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Abstract 

 
Fuzzy logic is a rigorous mathematical field, and it provides an effective vehicle for modeling the 

uncertainty in human reasoning. In fuzzy logic, the knowledge of experts is modeled by linguistic 

rules represented in the form of IF-THEN logic. Like neural network models such as the multilayer 

perceptron (MLP) and the radial basis function network (RBFN), some fuzzy inference systems 

(FISs) have the capability of universal approximation. Fuzzy logic can be used in most areas 

where neural networks are applicable. In this paper, we first give an introduction to fuzzy sets and 

logic. We then make a comparison between FISs and some neural network models. Rule 

extraction from trained neural networks or numerical data is then described. We finally introduce 

the synergy of neural and fuzzy systems, and describe some neuro-fuzzy models as well. Some 

circuits implementations of neuro-fuzzy systems are also introduced. Examples are given to 

illustrate the concepts of neuro-fuzzy systems. 

 

Keywords: Fuzzy Set, Fuzzy Logic, Fuzzy Inference System, Neuro-fuzzy System, Neural 

Network, Mamdani Model, Takagi-Sugeno-Kang Model. 

 
 
1. INTRODUCTION 

Fuzzy set, a concept first proposed by Zadeh [123], is a method for modeling the uncertainty in 

human reasoning.  Fuzzy logic is suitable for the representation of vague data and concepts on 

an intuitive basis, such as human linguistic description, e.g. the expressions approximately, large, 

young. The conventional set, also called the crisp set, can be treated as a special form of fuzzy 

set. Unlike the binary logic, fuzzy logic uses the notion of membership. A fuzzy set is uniquely 

determined by its membership function (MF), and it is also associated with a linguistically 

meaningful term. 
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Fuzzy logic provides a systematic tool to incorporate human experience. It is based on three core 

concepts, namely, fuzzy sets, linguistic variables, and possibility distributions. Fuzzy set is used 

to characterize linguistic variables whose values can be described qualitatively using a linguistic 

expression and quantitatively using an MF [124]. Linguistic expressions are useful for 

communicating concepts and knowledge with human beings, whereas MFs are useful for 

processing numeric input data. When a fuzzy set is assigned to a linguistic variable, it imposes an 

elastic constraint, called a possibility distribution, on the possible values of the variable. 

 

Fuzzy logic is a rigorous mathematical discipline. Fuzzy reasoning is a straightforward formalism 

for encoding human knowledge or common sense in a numerical framework, and FISs can 

approximate arbitrarily well any continuous function on a compact domain [55], [113]. FISs and 

feedforward neural networks (FNNs) can approximate each other to any degree of accuracy [13]. 

Fuzzy logic first found popular applications in control systems, where an FIS is built up by 

codifying human knowledge as linguistic IF-THEN rules. Since its first reported industrial 

application in 1982 [41], it has aroused global interest in the industrial and scientific community, 

and fuzzy logic has also been widely applied in data analysis, regression and prediction, as well 

as signal and image processing. Many application-specific integrated circuits (ASICs) has also 

been designed for fuzzy logic [31]. 

 

In this paper, we give a systematic introduction to fuzzy logic and neuro-fuzzy systems. The 

paper is organized as follows. In Section 2, we provide a short tutorial on fuzzy logic. Section 3 

compares fuzzy logic and neural network paradigms. Section 4 compares the relation between 

fuzzy logic and MLP/RBFN, and rule generation from trained neural networks is introduced in this 

section. Rule extraction from numerical data is introduced in Section 5. The paradigm of neuro-

fuzzy systems is described in Section 6. Some neuro-fuzzy models are introduced in Section 7. In 

Section 8, we describe some fuzzy neural circuits. An illustration of using neuro-fuzzy systems is 

given in Section 9. We summarize this paper in Section 10. 

 
2. FUNDAMENTALS OF FUZZY LOGIC 

 

2.1 Definitions 

We list below some definitions and terminologies used in the fuzzy logic literature. 

 

2.1.1 Universe of Discourse 

The universal set 𝑋: 𝑋 → [0,1] is called the universe of discourse, or simply the universe. The 

implication 𝑋 → [0,1] is the abbreviation for the IF-THEN rule: ―IF 𝑥 is in 𝑋, THEN its MF  𝜇𝑋(𝑥) is 

in [0,1].‖, where  𝜇𝑋(𝑥) is the MF of 𝑥. The universe 𝑋 may contain either discrete or continuous 

values. 

 

2.1.2 Linguistic Variable 

A linguistic variable is a variable whose values are linguistic terms in a natural or artificial 

language. For example, the size of an object is a linguistic variable, whose value can be small, 

medium, and big. 

 

2.1.3 Fuzzy Set 

A fuzzy set 𝐴 in 𝑋 is defined by 

𝐴 =   𝑥, 𝜇𝐴 𝑥  𝑥 ∈ 𝑋 ,                                                                      (1) 

where 𝜇𝐴 𝑥 ∈ [0,1] is the MF of 𝑥 in 𝐴. For 𝜇𝐴 𝑥 ,  the value 1 stands for complete membership 

of the set 𝐴, while 0 represents that 𝑥 does not belong to the set at all. A fuzzy set can also be 

syntactically represented by 
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𝐴 =

 
 
 

 
  

𝜇𝐴(𝑥𝑖)

𝑥𝑖
𝑥𝑖∈𝑋

, if 𝑋 is discrete

 
𝜇𝐴(𝑥)

𝑥𝑋

, if 𝑋 is continuous

 .                                                      (2) 

 

2.1.4 Support 

The elements on fuzzy set 𝐴 whose membership is larger than zero are called the support of 𝐴 

sp  𝐴 =   𝑥 ∈ 𝐴 𝜇𝐴 𝑥 > 0 .                                                               (3) 

 

2.1.5 Height 

The height of a fuzzy set 𝐴 is defined by 

hgt 𝐴 = sup 𝜇𝐴 𝑥  𝑥 ∈ 𝑋 .                                                               (4) 

 

2.1.6 Normal Fuzzy Set and Non-normal Fuzzy Set 

A fuzzy set 𝐴 is said to be normal if hgt(𝐴) = 1. If 0 < hgt(𝐴) < 1, the fuzzy set 𝐴 is said to be 

non-normal. The non-normal fuzzy set can be normalized by dividing the height of 𝐴 , i.e., 

𝜇 𝐴(𝑥)  =  
𝜇𝐴 (𝑥) 

hgt (𝐴)
.  

 

2.1.7 Fuzzy Subset 

A fuzzy set 𝐴 =    𝑥, 𝜇𝐴 𝑥   𝑥 ∈ 𝑋  is said to be a fuzzy subset of 𝐵 =    𝑥, 𝜇𝐵 𝑥   𝑥 ∈ 𝑋  if 

𝜇𝐴 𝑥 ≤ 𝜇𝐵 𝑥 , denoted by 𝐴 ⊆ 𝐵. 

 

2.1.8 Fuzzy Partition 

For a linguistic variable, a number of fuzzy subsets are enumerated as the value of the variable. 

This collection of fuzzy subsets is called a fuzzy partition. Each fuzzy subset has a MF. For a 

finite fuzzy partition {𝐴1, 𝐴2, ⋯ , 𝐴𝑛  } of a set 𝐴, the MF for each 𝑥 ∈ 𝐴 satisfies 

 𝜇𝐴𝑖
 𝑥 = 1

𝑛

𝑖=1

,                                                                            (5) 

and 𝐴𝑖 is normal. A fuzzy partition is illustrated in Fig. 1. 
 

 
 

FIGURE 1: A fuzzy partition of human age. The fuzzy set for representing the linguistic variable human age 

is partitioned into three fuzzy subsets, namely, young, middle-age, old.  

Each fuzzy subset is characterized by an MF. 
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2.1.9 Empty Set 

The subset of 𝑋 having no element is called the empty set, denoted by ∅ . 

 

2.1.10 Complement 

The complement of 𝐴, written 𝐴 , ¬𝐴 or NOT 𝐴, is defined as 𝜇𝐴 (𝑥) =  1 − 𝜇𝐴(𝑥). Thus, 𝑋  = ∅ and 

∅ = 𝑋. 

 

2.1.11 𝜶-cut 

The 𝛼-cut or 𝛼-level set of a fuzzy set 𝐴, written 𝜇𝐴[𝛼], is defined as 

𝜇𝐴 𝛼 =   𝑥 ∈ 𝐴 𝜇𝐴 𝑥 ≥ 𝛼 ,                                                              (6)  

where 𝛼 ∈ [0,1]. For continuous sets, 𝜇𝐴 [𝛼] can be characterized by an interval or a union of 

intervals. 

 

2.1.12 Kernel or Core 

All the elements in a fuzzy set 𝐴 with membership degree 1 constitute a subset called the kernel 

or core of the fuzzy set, written as co(𝐴)  = 𝜇𝐴 [1]. 
 

2.1.13 Convex Fuzzy Set 

A fuzzy set 𝐴 is said to be convex if and only if 

𝜇𝐴 𝜆𝑥1 +  1 − 𝜆 𝑥2  ≥ 𝜇𝐴 𝑥1 ∧ 𝜇𝐴 𝑥2                                                        (7) 

for 𝜆 ∈ [0,1], and 𝑥1, 𝑥2 ∈  𝑋, where ∧  denotes the minimum operation. Any 𝛼-cut set of a convex 

fuzzy set is a closed interval. 

 

2.1.14 Concave Fuzzy Set 

A fuzzy set 𝐴 is said to be concave if and only if 

𝜇𝐴 𝜆𝑥1 +  1 − 𝜆 𝑥2 ≤ 𝜇𝐴 𝑥1 ∨ 𝜇𝐴 𝑥2 .                                                      (8) 

 

For 𝜆 ∈ [0,1], and 𝑥1, 𝑥2 ∈  𝑋, where ∨  denotes the maximum operation. 

 

2.1.15 Fuzzy Number 

A fuzzy number 𝐴 is a fuzzy set of the real line with a normal, convex and continuous MF of 

bounded support. A fuzzy number is usually represented by a family of 𝛼-level sets or by a 

discretized MF, as illustrated in Fig. 2. 
 

 

(a)                                     (b) 
 

FIGURE 2: Representations of a fuzzy number. (a) 𝛼-level sets. (b) Discretized MF. 
 

2.1.16 Fuzzy Singleton 

A fuzzy set 𝐴 =    𝑥, 𝜇𝐴 𝑥   𝑥 ∈ 𝑋  is said to be a fuzzy singleton if 𝜇𝐴(𝑥) = 1  for 𝑥 ∈  𝑋  and 

𝜇𝐴(x′)  = 0 for all x′ ∈  𝑋 with x′ ≠  𝑥. 
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2.1.17 Hedge 

A hedge transforms a fuzzy set into a new fuzzy set. A hedge operator is comparable to an 

adverb in English. Hedges are used to intensify or dilute the characteristic of a fuzzy set such as 

very and quite, or to approximate a fuzzy set or convert a scalar to a fuzzy set such as roughly. 

