the capabilities of learning, good interpretation and incorporating prior

knowledge. The combination can be in different forms. The simplest form may be the concurrent

neuro-fuzzy model, where a fuzzy system and a neural network work separately. The output of

one system can be fed as the input of the other system. The cooperative neuro-fuzzy model

corresponds to the case that one system is used to adapt the parameters of the other system [38],

[94]. The hybrid neural-fuzzy model is the true synergy that captures the merits of both the

systems. It takes the form of either a fuzzy neural network or a neuro-fuzzy system. A hybrid

neural-fuzzy system does not use multiplication, addition, or the sigmoidal function, but uses

fuzzy logic operations such as 𝑡-norm and 𝑡-conorm.

A fuzzy neural network [84] is a neural network equipped with the capability of handling fuzzy

information, where the input signals, activation functions, weights, and/or the operators are based

on the fuzzy set theory. Thus, symbolic structure is incorporated. The network can be

represented in an equivalent rule-based format, where the premise is the concatenation of fuzzy

AND and OR logic, and the consequence is the network output. Two types of fuzzy neurons,

namely AND neuron and OR neuron, are defined. The NOT logic is integrated into the weights.

Weights always have values in the interval [0,1], and negative weight is achieved by using the

NOT operator. The weights of the fuzzy neural network can be interpreted as calibration factors of

the conditions and rules. A neuro-fuzzy system is a fuzzy system, whose parameters are learned

by a learning algorithm. It has a neural network architecture constructed from fuzzy reasoning,

and can always be interpreted as a system of fuzzy rules. Learning is used to adaptively adjust

the rules in the rule base, and to produce or optimize the MFs of a fuzzy system. Structured

knowledge is codified as fuzzy rules. Expert knowledge can increase learning speed and

estimation accuracy. Both fuzzy neural networks and neuro-fuzzy systems can be treated as

neural networks, where the units employ the 𝑡-norm or 𝑡-conorm operator instead of an activation

function. The hidden layers represent fuzzy rules. The line between the two hybrid models is

blurred, and we call both types of synergisms as neuro-fuzzy systems.

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 65

Neuro-fuzzy systems can be obtained by representing some of the parameters of a neural

network, such as the inputs, weights, outputs, and shift terms as continuous fuzzy numbers.

When only the input is fuzzy, it is a Type I neuro-fuzzy system. When everything except the input

is fuzzy, we get a Type II model. A type III model is defined as one where the inputs, weights, and

shift terms are all fuzzy. The functions realizing the inference process, such as 𝑡-norm and 𝑡-

conorm, are usually nondifferentiable. To utilize gradient-based algorithms, one has to select

differential functions for the inference functions. For nondifferentiable inference functions, training

can be performed by using EAs. The shape of the MFs, the number of fuzzy partitions, and rule

base can all be evolved by using EAs. The neuro-fuzzy method is superior to the neural network

method in terms of the convergence speed and compactness of the structure. Fundamentals in

neuro-fuzzy synergism for modeling and control have been reviewed in [51].

5.1 Interpretability

Interpretability is one major reason for using fuzzy systems. Interpretability helps to check the

plausibility of a system, leading to easy maintenance of the system. It can also be used to acquire

knowledge from a problem characterized by numerical examples. An improvement in

interpretability can enhance the performance of generalization when the data set is small. The

interpretability of a rule base is usually related to continuity, consistency and completeness [39].

Continuity guarantees that small variations of the input do not induce large variations in the output.

Consistency means that if two or more rules are simultaneously fired, their conclusions are

coherent. Completeness means that for any possible input vector, at least one rule is fired and

there is no inference breaking.

When neuro-fuzzy systems are used to model nonlinear functions described by training sets, the

approximation accuracy can be optimized by the learning procedure. However, since learning is

accuracy-oriented, it usually causes a reduction in the interpretability of the generated fuzzy

system. The loss of interpretability can be due to incompleteness of fuzzy partitions,

indistinguishability of fuzzy partitions, inconsistancy of fuzzy rules, too fuzzy or too crisp fuzzy

subsets, or incompactness of the fuzzy system [52]. To improve the interpretability of neuro-fuzzy

systems, one can add to the cost function, regularization terms that apply constraints on the

parameters of fuzzy MFs. For example, the order of the 𝐿 centers of the fuzzy subset 𝐴𝑗 (𝑥),

𝑗 = 1, … , 𝐿, should be specified and remain unchanged during learning. Similar MFs should be

merged to improve the distinguishability of fuzzy partitions and to reduce the number of fuzzy

subsets [96]. One can also reduce the number of free parameters in defining fuzzy subsets. To

increase the interpretability of the designed fuzzy system, the same linguistic term should be

represented by the same MF. This results in weight sharing [75], [52]. For the TSK model, one

practice for good interpretability is to keep the number of fuzzy subsets much smaller than 𝑁r, the

number of fuzzy rules, especially when 𝑁r is large.

6. NEURO-FUZZY MODELS
A typical architecture of a neuro-fuzzy system includes an input layer, an output layer, and

several hidden layers. The weights are fuzzy sets, and the neurons apply 𝑡-norm or 𝑡-conorm

operations. The hidden layers are usually used as rule layers. The layers before the rule layers

perform as premise layers, while those after perform as consequent layers. A well-known neuro-

fuzzy model is the ANFIS model [48]. We describe the ANFIS model in this section and also give

a brief survey of neuro-fuzzy models.

6.1 ANFIS Model

The ANFIS model [50], [48], [51], as shown in Fig. 7, has a five-layer (𝑛-𝐾-𝐾-𝐾-1) architecture,

and is a graphical representation of the TSK model. The functions of the various layers are given

below.

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 66

FIGURE 7: ANFIS: graphical representation of the TSK model. The symbol N in the circles denotes the

normalization operator, and 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝑛 𝑇 .

Layer 1 is the input layer with 𝑛 nodes. The weights between the first two layers, 𝑤𝑖𝑗 = 𝜇
𝐴𝑗

𝑖 (𝑥𝑖),

𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝐾, denotes membership values of the 𝑖th input (antecedent) of the 𝑗th rule,

where 𝐴𝑗
𝑖 corresponds to a partition of the space of 𝑥𝑖 , and 𝜇

𝐴𝑗
𝑖 (𝑥𝑖) is typically selected as a

generalized bell MF 𝜇
𝐴𝑗

𝑖 𝑥𝑖 = 𝜇(𝑥𝑖 ; 𝑐𝑖
𝑗
, 𝑎𝑖

𝑗
, 𝑏𝑖

𝑗
), where 𝑐𝑖

𝑗
, 𝑎𝑖

𝑗
, and 𝑏𝑖

𝑗
 are referred to as premise

parameters. Layer 2 has 𝐾 fuzzy neurons with the product 𝑡-norm as the aggregation operator.