For example, for a fuzzy set  strong with membership degree 𝜇𝐴 𝑥 , very strong can be described 

using the membership degree 𝜇𝐴
2 𝑥 , while quite strong can be described using the membership  

degree 𝜇𝐴

1

2  𝑥 . 

 

2.1.18 Extension Principle 

Given mapping 𝑓: 𝑋 → 𝑌 and a fuzzy set 𝐴 =     𝑥, 𝜇𝐴 𝑥   𝑥 ∈ 𝑋 , the extension principle is given 

by 

𝑓(𝐴) =     𝑓 𝑥 , 𝜇𝐴 𝑥   𝑥 ∈ 𝑋 .                                                            (9) 

 

2.1.19 Cartesian Product 

If 𝑋 and 𝑌 are two universal sets, then 𝑋 × 𝑌 is the set of all ordered pairs (𝑥, 𝑦) for 𝑥 ∈ 𝑋 and 

𝑦 ∈ 𝑌. Let 𝐴 be a fuzzy set of 𝑋 and 𝐵 a fuzzy set of 𝑌. The Cartesian product is defined as 

𝐴 × 𝐵 =   𝑧, 𝜇𝐴×𝐵 𝑧   𝑧 =  𝑥, 𝑦 ∈ 𝑍, 𝑍 = 𝑋 × 𝑌 ,                                        (10) 

where 𝜇𝐴×𝐵 𝑧 = 𝜇𝐴 𝑥 ∧ 𝜇𝐵 𝑥 , ∧ denoting the 𝑡-norm operation. 

 

2.1.20 Fuzzy Relation 

Fuzzy relation is used to describe the association between two things. If 𝑅 is a subset of 𝑋 × 𝑌, 

then 𝑅 is said to be a relation between 𝑋 and 𝑌, or a relation on 𝑋 × 𝑌. Mathematically, 

𝑅 𝑥, 𝑦 =    𝑥, 𝑦 , 𝜇𝑅 𝑥, 𝑦    𝑥, 𝑦 ∈ 𝑋 × 𝑌, 𝜇𝑅 𝑥, 𝑦 ∈ [0,1] ,                             (11) 

where 𝜇𝑅 𝑥, 𝑦  is the degree of membership for association between 𝑥 and 𝑦. A fuzzy relation is 

also a fuzzy set. 

 

2.1.21 Fuzzy Matrix and Fuzzy Graph 

Given finite, discrete fuzzy sets 𝑋 =  { 𝑥1, 𝑥2 , ⋯ , 𝑥𝑚 } and Y = {𝑦1, … , 𝑦𝑛}, a fuzzy relation on 𝑋 × 𝑌 

can be represented by an 𝑚 × 𝑛 matrix 𝐑 =  [ 𝑅𝑖𝑗 ] =  [ 𝜇𝑅  ( 𝑥𝑖 , 𝑦𝑗 )]. This matrix is called a fuzzy 

matrix. The fuzzy relation 𝑅 can be represented by a fuzzy graph. In a fuzzy graph, all 𝑥𝑖  and 𝑦𝑗   

are vertices, and the grade 𝜇𝑅(𝑥𝑖 , 𝑦𝑗 ) is added to the connection from 𝑥𝑖  and 𝑦𝑗 . 

 

2.1.22 𝒕-norm 

A mapping 𝑇:  0,1 ×  0,1 → [0,1]  with the following four properties is called 𝑡 -norm. For all 

𝑥, 𝑦, 𝑧 ∈  [0,1],  

 Commutativity: 𝑇(𝑥, 𝑦) = 𝑇(𝑦, 𝑥);  

 Monotonicity: 𝑇 𝑥, 𝑦 ≤ 𝑇 𝑥, 𝑧 , if 𝑦 ≤ 𝑧;  

 Associativity: 𝑇(𝑥, 𝑇(𝑦, 𝑧))  =  𝑇(𝑇(𝑥, 𝑦), 𝑧); 

 Linearity: 𝑇(𝑥, 1) = 𝑥. 

 

2.1.23 𝒕-conorm 

A mapping C:  0,1 ×  0,1 → [0,1] having the following four properties is called 𝑡-conorm. For all 

𝑥, 𝑦, 𝑧 ∈  [0,1],  

 Commutativity: 𝐶(𝑥, 𝑦) = 𝐶(𝑦, 𝑥); 

 Monotonicity: 𝐶 𝑥, 𝑦 ≤ 𝐶(𝑥, 𝑧), if 𝑦 ≤ 𝑧; 
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 Associativity: 𝐶(𝑥, 𝐶(𝑦, 𝑧)) = 𝐶(𝐶(𝑥, 𝑦), 𝑧); 

 Linearity: 𝐶(𝑥, 0) = 𝑥.  

 

2.2 Membership Function 

A fuzzy set 𝐴 over the universe of discourse 𝑋, 𝐴 ⊆ 𝑋 → [0,1], is described by the degree of 

membership 𝜇𝐴 𝑥 ∈ [0,1] for each 𝑥 ∈  𝑋. Unimodality and normality are two important aspects of 

the MFs [23]. Piecewise-linear functions such as triangles and trapezoids are popular MFs. The 

triangular MFs can be defined by 

𝜇 𝑥; 𝑎, 𝑏, 𝑐 =

 
 
 

 
 

𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 < 𝑥 ≤ 𝑐

0, otherwise

 ,                                                         (12) 

where the shape parameters satisfies 𝑎 ≤ 𝑏 ≤ 𝑐 , and 𝑏 ∈ 𝑋 . Triangular MFs are useful for 

modeling fuzzy numbers or linguistic terms such as ―The temperature is about 20∘ C‖. The 

trapezoid MFs have flat top with constant value 1. Trapezoid MFs are suitable for modeling such 

linguistic terms as ―He looks like a teenager‖. 

 

The Gaussian and bell-shaped functions have continuous derivatives, and are usually used to 

replace the triangular MF when shape parameters are adapted using the gradient-descent 

procedure. Another popular MF is a sigmoidal functions of the form 

𝜇 𝑥; 𝑐, 𝛽 =
1

1 + e−𝛽(𝑥−𝑐)
,                                                                (13) 

where 𝑐 shifts the function to the left or to the right, and 𝛽 controls the shape of the function. 

When 𝛽 > 1 it is an S-shaped function, and when 𝛽 < −1 it is a Z-shaped function. By multiplying 

an S-shaped function by a Z-shaped function, a 𝜋-shaped function is obtained [29]. 𝜋-shaped 

MFs can be used in situations similar to that where trapezoid MFs are used. 

 

2.3 Intersection and Union 

The set operations intersection and union correspond to the logic operations conjunction (AND) 

and disjunction (OR), respectively. Intersection is described by the so-called triangular norm (𝑡-

norm), denoted by 𝑇(𝑥, 𝑦), whereas union is described by the so-called triangular conorm (𝑡-

conorm), denoted by 𝐶(𝑥, 𝑦). 

 

If 𝐴 and 𝐵 are fuzzy subsets of 𝑋, then intersection 𝐼 = 𝐴 ∩ 𝐵 is defined by 

𝜇𝐼 𝑥 = 𝑇 𝜇𝐴 𝑥 , 𝜇𝐵 𝑥  .                                                                   (14) 

 

Basic 𝑡-norms are given as the standard intersection, the bound sum, the algebraic product and 

the drastic intersection [14]. The popular standard intersection and algebraic product are 

respectively defined by 

𝑇m 𝑥, 𝑦 = min  𝑥, 𝑦 ,                                                                    (15) 

𝑇p 𝑥, 𝑦 = 𝑥𝑦.                                                                           (16) 

 

Similarly, union 𝑈 = 𝐴 ∪ 𝐵 is defined by 

𝜇𝑈(𝑥) = 𝐶 𝜇𝐴 𝑥 , 𝜇𝐵 𝑥  .                                                               (17) 
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The corresponding basic 𝑡-conorms are given as the standard union, the bounded sum, the 

algebraic sum, and the drastic union [14]. Corresponding to the standard intersection and 

algebraic product, the two popular 𝑡 -conorms are respectively the standard union and the 

algebraic sum 

𝐶m 𝑥, 𝑦 = max  𝑥, 𝑦 ,                                                                    (18) 

𝐶p 𝑥, 𝑦 = 𝑥 + 𝑦 − 𝑥𝑦.                                                                    (19) 

 

When the 𝑡-norm and the 𝑡-conorm satisfy 1 − 𝑇(𝑥, 𝑦) = 𝐶(1 − 𝑥, 1 − 𝑦), they are said to be dual. 

This makes De Morgan's laws A ∩ B       = A ∪ B  and A ∪ B       = A ∩ B  to still hold in fuzzy set theory. 

The above 𝑡-norms and 𝑡-conorms with the same subscripts are dual. To satisfy the principle of 

duality, they are usually used in pairs. 

 

2.4 Aggregation, Fuzzy Implication, and Fuzzy Reasoning 

Aggregation or composition operations on fuzzy sets provide a means for combining several sets 

in order to produce a single fuzzy set. 𝑇-conorms are usually used as aggregation operators. 

Consider the relations 

𝑅1 𝑥, 𝑦 =      𝑥, 𝑦 , 𝜇𝑅1
 𝑥, 𝑦     𝑥, 𝑦 ∈ 𝑋 × 𝑌, 𝜇𝑅1

 𝑥, 𝑦 ∈  0,1  ,                         (20) 

𝑅2 𝑦, 𝑧 =      𝑦, 𝑧 , 𝜇𝑅2
 𝑦, 𝑧     𝑦, 𝑧 ∈ 𝑌 × 𝑍, 𝜇𝑅2

 𝑦, 𝑧 ∈  0,1  .                         (21) 

The max-min composition, denoted by 𝑅1 ∘  𝑅2 with MF 𝜇𝑅1∘ 𝑅2
, is defined by 

𝑅1 ∘  𝑅2 =    𝑥, 𝑧 , max
𝑦

 min  𝜇𝑅1
 𝑥, 𝑦 , 𝜇𝑅2

 𝑦, 𝑧      𝑥, 𝑧 ∈ 𝑋 × 𝑍, 𝑦 ∈ 𝑌 .                  (22) 

There are some other composition operations, such as the min-max composition, denoted by 

𝑅1 ⋄ 𝑅2 with the difference that the role of max and min are interchanged. The two compositions 

are related by 𝑅1 ⋄ 𝑅2
         = 𝑅1

   ∘ 𝑅2
   . 

 

Fuzzy implication is used to represent fuzzy rules. It is a mapping 𝑓: 𝐴 → 𝐵 according to the fuzzy 

relation 𝑅 on 𝐴 ×  𝐵 

 𝑦, 𝜇𝐵 𝑦  = 𝑓   𝑥, 𝜇𝐴 𝑥   .                                                          (23) 

Denote 𝑝 as ―𝑥 is 𝐴‖ and 𝑞 as ―𝑦 is 𝐵‖, then (23) can be stated as 𝑝 → 𝑞 (if 𝑝 then 𝑞). For a fuzzy 

rule expressed as a fuzzy implication using the defined fuzzy relation 𝑅, the output linguistic 

variable 𝐵 is denoted by 𝐵 = 𝐴 ∘ 𝑅, which is characterized by 𝜇𝐵 𝑦 =∨𝑥 ( 𝜇𝐴 𝑥 ∧ 𝜇𝑅(𝑥, 𝑦)). 

 

Fuzzy reasoning, also called approximate reasoning, is an inference procedure for deriving 

conclusions from a set of fuzzy rules and one or more conditions [51]. The compositional rule of 

inference is the essential rational behind fuzzy reasoning. A simple example of fuzzy reasoning is 

described here. Consider the fuzzy set 𝐴 =    𝑥, 𝜇𝐴 𝑥   𝑥 ∈ 𝑋 }   and the fuzzy relation 𝑅 on 𝐴 × 𝐵, 

given by 𝑅 𝑥, 𝑦 =       𝑥, 𝑦 , 𝜇𝑅   𝑥, 𝑦    𝑥, 𝑦 ∈  𝑋 ×  𝑌} . Fuzzy set 𝐵 can be inferred from fuzzy set 

𝐴 and their fuzzy relation 𝑅 𝑥, 𝑦  by the max-min composition 

𝐵 = 𝐴 ∘ 𝑅 =    𝑦, max
𝑥

  min  𝜇𝐴 𝑥 , 𝜇𝑅   𝑥, 𝑦      𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 .                       (24) 

 

2.5 Fuzzy Inference Systems 

In control systems, the inputs to the systems are the error and the change in the error of the 

feedback loop, while the output is the control action. Fuzzy logic-based controllers are popular 

control systems. The general architecture of a fuzzy controller is depicted in Fig. 3. The core of a 
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fuzzy controller is an FIS, in which the data flow involves fuzzification, knowledge base evaluation, 

and defuzzification. In an FIS, sometimes termed a fuzzy system or a fuzzy model, the knowledge 

base is comprised of the fuzzy rule base and the database. The database contains the linguistic 

term sets considered in the linguistic rules and the MFs defining the semantics of the linguistic 

variables, and information about domains. The rule base contains a collection of linguistic rules 

that are joined by the ALSO operator. Expert provides his knowledge in the form of linguistic rules. 

The fuzzification process collects the inputs and then converts them into linguistic values or fuzzy 

sets. The decision logic, called fuzzy inference engine, generates output from the input, and 

finally the defuzzification process produces a crisp output for control action. 
 

 

 
FIGURE 3: The architecture of a fuzzy controller. The core of the fuzzy controller is an FIS. 

 

Interpretations of a certain rule or the rule base depends on the FIS model. The Mamdani [69] 

and the TSK [103] models are two popular FISs. The Mamdani model is a nonadditive fuzzy 

model that aggregates the output of fuzzy rules using the maximum operator, while the TSK 

model is an additive fuzzy model that aggregates the output of rules using the addition operator. 

Kosko's standard additive model (SAM) [56] is another additive fuzzy model. All these models 

can be derived from fuzzy graph [122], and are universal approximators [55], [113], [13], [15], [75]. 

When approximating an unknown control function, neural networks achieve a solution using the 

learning process, while FISs apply a vague interpolation technique. Unlike neural networks and 

other numerical models, fuzzy models operate at a level of information granules––fuzzy sets. 

 

2.6 Fuzzy Rules and Fuzzy Interference 

Fuzzy mapping rules and fuzzy implication rules are the two types of fuzzy rules [122]. A fuzzy 

mapping rule describes a functional mapping relationship between inputs and an output using 

linguistic terms, while a fuzzy implication rule describes a generalized logic implication 

relationship between two logic formulas involving linguistic variables. Fuzzy implication rules 

generalize set-to-set implications, whereas fuzzy mapping rules generalize set-to-set associations. 

The former was motivated to allow intelligent systems to draw plausible conclusions in a way 

similar to human reasoning, while the latter was motivated to approximate complex relationships 

such as nonlinear functions in a cost-effective and easily comprehensible way. The foundation of 

fuzzy mapping rule is fuzzy graph, while the foundation of fuzzy implication rule is a 

generalization to two-valued logic. 

 

A rule base consists of a number of rules given in the form ―IF 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, THEN 𝑎𝑐𝑡𝑖𝑜𝑛”. The 

condition, also called premise, is made up of a number of antecedents that are negated or 

combined by different operators such as AND or OR computed with 𝑡-norms or 𝑡-conorms. In a 

fuzzy rule system, MFs for fuzzy subsets can be selected according to human intuition, or by 

learning from training data. 
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A fuzzy inference is made up of several rules with the same output variables. Given a set of fuzzy 

rules, the inference result is a combination of the fuzzy values of the conditions and the 

corresponding actions. For example, we have a set of 𝑁r rules 

R𝑖: IF (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝐶𝑖) THEN (𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐴𝑖) 

for 𝑖 = 1, … , 𝑁r , where 𝐶𝑖 is a fuzzy set. Assuming that a condition has a membership degree of 𝜇𝑖   

associated with the set 𝐶𝑖 . The condition is first converted into a fuzzy category using a 

syntactical representation, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 =  
𝐶𝑖

𝜇 𝑖

𝑁r
𝑖 . We can see each rule is valid to a certain extent. A 

fuzzy inference is the combination of all the possible consequences. The action coming from a 

fuzzy inference is also a fuzzy category, with a syntactical representation 

𝑎𝑐𝑡𝑖𝑜𝑛 =
𝐴1

𝜇1
+

𝐴2

𝜇2
+ ⋯ +

𝐴𝑁r

𝜇𝑁r

.                                                         (25) 

The inference procedure depends on fuzzy reasoning. This result can be further processed or 

transformed into a crisp value. 

 

2.7 Fuzzification and Defuzzification 

Fuzzification is to transform crisp inputs into fuzzy subsets. Given crisp inputs 𝑥𝑖 , 𝑖 = 1, … , 𝑛, 

fuzzification is to construct the same number of fuzzy sets 𝐴𝑖, 

𝐴𝑖 = fuzz 𝑥𝑖 ,                                                                    (26) 

where fuzz ⋅  is a fuzzification operator. Fuzzification is determined according to the defined MFs. 

 

Defuzzification is to map fuzzy subsets of real numbers into real numbers. In an FIS, 

defuzzification is applied after aggregation. Popular defuzzification methods include the centroid 

defuzzifier [69], and the mean-of-maxima defuzzifier [69]. The centroid defuzzifier is the best-

known method, which is to find the centroid of the area surrounded by the MF and the horizontal 

axis [52]. Aggregation and defuzzification can be combined into a single phase, such as the 

weighted-mean method [36] 

defuzz 𝐵 =
 𝜇𝑖𝑏𝑖

𝑁r
𝑖=1

 𝜇𝑖
𝑁r
𝑖=1

,                                                                    (27) 

where 𝑁r is the number of rules, 𝜇𝑖 is the degree of activation of the 𝑖th rule, and 𝑏𝑖 is a numeric 

value associated with the consequent of the 𝑖th rule, 𝐵𝑖. The parameter 𝑏𝑖 can be selected as the 

mean value of the 𝛼-level set when 𝛼 is equal to 𝜇𝑖 [36]. 

 

2.8 Mamdani Model 

Given a set of 𝑁 examples   𝐱𝑝 , 𝐲𝑝  𝐱𝑝 ∈ 𝑅𝑛 , 𝐲𝑝 ∈ 𝑅𝑚   , the underlying system can be identified by 

using the Mamdani or the TSK model. 

 

For the Mamdani model with 𝑁r rules, the 𝑖th rule is given by 

R𝑖: IF 𝐱 is 𝐴𝑖, THEN 𝐲 is 𝐵𝑖 

for 𝑖 = 1, … , 𝑁r , where 𝐴𝑖 =  { 𝐴𝑖
1, 𝐴𝑖

2, … , 𝐴𝑖
𝑛  }, 𝐵𝑖 =  𝐵𝑖

1, 𝐵𝑖
2, … , 𝐵𝑖

𝑚  , and 𝐴𝑖
𝑗
 and 𝐵𝑖

𝑘  are respectively 

fuzzy sets that define an input and output space partitioning. 
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For an 𝑛-tuple input in the form of ―𝐱 is A′‖, the system output ― 𝐲 is B′‖ is characterized by 

combining the rules according to 

𝜇𝐵′ 𝐲 =   𝜇𝐴𝑖
′  𝐱 ∧ 𝜇𝐵𝑖

  𝐲  

𝑁r

𝑖=1

,                                                      (28) 

where the fuzzy partitioning 𝐴′ = {𝐴′1, 𝐴′2, … , 𝐴′𝑛  } and 𝐵′ = { 𝐵′1, 𝐵′2, … , 𝐵′𝑚 } , 

𝜇𝐴𝑖
′  𝐱 = 𝜇𝐴′ 𝐱 ∧ 𝜇𝐴𝑖

 𝐱 =     𝜇𝐴′ 𝑗 ∧ 𝜇
𝐴𝑖

𝑗  

𝑛

𝑖=1

.                                               (29) 

𝜇𝐴′ 𝐱 =  𝜇𝐴′ 𝑗
𝑛
𝑗 =1  and 𝜇𝐴𝑖

 𝐱 =  𝜇
𝐴𝑖

𝑗
𝑛
𝑗=1  being respectively the membership degrees of 𝐱 to the 

fuzzy sets 𝐴′ and 𝐴𝑖, 𝜇𝐵𝑖
 𝐲 =  𝜇

𝐵𝑖
𝑘

𝑚
𝑘=1  is the membership degree of 𝐲 to the fuzzy set 𝐵𝑖, 𝜇𝐴′

𝑖
𝑗  is 

the association between the 𝑗th input of 𝐴′ and the 𝑖th rule, 𝜇
𝐵𝑖

𝑘  is the association between the 𝑘th 

input of 𝐵 and the 𝑖th rule, ∧ is the intersection operator, and ∨ is the union operator. 

 

When minimum and maximum are respectively used as the intersection and union operators, the 

Mamdani model is called a max-min model. We now illustrate the inference procedure for the 

Mamdani model. Assume that we have a two-rule Mamdani FIS with the rules of the form 

R𝑖: IF 𝑥1 is 𝐴𝑖  and 𝑥2 is 𝐵𝑖, THEN 𝑦 is 𝐶𝑖 

for 𝑖 = 1,2. When the max-min composition is employed, for the inputs ―𝑥1 is 𝐴′‖ and ―𝑥2 is B′ ―, 

the fuzzy reasoning procedure for the output 𝑦 is illustrated in Fig. 4. A defuzzification strategy is 

needed to get crisp output value. 
 