Each node corresponds to a rule, and the output of the 𝑗th neuron determines the degree of

fulfillment of the 𝑗th rule

𝑜𝑗
(2)

= 𝜇
𝐴𝑗

𝑖 𝑥𝑖 (34)

𝑛

𝑖=1

for 𝑗 = 1, … , 𝐾 . Each neuron in layer 3 performs normalization, and the outputs are called

normalized firing strengths

𝑜𝑗
(3)

=
𝑜𝑗

(2)

 𝑜𝑘
(2)𝐾

𝑘=1

 (35)

for 𝑗 = 1, … , 𝐾. The output of each node in layer 4 is defined by

𝑜𝑗
(4)

= 𝑜𝑗
(3)

𝑓𝑗 (𝐱) (36)

for 𝑗 = 1, … , 𝐾. Parameters in 𝑓𝑗 (𝐱) are referred to as consequent parameters. The outputs of

layer 4 are summed and the output of the network gives the TSK model (30)

𝑜(5) = 𝑜𝑗
(4)

𝐾

𝑗 =1

. (37)

In the ANFIS model, functions used at all the nodes are differentiable, thus the BP algorithm can

be used to learn the premise parameters by using a sample set of size 𝑁 , {(𝐱𝑡 , 𝑦𝑡)} . The

effectiveness of the model is dependent on the MFs used. The TSK fuzzy rules are employed in

the ANFIS model

R𝑖: IF 𝐱 is 𝐴𝑖, THEN 𝑦 = 𝑓𝑖 𝐱 = 𝑎𝑖 ,𝑗 𝑥𝑗 + 𝑎𝑖 ,0
𝑛
𝑗 =1

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 67

for 𝑖 = 1, … , 𝐾 , where 𝐴𝑖 = 𝐴𝑖
1, 𝐴𝑖

2, … , 𝐴𝑖
𝑛 are fuzzy sets and 𝑎𝑖 ,𝑗 , 𝑗 = 0, 1, … , 𝑛 , are consequent

parameters. The output of the network at time 𝑡 is thus given by

𝑦 𝑡 =
 𝜇𝐴𝑖

 𝐱𝑡 𝑓𝑖(𝐱𝑡)𝐾
𝑖=1

 𝜇𝐴𝑖
 𝐱𝑡

𝐾
𝑖=1

, (38)

where 𝜇𝐴𝑖
 𝐱𝑡 = 𝜇

𝐴𝑗
𝑖 (𝑥𝑡 ,𝑗)𝑛

𝑗=1 . Accordingly, the error measure at time 𝑡 is defined by 𝐸𝑡 =

1

2
 𝑦 𝑡 − 𝑦𝑡

2.

After the rule base is specified, the ANFIS adjusts only the MFs of the antecedents and the

consequent parameters. The BP algorithm can be used to train both the premise and consequent

parameters. A more efficient procedure is to learn the premise parameters by the BP, but to learn

the linear consequent parameters by the RLS method [48]. The learning rate 𝜂 can be adaptively

adjusted by some heuristics. It is reported in [48] that this hybrid learning method provides better

results than the MLP trained by the BP method and the cascade-correlation network [34]. In [49],

the Levenberg-Marquardt (LM) method [29] is used for ANFIS training. Compared to the hybrid

method, the LM method achieves a better precision, but the interpretability of the final MFs is

quite weak. In [18], the RProp [89] and the RLS methods are used to learn the premise

parameters and the consequent parameters, respectively. The ANFIS model has been

generalized for classification by employing parameterized 𝑡-norms [101], where tree partitioning is

used for structure identification and the Kalman filtering method for parameter learning.

The ANFIS is attractive for applications in view of its network structure and the standard learning

algorithm. Training of the ANFIS follows the spirit of the minimal disturbance principle and is thus

more efficient than the MLP [51]. However, the ANFIS is computationally expensive due to the

curse-of-dimensionality problem arising from grid partitioning. Tree or scattering partitioning can

resolve the curse of dimensionality, but leads to a reduction in the interpretability of the generated

rules. Constraints on MFs and initialization using prior knowledge cannot be provided to the

ANFIS model due to the learning procedure. The learning results may be difficult to interpret.

Thus, the ANFIS model is suitable for applications, where performance is more important than

interpretation. In order to preserve the plausibility of the ANFIS, one can add some regularization

terms to the cost function so that some constraints on the interpretability are considered [51].

The ANFIS has been extended to the coactive ANFIS [73] and to the generalized ANFIS [5]. The

coactive ANFIS [73] is a generalization of the ANFIS by introducing nonlinearity into the TSK

rules. The generalized ANFIS [5] is based on a generalization of the TSK model and a

generalized Gaussian RBFN. The generalized fuzzy model is trained by using the generalized

RBFN model, based on the functional equivalence between the two models. The sigmoid-ANFIS

[125] employs only sigmoidal MFs and adopts the interactive-or operator [7] as its fuzzy

connectives. The gradient-descent algorithm can also be directly applied to the TSK model

without representing it in a network structure [77]. The unfolding-in-time [119] is a method to

transform an RNN into an FNN so that the BP algorithm can be used. The ANFIS-unfolded-in-

time [99] is designed for prediction of time series data, and achieves much smaller error in the

ANFIS-unfolded-in-time compared to that in the ANFIS.

6.2 Generic Fuzzy Perceptron

The generic fuzzy perceptron (GFP) [75] has a structure similar to that of the three-layer MLP.

The network inputs and the weights are modeled as fuzzy sets, and 𝑡-norm or 𝑡-conorm is used

as the activation function at each unit. The hidden layer acts as the rule layer. The output units

usually use a defuzzufication function. The GFP can interpret its structure in the form of linguistic

rules and the structure of the GFP can be treated as a linguistic rule base, where the weights

between the input and hidden (rule) layers are called fuzzy antecedent weights and the weights

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 68

between the hidden (rule) and output layers fuzzy consequent weights. The GFP model is based

on the Mamdani model.

The NEFCON [76], [75], [78], NEFCLASS [75], and NEFPROX [75] models are three neuro-fuzzy

models based on the GFP model, which are used for control, classification and approximation,

respectively. Due to the use of nondifferentiable 𝑡 -norm and 𝑡 -conorm, the gradient-descent

method cannot be applied. A set of linguistic rules are used for describing the performance of the

models. This knowledge-based fuzzy error is independent of the range of the output value.