 

FIGURE 4: The inference procedure of the Mamdani model  

with the min and max operators and fuzzy inputs. 
 
The Mamdani model offers a high semantic level and a good generalization capability. It contains 

fuzzy rules built from expert knowledge. However, FISs based only on expert knowledge may 

result in insufficient accuracy. For accurate numerical approximation, the TSK model can usually 

generate a better performance. 

 

2.9 Takagi-Sugeno-Kang Model 

In the TSK model [103], for the same set of examples   𝐱p , 𝐲p  , fuzzy rules are given in the form 
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R𝑖: IF 𝐱 is 𝐴𝑖, THEN 𝐲 = 𝐟𝑖(𝐱)  

for 𝑖 = 1,2, … , 𝑁r, where 𝐟𝑖 𝐱 =  𝑓𝑖
1 𝐱 , … , 𝑓𝑖

𝑚 𝐱  
𝑇

 is a crisp vector function of 𝐱; usually 𝑓𝑖
𝑗  𝐱  is  

selected as a linear relation with 𝑓𝑖
𝑗  𝐱 =  𝐚𝑖

𝑗
 
𝑇
𝐱 + 𝑏𝑖

𝑗
, where 𝐚𝑖

𝑗
 and 𝑏𝑖

𝑗
 are adjustable parameters. 

 

For an 𝑛-tuple input in the form of ―𝐱 is 𝐴′‖, the output 𝐲′ is obtained by combining the rules 

according to 

𝐲′ =
 𝜇𝐴𝑖

′  𝐱 𝐟𝑖(𝐱)
𝑁r
𝑖=1

 𝜇𝐴𝑖
′  𝐱 𝑁r

𝑖=1

,                                                               (30) 

where 𝜇𝐴𝑖
′  𝐱  is defined by (29), and can be derived by the procedure shown in the left part of Fig. 

4. This model produces a real-valued function, and it is essentially a model-based fuzzy control 

method. The stability analysis of the TSK model is given in [104]. The TSK model typically selects 

𝑓𝑖
𝑗
 (⋅) as first-order polynomials, hence the model termed the first-order TSK model. When 𝑓𝑖

𝑗
 (⋅) 

are selected as constants, it is called the zero-order TSK model and can be regarded as a special 

case of the Mamdani model. 

 

In comparison with the Mamdani model, the TSK model, which is based on automatic learning 

from the data, can accurately approximate a function using fewer rules. It has a stronger and 

more flexible representation capability than the Mamdani mode. In the TSK model, rules are 

extracted from the data, but the generated rules may have no meaning for experts. The TSK 

model has found more successful applications in building fuzzy systems. 

 

2.10 Complex Fuzzy Logic 

Complex fuzzy sets and logic are mathematical extensions of fuzzy sets and logic from the real 

domain to the complex domain [87], [86]. A complex fuzzy set 𝑆 is characterized by a complex-

valued MF, and membership of any element 𝑥 in 𝑆 is given by a complex-valued membership 

degree of the form 

𝜇𝑆 𝑥 = 𝑟𝑆 𝑥 ej𝜑𝑆(𝑥),                                                                    (31) 

where the amplitude 𝑟𝑆   𝑥 ∈ [0,1], and 𝜑𝑆 is the phase. Thus, 𝜇𝑆 𝑥  is within a unit circle in the 

complex plane. 

 

In  [87], [86], basic set operators for fuzzy logic have been extended for the complex fuzzy logic, 

and some additional operators such as the vector aggregation, set rotation and set reflection, are 

also defined. The operations of intersection, union and complement for complex fuzzy sets are 

defined only on the modulus of the complex membership degree. In [27], the complex fuzzy logic 

is extended to a logic of vectors in the plane, rather than scalar quantities. In [74], a complex 

fuzzy set is defined as an MF mapping the complex plane into  0,1 × [0,1]. 
 

Complex fuzzy sets are superior to the Cartesian products of two fuzzy sets. Complex fuzzy logic 

maintains both the advantages of the fuzzy logic and the properties of complex fuzzy sets. In 

complex fuzzy logic, rules constructed are strongly related and a relation manifested in the phase 

term is associated with complex fuzzy implications. In a complex FIS, the output of each rule is a 

complex fuzzy set, and phase terms are necessary when combining multiple rules so as to 

generate the final output. Complex FISs are useful for solving some hard problems for traditional 

fuzzy methods, in which rules are related to one another with the nature of the relation varying as 

a function of the input to the system [86]. 

 

The fuzzy complex number [11], introduced by incorporating the complex number into the support 

of the fuzzy set, is a different concept from the complex fuzzy set [87]. A fuzzy complex number is 



Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du 

 
International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 58 

a fuzzy set of complex numbers, which have real-valued membership degree in the range [0,1]. 
An 𝛼-cut of a fuzzy complex number is based on the modulus of the complex numbers in the 

fuzzy set. A fuzzy complex number is a fuzzy set in one dimension, while a complex fuzzy set or 

number is a fuzzy set in two dimensions. 

 

3. FUZZY LOGIC VS. NEURAL NETWORKS 
Like FNNs, many fuzzy systems are proved to be universal approximators [63], [50], [13], [35], 

[57], [118]. In [63], the Mamdani model and FNNs are shown to be able to approximate each 

other to an arbitrary accuracy. The equivalence between the TSK model and the RBFN under 

certain conditions has been established in [50], [43] and the equivalence between fuzzy expert 

systems and neural networks has been proved in [13]. Gaussian-based Mamdani systems have 

the ability of approximating any sufficiently smooth function and reproducing its derivatives up to 

any order [35]. In [57], fuzzy systems with Gaussian MFs have been proved to be universal 

approximators for a smooth function and its derivatives. 

 

From the viewpoint of an expert system, fuzzy systems and neural networks are quite similar as 

inference systems. An inference system involves knowledge representation, reasoning, and 

knowledge acquisition: (1) A trained neural network represents knowledge using connection 

weights and neurons in a distributed manner, while in a fuzzy system knowledge is represented 

using IF-THEN rules; (2) For each input, the trained neural network generates an output and this 

pure numerical procedure can be treated as a reasoning process, while reasoning in a fuzzy 

system is logic-based; (3) Knowledge acquisition is via learning in a neural network, while for a 

fuzzy system knowledge is encoded by a human expert. Both neural networks and fuzzy systems 

are dynamic, parallel distributed processing systems that estimate functions without any 

mathematical model and learn from experience with sample data. 

 

Fuzzy systems can be applied to problems with knowledge represented in the form of IF-THEN 

rules. Problem-specific a priori knowledge can be integrated into the systems. Training pattern set 

and system modeling are not needed, and only heuristics are used. During the tuning process, 

one needs to add, remove, or change a rule, or even change the weight of a rule. This process, 

however, requires the knowledge of experts. On the other hand, neural networks are useful when 

we have training pattern set. We do not need any knowledge of the modeling of the problem. A 

trained neural network is a black box that represents knowledge in its distributed structure. 

However, any prior knowledge of the problem cannot be incorporated into the learning process. It 

is difficult for human beings to understand the internal logic of the system. Nevertheless, by 

extracting rules from neural networks, users can understand what neural networks have learned 

and how neural networks predict. 

 

4. FUZZY INFERENCE SYSTEMS AND NEURAL NETWORKS 

4.1 Fuzzy Inference Systems and Multilayer Perceptrons 

For a three-layer (𝐽1-𝐽2-𝐽3) MLP, if the activation function in the hidden layer 𝜙(1)(⋅) is selected as 

the logistic function 𝜙 1  𝑥 =
1

1+e−𝑥  and the activation function in the output layer 𝜙(2)(⋅)  is 

selected as the linear function 𝜙(2)(𝑥) = 𝑥 , there always exists a fuzzy additive system that 

calculates the same function as the network does [7]. In [7], a fuzzy logic operator, called 

interactive-or (𝑖-or), is defined by applying the concept of 𝑓-duality to the logistic function. The use 

of the 𝑖-or operator explains clearly the acquired knowledge of a trained MLP. The 𝑖-or operator is 

defined by [7] 
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𝑎 ⊗ 𝑏 = 
𝑎⋅ 𝑏

 1−𝑎 ⋅  1−𝑏 +𝑎⋅ 𝑏
.                                                             (32) 

The 𝑖-or operator works on (0,1). It is a hybrid between both a 𝑡-norm and a 𝑡-conorm. Based on 

the 𝑖-or operator, the equality between MLPs and FISs is thus established [7]. The equality proof 

also yields an automated procedure for knowledge acquisition. An extension of the method has 

been presented in [16], where the fuzzy rules obtained are in agreement with the domain of the 

input variables and a new logical operator, similar to, but with a higher representational power 

than the 𝑖-or, is defined. 

 

In [32], relations between input uncertainties and fuzzy rules have been established. Sets of crisp 

logic rules applied to uncertain inputs are shown to be equivalent to fuzzy rules with sigmoidal 

MFs applied to crisp inputs. Integration of a reasonable uncertainty distribution for a fixed rule 

threshold or interval gives a sigmoidal MF. Crisp logic and fuzzy rule systems are shown to be 

respectively equivalent to the logical network and the three-layer MLP. Keeping fuzziness on the 

input side enables easier understanding of the networks or the rule systems. In [17], [100], MLPs 

are interpreted by fuzzy rules in such a way that the sigmoidal activation function is decomposed 

into three partitions, and represented by three TSK fuzzy rules with one TSK fuzzy rule for each 

partition. Each partition has its own MF. Accordingly, the value of the activation function at a point 

can be derived by the TSK model.  

 

A fuzzy set is usually represented by a finite number of its supports. In comparison with 

conventional MF based FISs, 𝛼-cut based FISs [109] have a number of advantages. They can 

considerably reduce the required memory and time complexity, since they depend on the number 

of membership-grade levels, and not on the number of elements in the universes of discourse. 

Secondly, the inference operations can be performed for each 𝛼-cut set independently, and this 

enables parallel implementation. An 𝛼-cut based FIS can also easily interface with two-valued 

logic since the 𝛼-level sets themselves are crisp sets. In addition, fuzzy set operations based on 

the extension principle can be performed efficiently using 𝛼-level sets [109], [64]. For 𝛼-cut based 

FISs, each fuzzy rules can be represented as a pattern pair of degrees of membership at those 

points of the MFs obtained by dividing the intervals of the fuzzy sets linearly or by 𝛼-cut can be 

implemented by an MLP with the backpropagation (BP) rule. This is a learning problem of 𝑁r 

samples with 𝑛 inputs and 𝑚 outputs. 

 

4.2 Fuzzy Inference Systems and Radial Basis Function Networks 

When the 𝑡-norm in the TSK model is selected as multiplication and the MFs are selected the 

same as RBFs in the normalized RBFN model, the two models are mathematically equivalent [50], 

[48]. Note that each hidden unit corresponds to a fuzzy rule. Normalized RBFNs provide a 

localized solution that is amenable to rule extraction. The receptive fields of some RBFs should 

overlap to prevent incompleteness of fuzzy partitions. To have a perfect match between the RBFs 

𝜙   𝐱 − 𝐜𝑖   and 𝜇𝐴𝑖
′  (𝐱) in (30), 𝜙   𝐱 − 𝐜𝑖   should be factorizable in each dimension such that 

each component 𝜙  |𝑥𝑗 − 𝑐𝑖 ,𝑗 |  corresponds to an MF 𝜇
𝑨′

𝑗 . The Gaussian RBF is the only strictly 

factorizable function. 

 

In the normalized RBFN, 𝑤𝑖𝑗 ’s typically take constant values and the normalized RBFN 

corresponds to the zero-order TSK model. When the RBF weights are linear regression functions 

of the input variables [59], [91], the model is functionally equivalent to the first-order TSK model. 

 

When implementing the TSK model, one can select some 𝜇
𝐴′ 𝑖

𝑗 = 1 or some 𝜇
𝐴′ 𝑖

𝑗 = 𝜇
𝐴′𝑘

𝑗  in order to  
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increase the distinguishability of the fuzzy partitions. Correspondingly, one should share some 

component RBFs or set some component RBFs to unity [52]. This considerably reduces the 

effective number of free parameters in the RBFN. A distance measure like the Euclidean distance 

is used to describe the similarity between two component RBFs. After applying a clustering 

technique to locate prototypes and adding a regularization term describing the total similarity 

between all the RBFs and the shared RBF to the MSE function, a gradient-descent procedure is 

conducted so as to extract interpretable fuzzy rules from a trained RBFN [52]. The method can be 

applied to RBFNs with constant or linear regression weights. A fuzzy system can be first 

constructed according to heuristic knowledge and existing data, and then converted into an RBFN. 

This is followed by a refinement of the RBFN using a learning algorithm. Due to this learning 

procedure, the interpretability of the original fuzzy system may be lost. The RBFN is then again 

converted into interpretable fuzzy system, and knowledge is extracted from the network. This 

process refines the original fuzzy system design. The algorithm for rule extraction from the RBFN 

is given in [52]. 

 

In [107], normalized Gaussian RBFNs can be generated from simple probabilistic rules and 

probabilistic rules can also be extracted from trained RBFNs. Methods for reducing network 

complexity have been presented in order to obtain concise and meaningful rules. Two algorithms 

for rule extraction from RBFNs, which respectively generate a single rule describing each class 

and a single rule from each hidden unit, are given in [70]. Existing domain knowledge in rule 

format can be inserted into an RBFN as an initialization of optimal network training. 

 

4.3 Rule Generation from Trained Neural Networks 

In addition to rule generation from trained MLPs and RBFNs, rule generation can also be 

performed on other trained neural networks [46], [106]). Rule generation involves rule extraction 

and rule refinement. Rule extraction is to extract knowledge from trained neural networks, while 

rule refinement is to refine the rules that are extracted from neural networks and initialized with 

crude domain knowledge. 

 

Recurrent neural networks (RNNs) have the ability to store information over indefinite periods of 

time, develop hidden states through learning, and thus conveniently represent recursive linguistic 

rules [72]. They are particularly well-suited for problem domains, where incomplete or 

contradictory prior knowledge is available. In such cases, knowledge revision or refinement is 

also possible. Discrete-time RNNs can correctly classify strings of a regular language [80]. Rules 

defining the learned grammar can be extracted in the form of deterministic finite-state automata 

(DFAs) by applying clustering algorithms [29] in the output space of neurons. Starting from an 

initial network state, the algorithm searches the equally partitioned output space of 𝑁  state 

neurons in a breadth-first manner. A heuristic is used to choose among the consistent DFAs that 

model, which best approximates the learned regular grammar. The extracted rules demonstrate 

high accuracy and fidelity and the algorithm is portable. Based on [80], an augmented RNN that 

encodes fuzzy finite-state automata (FFAs) and recognizes a given fuzzy regular language with 

an arbitrary accuracy has been constructed in [81]. FFAs are transformed into equivalent DFAs 

by using an algorithm that computes fuzzy string membership. FFAs can model dynamical 

processes whose current state depends on the current input and previous states. The granularity 

within both extraction techniques is at the level of ensemble of neurons, and thus, the approaches 

are not strictly decompositional. 

 

RNNs are suitable for crisp/fuzzy grammatical inference. A method that uses a SOM for 

extracting knowledge from an RNN [9] is able to infer a crisp/fuzzy regular language. Rule 

extraction is also carried out upon Kohonen networks [110]. A comprehensive survey on rule 

generation from trained neural networks is given from a softcomputing perspective in [72], where 

the optimization capability of evolutionary algorithms (EAs) are emphasized for rule refinement. 
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Rule extraction from RNNs aims to find models of an RNN, typically in the form of finite state 

machines. A recent overview of rule extraction from RNNs is given in [47]. 

 

4.4 Extracting Rules from Numerical Data 

FISs can be designed directly from expert knowledge and data. The design process is usually 

decomposed into two phases, namely, rule generation and system optimization [39]. Rule 

generation leads to a basic system with a given space partitioning and the corresponding set of 

rules, while system optimization gives the optimal membership parameters and rule base. Design 

of fuzzy rules can be performed in one of three ways, namely, all the possible combinations of 

fuzzy partitions, one rule for each data pair, or dynamically choosing the number of fuzzy sets. 

 

For good interpretability, a suitable selection of variables and the reduction of the rule base are 

necessary. During the system optimization phase, merging techniques such as cluster merging 

and fuzzy set merging are usually used for interpretability purposes. Fuzzy set merging leads to a 

higher interpretability than cluster merging. The reduction of a set of rules results in a loss of 

numerical performance on the training data set, but a more compact rule base has a better 

generalization capability and is also easier for human understanding. EAs [93] or learning [50] are 

also used for extracting fuzzy rules and optimizing MFs and rule base. Methods for designing 

FISs from data are analyzed and surveyed in [39]. They are grouped into several families and 

compared based on rule interpretability. 

 

4.5 Rule Generation Based on Fuzzy Partitioning 

Rule generation can be based on a partitioning of the multidimensional space. Fuzzy partitioning 

corresponds to structure identification for FISs, followed by parameter identification using a 

learning algorithm. There are usually three methods for partitioning the input space, namely, grid 

partitioning, tree partitioning, and scatter partitioning. These partitioning methods in the two-

dimensional input space are illustrated in Fig. 5. 
 

          

(a)                                     (b)                                       (c)                                      (d) 
 

FIGURE 5: Partitioning of the two-dimensional input space. (a) Grid partitioning.  

(b) 𝑘-𝑑 tree partitioning. (c) Multilevel grid partitioning. (d) Scatter partitioning. 
 

4.6 Grid Partitioning 

The grid structure has easy interpretability and is most widely used for generating fuzzy rules. 

Fuzzy sets of each variable are shared by all the rules. However, the number of fuzzy rules grows 

exponentially with input dimension, namely, the curse-of-dimensionality problem. For 𝑛  input 

variables, each being partitioned into 𝑚𝑖  fuzzy sets, a total of  𝑚𝑖
𝑛
𝑖=1  rules are needed to cover 

the whole input space. Since each rule has a few parameters to adjust, there are too many 

parameters to adapt during the learning process. Too many fuzzy rules also harm the 

interpretability of the fuzzy system. Thus, the method is appropriate for a small dimensional data 

set with a good coverage. A training procedure can be applied to optimize the grid structure and 

the rule consequences [50]. The grid structure is illustrated in Fig. 5 (a). 
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4.7 Tree Partitioning 

𝑘-𝑑 tree and multilevel grid structures are two hierarchical partitioning techniques that effectively 

relieve the problem of rule explosion [101]. The input space is first partitioned roughly, and a 

subspace is recursively divided until a desired approximation performance is achieved. The 𝑘-𝑑 

tree results from a series of guillotine cuts. A guillotine cut is a cut that is entirely across the 

subspace to be partitioned. After the 𝑖th guillotine cut, the entire space is partitioned into 𝑖 + 1 

regions. Heuristics based on the distribution of training examples or parameter identification 

methods can usually be employed to find a proper 𝑘-𝑑 tree structure [101]. For the multilevel grid 

structure [101], the top-level grid coarsely partitions the whole space into equal-sized and evenly 

spaced fuzzy boxes, which are recursively partitioned into finer grids until a criterion is met. 

Hence, a multilevel grid structure is also called a box tree. The criterion can be that the resulting 

boxes have similar number of training examples or that an application-specific evaluation in each 

grid is below a threshold. A 𝑘-𝑑 tree partitioning and a multilevel grid partitioning are respectively 

illustrated in Fig. 5 (b) and (c). A multilevel grid in the two-dimensional space is called a quad tree. 

Tree partitioning needs some heuristics to extract rules and its application to high-dimensional 

problems faces practical difficulties. 

 

4.8 Scatter Partitioning 

Scatter partitioning usually generates fewer fuzzy regions than the grid and tree partitioning 

techniques owing to the natural clustering property of training patterns. Fuzzy clustering 

algorithms form a family of rule generation techniques. The training examples are gathered into 

homogeneous groups and a rule is associated to each group. The fuzzy sets are not shared by 

the rules, but each of them is tailored for one particular rule. Thus, the resulting fuzzy sets are 

usually difficult to interpret [39]. Clustering is well adapted for large work spaces with a small 

amount of training examples. However, scatter partitioning of high-dimensional feature spaces is 

difficult, and some learning or evolutionary procedures may be necessary. Clustering algorithms 

[29] can be applied for scatter partitioning. A scatter partitioning is illustrated in Fig. 5 (d). The 

curse of dimensionality can also be alleviated by reducing the input dimensions by discarding 

some irrelevant inputs or compressing the input space using feature selection or feature 

extraction techniques. Some clustering-based methods for extracting fuzzy rule for function 

approximation are proposed in [121], [20], [21], [4]. These methods are based on the TSK model. 

Clustering can be used for identification of the antecedent part of the model such as 

determination of the number of rules and initial rule parameters. The consequent part of the 

model can be estimated by the linear LS method. In [21], the combination of the subtractive 

clustering with the linear LS method provides an extremely fast and accurate method for fuzzy 

system identification, which is better than the adaptive-network-based FIS (ANFIS) [48]. Based 

on the Mamdani model, a clustering-based method for nonlinear regression is also given in [117]. 