Learning algorithms for all these models are derived from the fuzzy error using simple heuristics.

Initial fuzzy partitions are needed to be specified for each input variable. Some connections that

have identical linguistic values are forced to have the same weights so as to keep the

interpretability. Prior knowledge can be integrated in the form of fuzzy rules to initialize the neuro-

fuzzy systems, and the remaining rules are obtained by learning.

The NEFCON has a single output node, and is used for control. A reinforcement learning

algorithm is used for online learning. The NEFCLASS and the NEFPROX can learn rules by using

supervised learning instead of reinforcement learning. Compared to neural networks, the

NEFCLASS uses a much simple learning strategy, where no clustering is involved in finding the

rules. The NEFCLASS does not use MFs in the rules' consequents. The NETPROX is similar to

the NEFCON and the NEFCLASS, but is more general. If there is no prior knowledge, a

NEFPROX system can be started with no hidden unit and rules can be incrementally learned. If

the learning algorithm creates too many rules, only the best rules are kept by evaluating individual

rule errors. Each rule represents a number of samples of the unknown function in the form of

fuzzy sample. Parameter learning is used to compensate for the error caused by rule removing.

The NETPROX is more important for function approximation. An empirical performance

comparison between the ANFIS and the NETPROX has been made in [75]. The NEFPROX is an

order-of-magnitude faster than the ANFIS model of [48], but with a higher approximation error.

Interpretation of the learning result is difficult for both the ANFIS and the NEFPROX: the ANFIS

represents a TSK system, while the NEFPROX represents a Mamdani system with too many

rules. To increase the interpretability of the NEFPROX, pruning strategies can be employed to

reduce the number of rules.

6.3 Fuzzy Clustering

Fuzzy clustering is one of the most successful applications of neuro-fuzzy synergism, where

fuzzy logic is incorporated into competitive learning-based clustering neural networks such as the

Kohonen network and the ART models. In clustering analysis, the discreteness of each cluster

endows conventional clustering algorithms with analytical and algorithmic intractabilities.

Partitioning the dataset in a fuzzy manner helps to circumvent such difficulties. Each cluster is

considered as a fuzzy set, and each feature vector may be assigned to multiple clusters with

some degree of certainty measured by the membership function taking values in the interval [0,1].
Thus, fuzzy clustering helps to find natural vague boundaries in data. The most well-known fuzzy

clustering algorithm is the fuzzy 𝐶-means algorithm [8]. Other fuzzy clustering algorithms can be

based on the Kohonen network and learning vector quantization, on the ART or the ARTMAP

models, or on the Hopfield model. A comprehensive survey on various clustering and fuzzy

clustering algorithms is given in [29], [30].

6.4 Other Neuro-Fuzzy Models

Neuro-fuzzy systems can employ the topologies of the layered FNN architecture [40], [53], [23],

[26], the RBFN model [2], [120], [79], the self-organizing map (SOM) model [111], and the RNN

architecture [65], [66]. Neuro-fuzzy models are mainly used for function approximation. They

typically have a layered FNN architecture, are based on TSK-type FISs, and are trained by using

the gradient-descent method [82], [46], [40], [64], [54], [67], [108]. Gradient descent in this case is

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 69

sometimes termed as the fuzzy BP algorithm. Conjugate gradient (CG) algorithms are also used

for training neuro-fuzzy systems [67]. Based on the fuzzification of the linear autoassociative

neural networks, the fuzzy PCA [26] can extract a number of relevant features from high-

dimensional fuzzy data.

Hybrid neural FIS (HyFIS) [54] is a five-layer neuro-fuzzy model based on the Mamdani FIS.

Expert knowledge can be used for the initialization of these MFs. The HyFIS first extracts fuzzy

rules from data by using the LUT technique [115]. The gradient-descent method is then applied to

tune the MFs of input/output linguistic variables and the network weights by minimizing the error

function. The HyFIS model is comparable in performance with the ANFIS [48].

Fuzzy min-max neural networks are a class of neuro-fuzzy models using min-max hyperboxes for

clustering, classification, and regression [97], [98], [37], [102], [90]. The max-min fuzzy Hopfield

network [66] is a fuzzy RNN for fuzzy associative memory (FAM). The manipulations of the

hyperboxes involve mainly comparison, addition and subtraction operations, thus learning is

extremely efficient.

Many neuro-fuzzy models employ the architecture of the RBFN [116], [60], [71], [22], [19]. These

models use are based on the TSK model, and are a universal approximator. The FBFN can

readily adopt various learning algorithms already developed for the RBFN.

Adaptive parsimonious neuro-fuzzy systems can be achieved by using constructive approach and

a simultaneous adaptation of space partitioning and fuzzy rule parameters [22], [120]. The

dynamic fuzzy neural network (DFNN) [120], [33] is an online implementation of the TSK system

based on an extended RBFN and its learning algorithm. Similar to the ANFIS architecture, the

self-organizing fuzzy neural network (SOFNN) [62] has a five-layer fuzzy neural network

architecture. It is an online implementation of a TSK-type model. The SOFNN is based on

neurons with an ellipsoidal basis function, and the neurons are added or pruned dynamically in

the learning process. Similar MFs can be combined into one new MF. The SOFNN algorithm is

superior to the DFNN in time complexity [120].

7. FUZZY NEURAL CIRCUITS
Fuzzy systems can be easily implemented in the digital form, which can be either general-

purpose microcontrollers running fuzzy inference and defuzzification programs, or dedicated

fuzzy coprocessors, or RISC processors with specialized fuzzy support, or fuzzy ASICs. The pros

and cons of various digital fuzzy hardware implementation strategies are reviewed in [25].

A common approach to general-purpose fuzzy hardware is to use a software design tool such as

the Motorola-Aptronix fuzzy inference development language and Togai InfraLogic's MicroFPL

system to generate the program code for a target microcontroller [44]. This approach leads to

rapid design and testing, but has a low performance. On the other hand, dedicated fuzzy

processors and ASICs have physical and performance characteristics that are closely matched to

an application, and its performance would be optimized to suit a given problem at the price of

high design and test costs. Fuzzy coprocessors work in conjunction with a host processor. They

are general-purpose hardware, and thus have a lower performance compared to a custom fuzzy

hardware. A number of commercially available fuzzy coprocessors are listed in [95]. Some issues

arising from the implementation of such coprocessors are discussed in [83]. RISC processors

with specialized fuzzy support are also available [25], [95]. A fuzzy-specific extension to the

instruction set is defined and implemented using hardware/software codesign techniques. In [44],

the tool TROUT was created to automate fuzzy neural ASIC design. The TROUT produces a

specification for small, application-specific circuits called smart parts. Each smart part is

customized to a single function, and can be packaged in a variety of ways. The model library of

the TROUT includes fuzzy or neural models for implementation as circuits. To synthesize a circuit,

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 70

the TROUT takes as its input an application data set, optionally augmented with user-supplied

hints. It delivers, as output, technology-independent VHDL code for a circuit of the fuzzy or neural

model.

There are also many analog [61], [24], [58], and mixed-signal [6], [10] fuzzy circuits. Analog

circuits usually operate in the current mode and are fabricated using the CMOS technology, and

this leads to the advantages of high speed, small-circuit area, high performance, and low power

dissipation. A design methodology for fuzzy ASICs and general-purpose fuzzy processors is

given in [58], based on the LR (left-right) fuzzy implication cells and the LR fuzzy arithmetic cells.

In [6], [10], the fabrication of mixed-signal CMOS chips for fuzzy controllers is considered; in

these circuits, the computing power is provided by the analog part while the digital part is used for

programmability.

An overview of the existing hardware implementations of neural and fuzzy systems is made in

[88], where limitations, advantages, and bottlenecks of analog, digital, pulse stream (spiking), and

other techniques are discussed. Hardware/software codesign allows a fast design of complex

systems with the highest performance-cost ratio by exploiting the best from both the hardware

and software techniques. A survey of digital fuzzy logic controllers is given in [83].

8. COMPUTER SIMULATION: IRIS CLASSIFICATION
We now use the ANFIS model to solve the Iris classification problem. In the Iris data set, 150

patterns are classified into 3 classes. Each pattern has four numeric properties. The ANFIS

model is available in the MATLAB Fuzzy toolbox. An initial TSK FIS is first generated by using

grid partitioning. Since the ranges for 𝑥1, 𝑥2, and 𝑥3 are very small, they each are partitioned into

2 subsets. The Gaussian MF is selected.

We use the ANFIS model to solve the IRIS classification problem. For the 120 patterns, the

ranges of the input and output variables are 𝑥1 ∈ [4.3, 7.9] , 𝑥2 ∈ [2.0, 4.4] , 𝑥3 ∈ [1.0, 6.9] , 𝑥4 ∈

[0.1, 2.5], 𝑦 ∈ [1, 3].

An initial TSK FIS is first generated by using grid partitioning. The variables each are partitioned

into 3 subsets. The Gaussian MF is selected. The maximum number of epochs is 100. The fuzzy

partitioning for the input space as well as the training error is illustrated in Fig. 8. The

classification error rate is 0. The ANFIS model generates 193 nodes, 405 linear parameters, 24

nonlinear parameters, and 81 fuzzy rules. The training time is 53.70 s.

(a) (b)

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 71

(c)

FIGURE 8: IRIS classification: grid partitioning of the input space. (a) The initialized MFs.

(b) The learned MFs. (c) The training RMS error.

We further solve the IRIS problem using the ANFIS with scatter partitioning. Clustering the input

space is a desired method for generating fuzzy rules. This can significantly reduce the total

number of fuzzy rules, hence offer a better generalization capability. Subtractive clustering is

used for rule extraction so as to find an initial FIS for ANFIS training. Radius 𝑟 specifies the range

of influence of the cluster center for each input and output dimension. The training error can be

controlled by adjusting 𝑟 , 𝑟 ∈ [0,1] . Specifying a smaller cluster radius usually yields more,

smaller clusters in the data, and hence more rules. The training runs for 200 epochs.

Since the range of the input space is very small when compared with that of the output space, we

select 𝑟 = 0.8 for all the input dimensions and the output space. The training time is 2.69 s. After

training the RMS error is 0.1123 . The ANFIS model has 37 nodes, 15 linear parameters, 24

nonlinear parameters, and 3 fuzzy rules. The classification error is 1.33%. The scatter partitioning

is shown in Fig. 9a, b, and the training and testing errors are illustrated in Fig. 9c. The generated

fuzzy rules are shown in Fig. 9d.

(a) (b)

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 72

(c) (d)

FIGURE 9: IRIS classification: scatter partitioning of the input space. (a) The initialized MFs. (b) The learned

MFs. (c) The training RMS error. (d) the generated fuzzy rules. Note that some MFs coincide in the figure.

𝐫 = [0.8, 0.8, 0.8, 0.8, 0.8].

In order to further increase the training accuracy, we can select 𝑟 = 0.3 for all the input

dimensions and the output space to get a finer clustering. Then we can get more rules. The

ANFIS model has 107 nodes, 50 linear parameters, 80 nonlinear parameters, and 19 fuzzy rules.

The training time is 16.2624 s for 1000 epochs. The result is shown in Fig. 10.

(a) (b)

(c) (d)

FIGURE 10: IRIS classification: scatter partitioning of the input space. (a) The initialized MFs.

(b) The learned MFs. (c) The training RMS error. (d) the generated fuzzy rules.

Note that some MFs coincide in the figure. 𝐫 = [0.9, 0.9, 0.9, 0.9, 0.1].

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 73

For the 10 rules generated, each rule has its own MF for each input variable. For example, the 𝑖th

rule is given by

R𝑖: IF 𝑥1 is 𝜇𝑖,1 AND 𝑥2 is 𝜇𝑖 ,2 AND 𝑥3 is 𝜇𝑖,3 AND 𝑥4 is 𝜇𝑖 ,4 THEN 𝑦 is 𝜇𝑖 ,𝑦

where 𝜇𝑖 ,𝑘 , 𝑘 = 1, … ,4, and 𝜇𝑖,𝑦 are MFs. The fuzzy rules for the DoA estimation using the ANFIS

with scattering partitioning and the fuzzy-inference process from inputs to outputs. Each row of

plots corresponds to one rule, and each column corresponds to either an input variable 𝑥𝑖 or the

output variable 𝑦.

9. SUMMARY
In this paper, we give a systematic introduction to concepts in fuzzy sets and fuzzy logic as well

as neuro-fuzzy systems. Fuzzy logic provides an effective tools for modelling uncertainty in

human reasoning. A fuzzy inference system represents knowledge in IF-THEN rules, and

implement fuzzy reasoning. Like neural network models, some fuzzy inference systems have the

universal approximation capability. Fuzzy logic is an alternative to neural networks for the

purpose of classification and function approximation and for most applications where neural

networks are applicable. Neuro-fuzzy systems combine the advantages of both computational

paradigms, and are gaining more popularity.