 

4.9 Hierarchical Rule Generation 

Hierarchical structure for fuzzy rule systems can also effectively solve the rule explosion problem 

[85], [114], [68]. A hierarchical fuzzy system is comprised of a number of low-dimensional fuzzy 

systems such as TSK systems connected in a hierarchical fashion. The total number of rules 

increases only linearly with the number of input variables. For example, for a hierarchical fuzzy 

system shown in Fig. 6, if there are 𝑛 variables each of which is partitioned into 𝑚𝑖  fuzzy subsets, 

the total number of rule is only  𝑚𝑖  𝑚𝑖+1
𝑛−1
𝑖=1 . Hierarchical TSK systems [114] and generalized 

hierarchical TSK systems [68] are universal approximators of any continuous function defined on 

a compact set. 
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FIGURE 6: Example of a hierarchical fuzzy system with 𝑛 inputs and one output. The system is comprised 

of 𝑛 − 1 two-input TSK systems. The 𝑛 input variables are 𝑥𝑖 , 𝑖 = 1, … , 𝑛,  

the output is denoted by 𝑦, and 𝑦𝑖  is the output of the 𝑖th TSK system. 

 

In Fig. 6, the 𝑛 input variables are 𝑥𝑖 , 𝑖 = 1, … , 𝑛, and the output is denoted by 𝑦. There exist 

relations 

𝑦𝑖  =  𝑓𝑖    𝑦𝑖−1, 𝑥𝑖+1                                                                             (33) 

for 𝑖 = 1, … , 𝑛 − 1, where 𝑓𝑖  is the nonlinear relation described by the 𝑖th TSK system, 𝑦𝑖  is the 

output of the 𝑖th TSK system, and 𝑦0  =  𝑥1. The final output is 𝑦 =  𝑦𝑛−1. The output 𝑦 is easily 

obtained by a recursive procedure. Thus, the inference in the hierarchical fuzzy system is in a 

recursive manner. 

 

The hierarchical fuzzy system reduces the number of rules, however, the curse of dimensionality 

is inherent in the system. In the standard fuzzy system, the degree of freedom is unevenly 

distributed over the IF and THEN parts of the rules, with a comprehensive IF part to cover the 

whole domain and a simple THEN part. The hierarchical fuzzy system, on the other hand, 

provides with an incomplete IF part but a more complex THEN part. The gradient-descent method 

can be applied to parameter learning of these systems. Generally, conventional fuzzy systems 

achieve universal approximation using piecewise-linear functions, while the hierarchical fuzzy 

system achieves it through piecewise-polynomial functions [114], [68]. 

 

4.10 Rule Generation Based on Look-up Table 

Designing fuzzy systems from pattern pairs is a nonlinear regression problem. In the simple look-

up table (LUT) technique [115], [117], each pattern pair generates one fuzzy rule and then a 

selection process determines the important rules, which are used to construct the final fuzzy 

system. In the LUT technique, the input MFs do not change with the sampling data, thus the 

designed fuzzy system uniformly covers the domain of interest. 

 

In the LUT technique, the input and output spaces are first divided into fuzzy regions, then a fuzzy 

rule is generated from a given pattern pair, and finally a degree is assigned to each rule to 

resolve rule conflicts and reduce the number of rules. When the number of examples is large, 

there is a high probability of conflicting rules, i.e., rules with the same IF parts but different THEN 

parts. Each rule is assigned a degree of fulfillment. For a group of conflicting rules, only the rule 

with the maximum degree is retained. When a new pattern pair becomes available, a rule is 

created for this pattern pair and the fuzzy rule base is updated. The generated rules as well as 

human expert's knowledge in the form of linguistic rules can be combined so as to produce a 
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fuzzy rule base. Finally a fuzzy system is built. The LUT technique is implemented in five steps 

given in [29], [115], [117]. 

 

The fuzzy system thus constructed is proved to be a universal approximator by using the Stone-

Weierstrass theorem [115]. The approach has the advantage that modification of the rule base is 

very easy as new examples are available. It is a simple and fast one-pass procedure, since no 

iterative training is required. Naturally, this algorithm produces an enormous number of rules, 

when the total input data is considerable. There also arises the problem of contradictory rules, 

and noisy data in the training examples will affect the consequence of a rule. A similar grid 

partitioning-based method in which each datum generates one rule has also been derived in [1]. 

 

4.11 Other Methods 

Many other general methods can be used to automatically extract fuzzy rules from a set of 

numerical examples and to build a fuzzy system for function approximation; some of these are 

heuristics-based approaches [42], [92], [28], [105], and hybrid neural-fuzzy approaches such as 

the ANFIS [48]. In [42], a framework for quickly prototyping an expert system from a set of 

numerical examples is established. In [92], the fuzzy system can be built in a constructive way. 

Starting from an initially simple system, the number of MFs in the input domain and the number of 

rules are adapted in order to reduce the approximation error. A function approximation problem 

can also be first converted into a pattern classification problem, and then solved by using a fuzzy 

system [28], [105]. 

 

5. FUZZY AND NEURAL: A SYNERGY 
While neural networks have strong learning capabilities at the numerical level, it is difficult for the 

users to understand them at the logic level. Fuzzy logic, on the other hand, has a good capability 

of interpretability and can also integrate expert's knowledge. The hybridization of both the 

paradigms yields the capabilities of learning, good interpretation and incorporating prior 

knowledge. The combination can be in different forms. The simplest form may be the concurrent 

neuro-fuzzy model, where a fuzzy system and a neural network work separately. The output of 

one system can be fed as the input of the other system. The cooperative neuro-fuzzy model 

corresponds to the case that one system is used to adapt the parameters of the other system [38], 

[94]. The hybrid neural-fuzzy model is the true synergy that captures the merits of both the 

systems. It takes the form of either a fuzzy neural network or a neuro-fuzzy system. A hybrid 

neural-fuzzy system does not use multiplication, addition, or the sigmoidal function, but uses 

fuzzy logic operations such as 𝑡-norm and 𝑡-conorm. 

 

A fuzzy neural network [84] is a neural network equipped with the capability of handling fuzzy 

information, where the input signals, activation functions, weights, and/or the operators are based 

on the fuzzy set theory. Thus, symbolic structure is incorporated. The network can be 

represented in an equivalent rule-based format, where the premise is the concatenation of fuzzy 

AND and OR logic, and the consequence is the network output. Two types of fuzzy neurons, 

namely AND neuron and OR neuron, are defined. The NOT logic is integrated into the weights. 

Weights always have values in the interval [0,1], and negative weight is achieved by using the 

NOT operator. The weights of the fuzzy neural network can be interpreted as calibration factors of 

the conditions and rules. A neuro-fuzzy system is a fuzzy system, whose parameters are learned 

by a learning algorithm. It has a neural network architecture constructed from fuzzy reasoning, 

and can always be interpreted as a system of fuzzy rules. Learning is used to adaptively adjust 

the rules in the rule base, and to produce or optimize the MFs of a fuzzy system. Structured 

knowledge is codified as fuzzy rules. Expert knowledge can increase learning speed and 

estimation accuracy. Both fuzzy neural networks and neuro-fuzzy systems can be treated as 

neural networks, where the units employ the 𝑡-norm or 𝑡-conorm operator instead of an activation 

function. The hidden layers represent fuzzy rules. The line between the two hybrid models is 

blurred, and we call both types of synergisms as neuro-fuzzy systems. 
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Neuro-fuzzy systems can be obtained by representing some of the parameters of a neural 

network, such as the inputs, weights, outputs, and shift terms as continuous fuzzy numbers. 

When only the input is fuzzy, it is a Type I neuro-fuzzy system. When everything except the input 

is fuzzy, we get a Type II model. A type III model is defined as one where the inputs, weights, and 

shift terms are all fuzzy. The functions realizing the inference process, such as 𝑡-norm and 𝑡-

conorm, are usually nondifferentiable. To utilize gradient-based algorithms, one has to select 

differential functions for the inference functions. For nondifferentiable inference functions, training 

can be performed by using EAs. The shape of the MFs, the number of fuzzy partitions, and rule 

base can all be evolved by using EAs. The neuro-fuzzy method is superior to the neural network 

method in terms of the convergence speed and compactness of the structure. Fundamentals in 

neuro-fuzzy synergism for modeling and control have been reviewed in [51]. 

 

5.1 Interpretability 

Interpretability is one major reason for using fuzzy systems. Interpretability helps to check the 

plausibility of a system, leading to easy maintenance of the system. It can also be used to acquire 

knowledge from a problem characterized by numerical examples. An improvement in 

interpretability can enhance the performance of generalization when the data set is small. The 

interpretability of a rule base is usually related to continuity, consistency and completeness [39]. 

Continuity guarantees that small variations of the input do not induce large variations in the output. 

Consistency means that if two or more rules are simultaneously fired, their conclusions are 

coherent. Completeness means that for any possible input vector, at least one rule is fired and 

there is no inference breaking. 

 

When neuro-fuzzy systems are used to model nonlinear functions described by training sets, the 

approximation accuracy can be optimized by the learning procedure. However, since learning is 

accuracy-oriented, it usually causes a reduction in the interpretability of the generated fuzzy 

system. The loss of interpretability can be due to incompleteness of fuzzy partitions, 

indistinguishability of fuzzy partitions, inconsistancy of fuzzy rules, too fuzzy or too crisp fuzzy 

subsets, or incompactness of the fuzzy system [52]. To improve the interpretability of neuro-fuzzy 

systems, one can add to the cost function, regularization terms that apply constraints on the 

parameters of fuzzy MFs. For example, the order of the 𝐿 centers of the fuzzy subset 𝐴𝑗 (𝑥), 

𝑗 = 1, … , 𝐿, should be specified and remain unchanged during learning. Similar MFs should be 

merged to improve the distinguishability of fuzzy partitions and to reduce the number of fuzzy 

subsets [96]. One can also reduce the number of free parameters in defining fuzzy subsets. To 

increase the interpretability of the designed fuzzy system, the same linguistic term should be 

represented by the same MF. This results in weight sharing [75], [52]. For the TSK model, one 

practice for good interpretability is to keep the number of fuzzy subsets much smaller than 𝑁r, the 

number of fuzzy rules, especially when 𝑁r is large. 

 

6. NEURO-FUZZY MODELS 
A typical architecture of a neuro-fuzzy system includes an input layer, an output layer, and 

several hidden layers. The weights are fuzzy sets, and the neurons apply 𝑡-norm or 𝑡-conorm 

operations. The hidden layers are usually used as rule layers. The layers before the rule layers 

perform as premise layers, while those after perform as consequent layers. A well-known neuro-

fuzzy model is the ANFIS model [48]. We describe the ANFIS model in this section and also give 

a brief survey of neuro-fuzzy models. 