10. REFERENCES
1. S. Abe, M.S. Lan. ―Fuzzy rules extraction directly from numerical data for function

approximation‖. IEEE Trans. Syst. Man Cybern., 25(1), pp. 119–129, 1995.

2. D.F. Akhmetov, Y. Dote, S.J. Ovaska. ―Fuzzy neural network with general parameter

adaptation for modeling of nonlinear time-series‖. IEEE Trans. Neural Netw., 12(1), pp. 148–

152, 2001.

3. J.S. Albus. ―A new approach to manipulator control: Cerebellar model articulation control

(CMAC)‖. Trans. ASME J. Dyna. Syst. Meas. Contr., 97, pp. 220–227, 1975.

4. P.P. Angelov, D.P. Filev. ―An approach to online identification of Takagi-Sugeno fuzzy models‖.

IEEE Trans. Syst. Man Cybern. B, 34(1), 484–498, 2004.

5. M.F. Azeem, M. Hanmandlu, N. Ahmad. ―Generalization of adaptive neuro-fuzzy inference

systems‖. IEEE Trans. Neural Netw., 11(6), pp. 1332–1346, 2000.

6. I. Baturone, S. Sanchez-Solano, A. Barriga, J.L. Huertas. ―Implementation of CMOS fuzzy

controllers as mixed-signal integrated circuits‖. IEEE Trans. Fuzzy Syst., 5(1), pp. 1–19,

1997.

7. J.M. Benitez, J.L. Castro, I. Requena. ―Are artificial neural networks black boxes?‖. IEEE Trans.

Neural Netw., 8(5), pp. 1156–1164, 1997.

8. J. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms, New York: Plenum

Press, 1981.

9. A. Blanco, M. Delgado, M.C. Pegalajar. ―Extracting rules from a (fuzzy/crisp) recurrent neural

network using a self-organizing map‖. Int. J. Intell. Syst., 15(7), pp. 595–621, 2000.

10. S. Bouras, M. Kotronakis, K. Suyama, Y. Tsividis. ―Mixed analog-digital fuzzy logic controller

with continuous-amplitude fuzzy inferences and defuzzification‖. IEEE Trans. Fuzzy Syst.,

6(2), pp. 205–215, 1998.

11. J.J. Buckley. ―Fuzzy complex numbers‖. Fuzzy Sets Syst., 33, pp. 333–345, 1989.

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 74

12. J.J. Buckley. ―Sugeno type controllers are universal controllers‖. Fuzzy Sets Syst., 53, pp.

299–304, 1993.

13. J.J. Buckley, Y. Hayashi, E. Czogala. ―On the equivalence of neural nets and fuzzy expert

systems‖. Fuzzy Sets Syst., 53, pp. 129–134, 1993.

14. J.J. Buckley, E. Eslami. An Introduction to Fuzzy Logic and Fuzzy Sets, Heidelberg: Physica-

Verlag, 2002.

15. J.L. Castro. ―Fuzzy logic controllers are universal approximators‖. IEEE Trans Syst Man

Cybern., 25(4), pp. 629–635, 1995.

16. J.L. Castro, C.J. Mantas, J. Benitez. ―Interpretation of artificial neural networks by means of

fuzzy rules‖. IEEE Trans. Neural Netw., 13(1), pp. 101–116, 2002.

17. A. Cechin, U. Epperlein, B. Koppenhoefer, W. Rosenstiel. ―The extraction of Sugeno fuzzy

rules from neural networks‖, in Proc. Euro. Symp. Artif. Neural Netw., Bruges, Belgium, 1996,

pp. 49–54.

18. M.S. Chen, R.J. Liou. ―An efficient learning method of fuzzy inference system‖, in Proc. IEEE

Int. Fuzzy Syst. Conf., Seoul, Korea, 1999, pp. 634–638.

19. C.B. Cheng, E.S. Lee. ―Fuzzy regression with radial basis function network‖. Fuzzy Sets Syst.,

119, pp. 291–301, 2001.

20. S. Chiu. ―Fuzzy model identification based on cluster estimation‖. J. Intell. & Fuzzy Syst., 2(3),

pp. 267–278, 1994.

21. S.L. Chiu. ―A cluster estimation method with extension to fuzzy model identification‖, in Proc.

IEEE Int. Conf. Fuzzy Syst., Orlando, FL, 2, 1994, pp. 1240–1245.

22. K.B. Cho, B.H. Wang. ―Radial basis function based adaptive fuzzy systems and their

applications to system identification and prediction‖. Fuzzy Sets Syst., 83, pp. 325–339, 1996.

23. M.Y. Chow, S. Altrug, H.J. Trussell. ―Heuristic constraints enforcement for training of and

knowledge extraction from a fuzzy/neural architecture—Part I: Foundations‖. IEEE Trans.

Fuzzy Syst., 7(2), pp. 143–150, 1999.

24. U. Cilingiroglu, B. Pamir, Z.S. Gunay, F. Dulger. ―Sampled-analog implementation of

application-specific fuzzy controllers‖. IEEE Trans. Fuzzy Syst., 5(3), pp. 431–442, 1997.

25. A. Costa, A. De Gloria, P. Farabosch, A. Pagni, G. Rizzotto. ―Hardware solutions of fuzzy

control‖. Proc. IEEE, 83(3), pp. 422–434, 1995.

26. T. Denoeux, M.H. Masson. ―Principal component analysis of fuzzy data using autoassociative

neural networks‖. IEEE Trans. Fuzzy Syst., 12(3), pp. 336–349, 2004.

27. S. Dick. ―Toward complex fuzzy logic‖. IEEE Trans. Fuzzy Syst., 13(3), pp. 405–414, 2005.

28. J.A. Dickerson, B. Kosko. ―Fuzzy function learning with covariance ellipsoids‖, in Proc. IEEE

Int. Conf. Neural Netw., San Francisco, 3, 1993, pp. 1162–1167.

29. K.-L. Du, M.N.S. Swamy. Neural Networks in a Softcomputing Framework, London: Springer,

2006.

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 75

30. K.-L. Du. ―Clustering: a neural network approach‖. Neural Netw., 23(1), pp. 89–107, 2010.

31. C. Dualibe, M. Verleysen, P.G.A. Jespers. Design of Analog Fuzzy Logic Controllers in

CMOS Technology, Netherlands: Kluwer, 2003.

32. W. Duch. ―Uncertainty of data, fuzzy membership functions, and multilayer perceptrons‖.

IEEE Trans. Neural Netw., 16(1), pp. 10–23, 2005.

33. M.J. Er, S. Wu. ―A fast learning algorithm for parsimonious fuzzy neural systems‖. Fuzzy Sets

Syst., 126, pp. 337–351, 2002.

34. S.E. Fahlman, C. Lebiere. ―The cascade-correlation learning architecture‖, in Advances in

Neural Information Processing Systems 2, D.S. Touretzky, Ed. San Mateo, CA: Morgan

Kaufmann, 1990, pp. 524–532.

35. G. Ferrari-Trecate, R. Rovatti. ―Fuzzy systems with overlapping Gaussian concepts:

Approximation properties in Sobolev norms‖. Fuzzy Sets Syst., 130, pp. 137–145, 2002.

36. M. Figueiredo, F. Gomides, A. Rocha, R. Yager. ―Comparison of Yager’s level set method for

fuzzy logic control with Mamdani and Larsen methods‖. IEEE Trans. Fuzzy Syst., 2, pp. 156–

159, 1993.

37. B. Gabrays, A. Bargiela. ―General fuzzy min-max neural networks for clustering and

classification‖. IEEE Trans. Neural Netw., 11(3), pp. 769–783, 2000.

38. S.I. Gallant. ―Connectionist expert systems‖. Commun. of ACM, 31(2), pp. 152–169, 1988.

39. S. Guillaume. ―Designing fuzzy inference systems from data: An interpretability-oriented

review‖. IEEE Trans. Fuzzy Syst., 9(3), pp. 426–443, 2001.

40. Y. Hayashi, J.J. Buckley, E. Czogala. ―Fuzzy neural network with fuzzy signals and weights‖.

Int. J. Intell. Syst., 8(4), pp. 527–537, 1993.

41. P. Holmblad, J. Ostergaard. ―Control of a cement kiln by fuzzy logic‖, in Fuzzy Information

and Decision Processes, M.M. Gupta, E. Sanchez, Eds. Amsterdam: North-Holland, 1982,

pp. 389–399.

42. T. Hong, C. Lee. ―Induction of fuzzy rules and membership functions from training examples‖.

Fuzzy Sets Syst., 84, pp. 33–37, 1996.

43. K.J. Hunt, R. Haas, R. Murray-Smith. ―Extending the functional equivalence of radial basis

function networks and fuzzy inference systems‖. IEEE Trans. Neural Netw., 7(3), pp. 776–

781, 1996.

44. J.F. Hurdle. ―The synthesis of compact fuzzy neural circuits‖. IEEE Trans. Fuzzy Syst., 5(1),

pp. 44–55, 1997.

45. M. Ishikawa. ―Rule extraction by successive regularization‖. Neural Netw., 13(10), pp. 1171–

1183, 2000.

46. H. Ishibuchi, R. Fujioka, H. Tanaka. ―Neural networks that learn from fuzzy IF-THEN rules‖.

IEEE Trans. Fuzzy Syst., 1, pp. 85–97, 1993.

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 76

47. H. Jacobsson. ―Rule extraction from recurrent neural networks: A taxonomy and review‖.

Neural Comput., 17(6), pp. 1223–1263, 2005.

48. J.S.R. Jang. ―ANFIS: Adaptive-network-based fuzzy inference systems‖. IEEE Trans, Syst,

Man Cybern., 23(3), pp. 665–685, 1993.

49. J.S.R. Jang, E. Mizutani. ―Levenberg-Marquardt method for ANFIS learning‖, in Proc. Biennial

Conf. North Amer. Fuzzy Inf. Process. Soc. (NAFIPS), Berkeley, CA, 1996, pp. 87–91.

50. J.S.R. Jang, C.I. Sun. ―Functional equivalence between radial basis function Networks and

fuzzy inference systems‖. IEEE Trans. Neural Netw., 4(1), pp. 156–159, 1993.

51. J.S.R. Jang, C.I. Sun. ―Neuro-fuzzy modeling and control‖. Proc. IEEE, 83(3), pp. 378–406,

1995.

52. Y. Jin. ―Advanced fuzzy systems design and applications‖. Heidelberg: Physica-Verlag, 2003.

53. C.F. Juang, C.T. Lin. ―An on-line self-constructing neural fuzzy inference network and its

application‖. IEEE Trans. Fuzzy Syst., 6(1), pp. 12–32, 1998.

54. J. Kim, N. Kasabov. ―HyFIS: Adaptive neuro-fuzzy inference systems and their application to

nonlinear dynamical systems‖. Neural Netw., 12, pp. 1301–1319, 1999.

55. B. Kosko. ―Fuzzy system as universal approximators‖, in Proc. IEEE Int. Conf. Fuzzy Syst.,

San Diego, CA, 1992, pp. 1153–1162.

56. B. Kosko. Fuzzy engineering. Prentice Hall, Englewood Cliffs, 1997.

57. V. Kreinovich, H.T. Nguyen, Y. Yam. ―Fuzzy systems are universal approximators for a

smooth function and its derivatives‖. Int. J. Intell. Syst., 15, pp. 565–574, 2000.

58. Y.H. Kuo, C.L. Chen. ―Generic LR fuzzy cells for fuzzy hardware synthesis‖. IEEE Trans.

Fuzzy syst., 6(2), pp. 266–285, 1998.

59. R. Langari, L. Wang, J. Yen. ―Radial basis function networks, regression weights, and the

expectation-maximization algorithm‖. IEEE Trans. Syst. Man Cybern. A, 27(5), 613–623,

1997.

60. C.W. Lee, Y.C. Shin. ―Construction of fuzzy systems using least-squares method and genetic

algorithm‖. Fuzzy Sets Syst., 137, pp. 297–323, 2003.

61. L. Lemaitre, M. Patyra, D. Mlynek. ―Analysis and design of CMOS fuzzy logic controller in

current mode‖. IEEE J. Solid-State Circ., 29(3), pp. 317–322, 1994.

62. G. Leng, G. Prasad, T.M. McGinnity. ―An on-line algorithm for creating self-organizing fuzzy

neural networks‖. Neural Netw., 17, pp. 1477–1493, 2004.