 

6.1 ANFIS Model 

The ANFIS model [50], [48], [51], as shown in Fig. 7, has a five-layer (𝑛-𝐾-𝐾-𝐾-1) architecture, 

and is a graphical representation of the TSK model. The functions of the various layers are given 

below. 
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FIGURE 7: ANFIS: graphical representation of the TSK model. The symbol N in the circles denotes the 

normalization operator, and 𝐱 =  𝑥1, 𝑥2, … , 𝑥𝑛 𝑇 . 

 

Layer 1 is the input layer with 𝑛 nodes. The weights between the first two layers, 𝑤𝑖𝑗 = 𝜇
𝐴𝑗

𝑖  (𝑥𝑖), 

𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝐾, denotes membership values of the 𝑖th input (antecedent) of the 𝑗th rule, 

where 𝐴𝑗
𝑖  corresponds to a partition of the space of 𝑥𝑖 , and 𝜇

𝐴𝑗
𝑖  (𝑥𝑖) is typically selected as a 

generalized bell MF 𝜇
𝐴𝑗

𝑖   𝑥𝑖 = 𝜇(𝑥𝑖 ; 𝑐𝑖
𝑗
, 𝑎𝑖

𝑗
, 𝑏𝑖

𝑗
), where 𝑐𝑖

𝑗
, 𝑎𝑖

𝑗
, and 𝑏𝑖

𝑗
 are referred to as premise 

parameters. Layer 2 has 𝐾 fuzzy neurons with the product 𝑡-norm as the aggregation operator. 

Each node corresponds to a rule, and the output of the 𝑗th neuron determines the degree of 

fulfillment of the 𝑗th rule 

𝑜𝑗
(2)

=  𝜇
𝐴𝑗

𝑖   𝑥𝑖                                                                               (34)

𝑛

𝑖=1

  

for 𝑗 = 1, … , 𝐾 . Each neuron in layer 3 performs normalization, and the outputs are called 

normalized firing strengths 

𝑜𝑗
(3)

=
𝑜𝑗

(2)

 𝑜𝑘
(2)𝐾

𝑘=1

                                                                              (35) 

for 𝑗 = 1, … , 𝐾. The output of each node in layer 4 is defined by 

𝑜𝑗
(4)

= 𝑜𝑗
(3)

𝑓𝑗 (𝐱)                                                                             (36) 

for 𝑗 = 1, … , 𝐾. Parameters in 𝑓𝑗 (𝐱) are referred to as consequent parameters. The outputs of 

layer 4 are summed and the output of the network gives the TSK model (30) 

𝑜(5) =  𝑜𝑗
(4)

𝐾

𝑗 =1

.                                                                             (37) 

 

In the ANFIS model, functions used at all the nodes are differentiable, thus the BP algorithm can 

be used to learn the premise parameters by using a sample set of size 𝑁 , {(𝐱𝑡 , 𝑦𝑡)} . The 

effectiveness of the model is dependent on the MFs used. The TSK fuzzy rules are employed in 

the ANFIS model 

R𝑖: IF 𝐱 is 𝐴𝑖, THEN 𝑦 = 𝑓𝑖 𝐱 =  𝑎𝑖 ,𝑗  𝑥𝑗 + 𝑎𝑖 ,0
𝑛
𝑗 =1  
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for 𝑖 = 1, … , 𝐾 , where 𝐴𝑖 =   𝐴𝑖
1, 𝐴𝑖

2, … , 𝐴𝑖
𝑛  are fuzzy sets and 𝑎𝑖 ,𝑗 , 𝑗 = 0, 1, … , 𝑛 , are consequent 

parameters. The output of the network at time 𝑡 is thus given by 

𝑦 𝑡 =
 𝜇𝐴𝑖

 𝐱𝑡 𝑓𝑖(𝐱𝑡)𝐾
𝑖=1

 𝜇𝐴𝑖
 𝐱𝑡 

𝐾
𝑖=1

,                                                                 (38) 

where 𝜇𝐴𝑖
 𝐱𝑡 =  𝜇

𝐴𝑗
𝑖 (𝑥𝑡 ,𝑗 )𝑛

𝑗=1 . Accordingly, the error measure at time 𝑡  is defined by 𝐸𝑡  =

1

2
 𝑦 𝑡 − 𝑦𝑡 

2. 

 

After the rule base is specified, the ANFIS adjusts only the MFs of the antecedents and the 

consequent parameters. The BP algorithm can be used to train both the premise and consequent 

parameters. A more efficient procedure is to learn the premise parameters by the BP, but to learn 

the linear consequent parameters by the RLS method [48]. The learning rate 𝜂 can be adaptively 

adjusted by some heuristics. It is reported in [48] that this hybrid learning method provides better 

results than the MLP trained by the BP method and the cascade-correlation network [34]. In [49], 

the Levenberg-Marquardt (LM) method [29] is used for ANFIS training. Compared to the hybrid 

method, the LM method achieves a better precision, but the interpretability of the final MFs is 

quite weak. In [18], the RProp [89] and the RLS methods are used to learn the premise 

parameters and the consequent parameters, respectively. The ANFIS model has been 

generalized for classification by employing parameterized 𝑡-norms [101], where tree partitioning is 

used for structure identification and the Kalman filtering method for parameter learning. 

 

The ANFIS is attractive for applications in view of its network structure and the standard learning 

algorithm. Training of the ANFIS follows the spirit of the minimal disturbance principle and is thus 

more efficient than the MLP [51]. However, the ANFIS is computationally expensive due to the 

curse-of-dimensionality problem arising from grid partitioning. Tree or scattering partitioning can 

resolve the curse of dimensionality, but leads to a reduction in the interpretability of the generated 

rules. Constraints on MFs and initialization using prior knowledge cannot be provided to the 

ANFIS model due to the learning procedure. The learning results may be difficult to interpret. 

Thus, the ANFIS model is suitable for applications, where performance is more important than 

interpretation. In order to preserve the plausibility of the ANFIS, one can add some regularization 

terms to the cost function so that some constraints on the interpretability are considered [51]. 

 

The ANFIS has been extended to the coactive ANFIS [73] and to the generalized ANFIS [5]. The 

coactive ANFIS [73] is a generalization of the ANFIS by introducing nonlinearity into the TSK 

rules. The generalized ANFIS [5] is based on a generalization of the TSK model and a 

generalized Gaussian RBFN. The generalized fuzzy model is trained by using the generalized 

RBFN model, based on the functional equivalence between the two models. The sigmoid-ANFIS 

[125] employs only sigmoidal MFs and adopts the interactive-or operator [7] as its fuzzy 

connectives. The gradient-descent algorithm can also be directly applied to the TSK model 

without representing it in a network structure [77]. The unfolding-in-time [119] is a method to 

transform an RNN into an FNN so that the BP algorithm can be used. The ANFIS-unfolded-in-

time [99] is designed for prediction of time series data, and achieves much smaller error in the 

ANFIS-unfolded-in-time compared to that in the ANFIS. 

 

6.2 Generic Fuzzy Perceptron 

The generic fuzzy perceptron (GFP) [75] has a structure similar to that of the three-layer MLP. 

The network inputs and the weights are modeled as fuzzy sets, and 𝑡-norm or 𝑡-conorm is used 

as the activation function at each unit. The hidden layer acts as the rule layer. The output units 

usually use a defuzzufication function. The GFP can interpret its structure in the form of linguistic 

rules and the structure of the GFP can be treated as a linguistic rule base, where the weights 

between the input and hidden (rule) layers are called fuzzy antecedent weights and the weights 
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between the hidden (rule) and output layers fuzzy consequent weights. The GFP model is based 

on the Mamdani model. 

 

The NEFCON [76], [75], [78], NEFCLASS [75], and NEFPROX [75] models are three neuro-fuzzy 

models based on the GFP model, which are used for control, classification and approximation, 

respectively. Due to the use of nondifferentiable 𝑡 -norm and 𝑡 -conorm, the gradient-descent 

method cannot be applied. A set of linguistic rules are used for describing the performance of the 

models. This knowledge-based fuzzy error is independent of the range of the output value. 

Learning algorithms for all these models are derived from the fuzzy error using simple heuristics. 

Initial fuzzy partitions are needed to be specified for each input variable. Some connections that 

have identical linguistic values are forced to have the same weights so as to keep the 

interpretability. Prior knowledge can be integrated in the form of fuzzy rules to initialize the neuro-

fuzzy systems, and the remaining rules are obtained by learning.  

 

The NEFCON has a single output node, and is used for control. A reinforcement learning 

algorithm is used for online learning. The NEFCLASS and the NEFPROX can learn rules by using 

supervised learning instead of reinforcement learning. Compared to neural networks, the 

NEFCLASS uses a much simple learning strategy, where no clustering is involved in finding the 

rules. The NEFCLASS does not use MFs in the rules' consequents. The NETPROX is similar to 

the NEFCON and the NEFCLASS, but is more general. If there is no prior knowledge, a 

NEFPROX system can be started with no hidden unit and rules can be incrementally learned. If 

the learning algorithm creates too many rules, only the best rules are kept by evaluating individual 

rule errors. Each rule represents a number of samples of the unknown function in the form of 

fuzzy sample. Parameter learning is used to compensate for the error caused by rule removing. 

 

The NETPROX is more important for function approximation. An empirical performance 

comparison between the ANFIS and the NETPROX has been made in [75]. The NEFPROX is an 

order-of-magnitude faster than the ANFIS model of [48], but with a higher approximation error. 

Interpretation of the learning result is difficult for both the ANFIS and the NEFPROX: the ANFIS 

represents a TSK system, while the NEFPROX represents a Mamdani system with too many 

rules. To increase the interpretability of the NEFPROX, pruning strategies can be employed to 

reduce the number of rules. 

 

6.3 Fuzzy Clustering 

Fuzzy clustering is one of the most successful applications of neuro-fuzzy synergism, where 

fuzzy logic is incorporated into competitive learning-based clustering neural networks such as the 

Kohonen network and the ART models. In clustering analysis, the discreteness of each cluster 

endows conventional clustering algorithms with analytical and algorithmic intractabilities. 

Partitioning the dataset in a fuzzy manner helps to circumvent such difficulties. Each cluster is 

considered as a fuzzy set, and each feature vector may be assigned to multiple clusters with 

some degree of certainty measured by the membership function taking values in the interval [0,1]. 
Thus, fuzzy clustering helps to find natural vague boundaries in data. The most well-known fuzzy 

clustering algorithm is the fuzzy 𝐶-means algorithm [8]. Other fuzzy clustering algorithms can be 

based on the Kohonen network and learning vector quantization, on the ART or the ARTMAP 

models, or on the Hopfield model. A comprehensive survey on various clustering and fuzzy 

clustering algorithms is given in [29], [30]. 