63. H.X. Li, C.L.P. Chen. ―The equivalence between fuzzy logic systems and feedforward neural

networks‖. IEEE Trans. Neural Netw., 11(2), pp. 356–365, 2000.

64. C.T. Lin, Y.C. Lu. ―A neural fuzzy system with fuzzy supervised learning‖. IEEE Trans. Syst.

Man Cybern. B, 26(5), pp. 744–763, 1996.

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 77

65. F.J. Lin, R.J. Wai. ―Hybrid control using recurrent fuzzy neural network for linear-induction

motor servo drive‖. IEEE Trans. Fuzzy Syst., 9(1), pp. 102–115, 2001.

66. P. Liu. ―Max-min fuzzy Hopfield neural networks and an efficient learning algorithm‖. Fuzzy

Sets Syst., 112, pp. 41–49, 2000.

67. P. Liu, H. Li. ―Efficient learning algorithms for three-layer regular feedforward fuzzy neural

networks‖. IEEE Trans. Neural Netw., 15(3), 545–558, 2004.

68. P. Liu, H. Li. ―Hierarchical TS fuzzy system and its universal approximation‖. Inf. Sci., 169, pp.

279–303, 2005.

69. E.H. Mamdani. ―Application of fuzzy algorithms for control of a simple dynamic plant‖. Proc.

IEEE, 12(1), pp. 1585–1588, 1974.

70. K.J. McGarry, J. MacIntyre. ―Knowledge extraction and insertion from radial basis function

networks‖, in IEE Colloq. Applied Stat. Pattern Recogn, Birmingham, UK, 1999, pp. 15/1–

15/6

71. S. Mitra, J. Basak. ―FRBF: A fuzzy radial basis function network‖. Neural Comput. & Appl., 10,

pp. 244–252, 2001.

72. S. Mitra, Y. Hayashi. ―Neuro-fuzzy rule generation: Survey in soft computing framework‖.

IEEE Trans. Neural Netw., 11(3), pp. 748–768, 2000.

73. E. Mizutani, J.S. Jang. ―Coactive neural fuzzy modeling‖, in Proc. IEEE Int. Conf. Neural

Netw., Perth, Australia, 1995, vol. 2, pp. 760–765.

74. D. Moses, O. Degani, H.N. Teodorescu, M. Friedman, A. Kandel. ―Linguistic coordinate

transformations for complex fuzzy sets‖, in Proc. IEEE Int. Conf. Fuzzy Syst., Seoul, Korea,

1999, 3, pp. 1340–1345.

75. D. Nauck, F. Klawonn, R. Kruse. Foundations of Neuro-fuzzy Systems. New York: Wiley,

1997.

76. D. Nauck, R. Kruse. ―A neural fuzzy controller learning by fuzzy error propagation‖, in Proc.

Worksh. North Amer. Fuzzy Inf. Process. Soc. (NAFIPS92), Puerto Vallarta, Mexico, 1992,

pp. 388–397.

77. H. Nomura, I. Hayashi, N. Wakami. ―A learning method of fuzzy inference rules by descent

method‖, in Proc. IEEE Int. Conf. Fuzzy Syst., San Diego, CA, 1992, pp. 203–210.

78. A. Nurnberger, D. Nauck, R. Kruse. ―Neuro-fuzzy control based on the NEFCON-model:

Recent developments‖. Soft Comput., 2, pp. 168–182, 1999.

79. S.K. Oh, W. Pedrycz, H.S. Park. ―Multi-layer hybrid fuzzy polynomial neural networks: A

design in the framework of computational intelligence‖. Neurocomput., 64, pp. 397–431,

2005.

80. C.W. Omlin, C.L. Giles. ―Extraction of rules from discrete-time recurrent neural networks‖.

Neural Netw., 9, pp. 41–52, 1996.

81. C.W. Omlin, K.K. Thornber, C.L. Giles. ―Fuzzy finite-state automata can be deterministically

encoded into recurrent neural networks‖. IEEE Trans. Fuzzy Syst., 6, pp. 76–89, 1998.

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 78

82. S.K. Pal, S. Mitra. ―Multilayer perceptron, fuzzy sets, and classification‖. IEEE Trans. Neural

Netw., 3(5), pp. 683–697, 1992.

83. M.J. Patyra, J.L. Grantner, K. Koster. ―Digital fuzzy logic controller: Design and

implementation‖. IEEE Trans. Fuzzy Syst., 4(4), pp. 439–459, 1996.

84. W. Pedrycz, A.F. Rocha. ―Fuzzy-set based models of neurons and knowledge-based

networks‖. IEEE Trans. Fuzzy Syst., 1(4), pp. 254–266, 1993.

85. G.V.S. Raju, J. Zhou, R.A. Kisner. ―Hierarchical fuzzy control‖. Int. J. Contr., 54(5), pp. 1201–

1216, 1991.

86. D. Ramot, M. Friedman, G. Langholz, A. Kandel. ―Complex fuzzy logic‖. IEEE Trans. Fuzzy

Syst., 11(4), pp. 450–461, 2003.

87. D. Ramot, R. Milo, M. Friedman, A. Kandel. ―Complex fuzzy sets‖. IEEE Trans. Fuzzy Syst.,

10(2), pp. 171–186, 2002.

88. L.M. Reyneri. ―Implementation issues of neuro-fuzzy hardware: Going toward HW/SW

codesign‖. IEEE Trans. Neural Netw., 14(1), pp. 176–194, 2003.

89. M. Riedmiller, H. Braun. ―A direct adaptive method for faster backpropagation learning: the

RPROP algorithm‖, in Proc. IEEE Int. Conf. Neural Netw., San Francisco, CA, 1993, pp.

586–591.

90. A. Rizzi, M. Panella, F.M.F. Mascioli. ―Adaptive resolution min-max classifiers‖. IEEE Trans.

Neural Netw., 13(2), pp. 402–414, 2002.

91. I. Rojas, H. Pomares, J.L. Bernier, J. Ortega et al. ―Time series analysis using normalized

PG-RBF network with regression weights‖. Neurocomput., 42, pp. 267–285, 2002.

92. I. Rojas, H. Pomares, J. Ortega, A. Prieto. ―Self-organized fuzzy system generation from

training examples‖. IEEE Trans. Fuzzy Syst., 8(1), pp. 23–36, 2000.

93. M. Russo. ―Fugenesys—A fuzzy genetic neural system for fuzzy modeling‖. IEEE Trans.

Fuzzy Syst., 6(3), pp. 373–388, 1998.

94. K. Saito, R. Nakano. ―Rule extraction from facts and neural networks‖, in Proc. Int. Neural

Netw. Conf., Paris, France, pp. 379–382. Kluwer, Dordrecht, the Netherland, 1990.

95. V. Salapura. ―A fuzzy RISC processor‖. IEEE Trans. Fuzzy Syst., 8(6), pp. 781–790, 2000.

96. M. Setnes, R. Babuska, U. Kaymak, H.R. van Nauta Remke. ―Similarity measures in fuzzy

rule base simplification‖. IEEE Trans. Syst. Man Cybern. B, 28(3), pp. 376–386, 1998.

97. P.K. Simpson. ―Fuzzy min-max neural networks–Part I. classification‖. IEEE Trans. Neural

Netw., 3, pp. 776–786, 1992.

98. P.K. Simpson. ―Fuzzy min-max neural networks–Part II: clustering‖. IEEE Trans. Fuzzy Syst.,

1(1), pp. 32–45, 1993.

99. N.A. Sisman-Yilmaz, F.N. Alpaslan, L. Jain. ―ANFIS-unfolded-in-time for multivariate time

series forecasting‖. Neurocomput., 61, pp. 139–168, 2004.

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 79

100. E. Soria-Olivas, J.D. Martin-Guerrero, G. Camps-Valls, A.J. Serrano-Lopez, J. Calpe-

Maravilla, L. Gomez-Chova. ―A low-complexity fuzzy activation function for artificial neural

networks‖. IEEE Trans. Neural Netw., 14(6), pp. 1576–1579, 2003.

101. C.T. Sun. ―Rule-base structure identification in an adaptive-network-based inference system‖.

IEEE Trans. Fuzzy Syst., 2(1), pp. 64–79, 1994.

102. R. Tagliaferri, A. Eleuteri, M. Meneganti, F. Barone. ―Fuzzy min-max neural networks: From

classification to regression‖. Soft Comput., 5, pp. 69–76, 2001.

103. T. Takagi, M. Sugeno. ―Fuzzy identification of systems and its applications to modelling and

control‖. IEEE Trans. Syst. Man Cybern., 15(1), pp. 116–132, 1985.

104. K. Tanaka, M. Sugeno. ―Stability analysis and design of fuzzy control systems‖. Fuzzy Sets

Syst., 45, pp. 135–150, 1992.

105. R. Thawonmas, S. Abe. ―Function approximation based on fuzzy rules extracted from

partitioned numerical data‖. IEEE Trans. Syst. Man Cybern. B, 29(4), pp. 525–534, 1999.

106. A. Tickle, R. Andrews, M. Golea, J. Diederich. ―The truth will come to light: Direction and

challenges in extracting the knowledge embedded within trained artificial neural networks‖.

IEEE Trans. Neural Netw., 9(6), pp. 1057–1068, 1998.

107. V. Tresp, J. Hollatz, S. Ahmad. ―Representing probabilistic rules with networks of Gaussian

basis functions‖. Mach. Learn., 27, pp. 173–200, 1997.

108. G. Tsekouras, H. Sarimveis, E. Kavakli, G. Bafas. ―A hierarchical fuzzy-clustering approach

to fuzzy modeling‖. Fuzzy Sets Syst., 150(2), pp. 245–266, 2004.

109. K. Uehara, M. Fujise. ―Fuzzy inference based on families of 𝛼-level sets‖. IEEE Trans. Fuzzy

Syst., 1(2), pp. 111–124, 1993.

110. A. Ultsch, R. Mantyk, G. Halmans. ―Connectionist knowledge acquisition tool: CONKAT‖, in

Artificial Intelligence Frontiers in Statistics: AI and Statistics III, : D.J. Hand, Ed. London:

Chapman & Hall, 1993, pp. 256–263.

111. P. Vuorimaa. ―Fuzzy self-organizing map‖. Fuzzy Sets Syst., 66(2), pp. 223–231, 1994.

112. D. Wang, N.S. Chaudhari. ―Binary neural network training algorithms based on linear

sequential learning‖. Int J. Neural Syst., 13(5), pp. 333–351, 2003.

113. L.X. Wang. ―Fuzzy systems are universal approximators‖, in Proc. IEEE Int. Conf. Fuzzy

Syst., San Diego, CA, 1992, pp. 1163–1170.

114. L.X. Wang. ―Analysis and design of hierarchical fuzzy systems‖. IEEE Trans. Fuzzy Syst.,

7(5), pp. 617–624, 1999.

115. L.X. Wang, J.M. Mendel. ―Generating fuzzy rules by learning from examples‖. IEEE Trans.

Syst. Man Cybern., 22(6), pp. 1414–1427, 1992.

116. L.X. Wang, J.M. Mendel. ―Fuzzy basis functions, universal approximation, and orthogonal

least-squares learning‖. IEEE Trans. Neural Netw., 3(5), pp. 807–814, 1992.

Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 80

117. L.X. Wang, C. Wei. ―Approximation accuracy of some neuro-fuzzy approaches‖. IEEE Trans.

Fuzzy Syst., 8(4), pp. 470–478, 2000.

118. S.Wang, H. Lu. ―Fuzzy system and CMAC network with B-spline membership/basis

functions are smooth approximators‖. Soft Comput., 7, pp. 566–573, 2003.

119. P.J. Werbos. ―Backpropagation through time: what it does and how to do it‖. Proc. IEEE,

78(10), pp. 1550–1560, 1990.

120. S. Wu, M.J. Er. ―Dynamic fuzzy neural networks—A novel approach to function

approximation‖. IEEE Trans. Syst. Man Cybern. B, 30(2), pp. 358–364, 2000.

121. R. Yager, D. Filev. ―Generation of fuzzy rules by mountain clustering‖. J. Intell. Fuzzy Syst.,

2(3), pp. 209–219, 1994.

122. J. Yen. ―Fuzzy logic—A modern perspective‖. IEEE Trans. Knowl. Data Eng., 11(1), pp.

153–165, 1999.

123. L.A. Zadeh. ―Fuzzy sets‖. Inf. & Contr., 8, pp. 338–353, 1965.

124. L.A. Zadeh. ―The concept of a linguistic variable and its application to approximate

reasoning–I, II, III‖. Inf. Sci., 8, pp. 199–249, pp. 301–357, 1975; 9, pp. 43–80, 1975.

125. D. Zhang, X.L. Bai, K.Y. Cai. ―Extended neuro-fuzzy models of multilayer perceptrons‖.

Fuzzy Sets Syst., 142, pp. 221–242, 2004.