 

6.4 Other Neuro-Fuzzy Models 

Neuro-fuzzy systems can employ the topologies of the layered FNN architecture [40], [53], [23], 

[26], the RBFN model [2], [120], [79], the self-organizing map (SOM) model [111], and the RNN 

architecture [65], [66]. Neuro-fuzzy models are mainly used for function approximation. They 

typically have a layered FNN architecture, are based on TSK-type FISs, and are trained by using 

the gradient-descent method [82], [46], [40], [64], [54], [67], [108]. Gradient descent in this case is 
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sometimes termed as the fuzzy BP algorithm. Conjugate gradient (CG) algorithms are also used 

for training neuro-fuzzy systems [67]. Based on the fuzzification of the linear autoassociative 

neural networks, the fuzzy PCA [26] can extract a number of relevant features from high-

dimensional fuzzy data. 

 

Hybrid neural FIS (HyFIS) [54] is a five-layer neuro-fuzzy model based on the Mamdani FIS. 

Expert knowledge can be used for the initialization of these MFs. The HyFIS first extracts fuzzy 

rules from data by using the LUT technique [115]. The gradient-descent method is then applied to 

tune the MFs of input/output linguistic variables and the network weights by minimizing the error 

function. The HyFIS model is comparable in performance with the ANFIS [48]. 

 

Fuzzy min-max neural networks are a class of neuro-fuzzy models using min-max hyperboxes for 

clustering, classification, and regression [97], [98], [37], [102], [90]. The max-min fuzzy Hopfield 

network [66] is a fuzzy RNN for fuzzy associative memory (FAM). The manipulations of the 

hyperboxes involve mainly comparison, addition and subtraction operations, thus learning is 

extremely efficient.  

 

Many neuro-fuzzy models employ the architecture of the RBFN [116], [60], [71], [22], [19]. These 

models use are based on the TSK model, and are a universal approximator. The FBFN can 

readily adopt various learning algorithms already developed for the RBFN.  

 

Adaptive parsimonious neuro-fuzzy systems can be achieved by using constructive approach and 

a simultaneous adaptation of space partitioning and fuzzy rule parameters [22], [120]. The 

dynamic fuzzy neural network (DFNN) [120], [33] is an online implementation of the TSK system 

based on an extended RBFN and its learning algorithm. Similar to the ANFIS architecture, the 

self-organizing fuzzy neural network (SOFNN) [62] has a five-layer fuzzy neural network 

architecture. It is an online implementation of a TSK-type model. The SOFNN is based on 

neurons with an ellipsoidal basis function, and the neurons are added or pruned dynamically in 

the learning process. Similar MFs can be combined into one new MF. The SOFNN algorithm is 

superior to the DFNN in time complexity [120]. 

 

7. FUZZY NEURAL CIRCUITS 
Fuzzy systems can be easily implemented in the digital form, which can be either general-

purpose microcontrollers running fuzzy inference and defuzzification programs, or dedicated 

fuzzy coprocessors, or RISC processors with specialized fuzzy support, or fuzzy ASICs. The pros 

and cons of various digital fuzzy hardware implementation strategies are reviewed in [25]. 

 

A common approach to general-purpose fuzzy hardware is to use a software design tool such as 

the Motorola-Aptronix fuzzy inference development language and Togai InfraLogic's MicroFPL 

system to generate the program code for a target microcontroller [44]. This approach leads to 

rapid design and testing, but has a low performance. On the other hand, dedicated fuzzy 

processors and ASICs have physical and performance characteristics that are closely matched to 

an application, and its performance would be optimized to suit a given problem at the price of 

high design and test costs. Fuzzy coprocessors work in conjunction with a host processor. They 

are general-purpose hardware, and thus have a lower performance compared to a custom fuzzy 

hardware. A number of commercially available fuzzy coprocessors are listed in [95]. Some issues 

arising from the implementation of such coprocessors are discussed in [83]. RISC processors 

with specialized fuzzy support are also available [25], [95]. A fuzzy-specific extension to the 

instruction set is defined and implemented using hardware/software codesign techniques. In [44], 

the tool TROUT was created to automate fuzzy neural ASIC design. The TROUT produces a 

specification for small, application-specific circuits called smart parts. Each smart part is 

customized to a single function, and can be packaged in a variety of ways. The model library of 

the TROUT includes fuzzy or neural models for implementation as circuits. To synthesize a circuit, 
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the TROUT takes as its input an application data set, optionally augmented with user-supplied 

hints. It delivers, as output, technology-independent VHDL code for a circuit of the fuzzy or neural 

model. 

 

There are also many analog [61], [24], [58], and mixed-signal [6], [10] fuzzy circuits. Analog 

circuits usually operate in the current mode and are fabricated using the CMOS technology, and 

this leads to the advantages of high speed, small-circuit area, high performance, and low power 

dissipation. A design methodology for fuzzy ASICs and general-purpose fuzzy processors is 

given in [58], based on the LR (left-right) fuzzy implication cells and the LR fuzzy arithmetic cells. 

In [6], [10], the fabrication of mixed-signal CMOS chips for fuzzy controllers is considered; in 

these circuits, the computing power is provided by the analog part while the digital part is used for 

programmability. 

 

An overview of the existing hardware implementations of neural and fuzzy systems is made in 

[88], where limitations, advantages, and bottlenecks of analog, digital, pulse stream (spiking), and 

other techniques are discussed. Hardware/software codesign allows a fast design of complex 

systems with the highest performance-cost ratio by exploiting the best from both the hardware 

and software techniques. A survey of digital fuzzy logic controllers is given in [83]. 

 

8. COMPUTER SIMULATION: IRIS CLASSIFICATION 
We now use the ANFIS model to solve the Iris classification problem. In the Iris data set, 150 

patterns are classified into 3 classes. Each pattern has four numeric properties. The ANFIS 

model is available in the MATLAB Fuzzy toolbox. An initial TSK FIS is first generated by using 

grid partitioning. Since the ranges for 𝑥1, 𝑥2, and 𝑥3 are very small, they each are partitioned into 

2 subsets. The Gaussian MF is selected. 

 

We use the ANFIS model to solve the IRIS classification problem. For the 120 patterns, the 

ranges of the input and output variables are 𝑥1 ∈ [4.3, 7.9] , 𝑥2 ∈ [2.0, 4.4] , 𝑥3 ∈ [1.0, 6.9] , 𝑥4 ∈

[0.1, 2.5], 𝑦 ∈ [1, 3].  
 

An initial TSK FIS is first generated by using grid partitioning. The variables each are partitioned 

into 3 subsets. The Gaussian MF is selected. The maximum number of epochs is 100. The fuzzy 

partitioning for the input space as well as the training error is illustrated in Fig. 8. The 

classification error rate is 0. The ANFIS model generates 193 nodes, 405 linear parameters, 24 

nonlinear parameters, and 81 fuzzy rules. The training time is 53.70 s.  
 

 

(a)                                             (b) 
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(c) 

 

FIGURE 8: IRIS classification: grid partitioning of the input space. (a) The initialized MFs.  

(b) The learned MFs. (c) The training RMS error. 

 

We further solve the IRIS problem using the ANFIS with scatter partitioning. Clustering the input 

space is a desired method for generating fuzzy rules. This can significantly reduce the total 

number of fuzzy rules, hence offer a better generalization capability. Subtractive clustering is 

used for rule extraction so as to find an initial FIS for ANFIS training. Radius 𝑟 specifies the range 

of influence of the cluster center for each input and output dimension. The training error can be 

controlled by adjusting 𝑟 , 𝑟 ∈ [0,1] . Specifying a smaller cluster radius usually yields more, 

smaller clusters in the data, and hence more rules. The training runs for 200 epochs.  

 

Since the range of the input space is very small when compared with that of the output space, we 

select 𝑟 = 0.8 for all the input dimensions and the output space. The training time is 2.69 s. After 

training the RMS error is 0.1123 . The ANFIS model has 37  nodes, 15  linear parameters, 24 

nonlinear parameters, and 3 fuzzy rules. The classification error is 1.33%. The scatter partitioning 

is shown in Fig. 9a, b, and the training and testing errors are illustrated in Fig. 9c. The generated 

fuzzy rules are shown in Fig. 9d.  
 

 
(a)                                                                                  (b)                                     
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(c)                                                      (d)                                                      
 

FIGURE 9: IRIS classification: scatter partitioning of the input space. (a) The initialized MFs. (b) The learned 

MFs. (c) The training RMS error.  (d) the generated fuzzy rules. Note that some MFs coincide in the figure. 

𝐫 = [0.8, 0.8, 0.8, 0.8, 0.8]. 
 
In order to further increase the training accuracy, we can select 𝑟 = 0.3  for all the input 

dimensions and the output space to get a finer clustering. Then we can get more rules. The 

ANFIS model has 107 nodes, 50 linear parameters, 80 nonlinear parameters, and 19 fuzzy rules. 

The training time is 16.2624 s for 1000 epochs. The result is shown in Fig. 10. 

 
(a)                                                                                 (b)                                       

 

 
(c)                                                                        (d)                                                  

 

FIGURE 10: IRIS classification: scatter partitioning of the input space. (a) The initialized MFs.  

(b) The learned MFs. (c) The training RMS error. (d) the generated fuzzy rules.   

Note that some MFs coincide in the figure. 𝐫 = [0.9, 0.9, 0.9, 0.9, 0.1]. 

 



Yue Wu, Biaobiao Zhang, Jiabin Lu & K. -L. Du 

 
International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (2) : Issue (2) : 2011 73 

For the 10 rules generated, each rule has its own MF for each input variable. For example, the 𝑖th 

rule is given by 

R𝑖: IF 𝑥1 is 𝜇𝑖,1 AND 𝑥2 is 𝜇𝑖 ,2 AND 𝑥3 is 𝜇𝑖,3 AND 𝑥4 is 𝜇𝑖 ,4 THEN 𝑦 is 𝜇𝑖 ,𝑦  

where 𝜇𝑖 ,𝑘 , 𝑘 = 1, … ,4, and 𝜇𝑖,𝑦  are MFs. The fuzzy rules for the DoA estimation using the ANFIS 

with scattering partitioning and the fuzzy-inference process from inputs to outputs. Each row of 

plots corresponds to one rule, and each column corresponds to either an input variable 𝑥𝑖  or the 

output variable 𝑦. 

 

9. SUMMARY 
In this paper, we give a systematic introduction to concepts in fuzzy sets and fuzzy logic as well 

as neuro-fuzzy systems. Fuzzy logic provides an effective tools for modelling uncertainty in 

human reasoning. A fuzzy inference system represents knowledge in IF-THEN rules, and 

implement fuzzy reasoning. Like neural network models, some fuzzy inference systems have the 

universal approximation capability. Fuzzy logic is an alternative to neural networks for the 

purpose of classification and function approximation and for most applications where neural 

networks are applicable. Neuro-fuzzy systems combine the advantages of both computational 

paradigms, and are gaining more popularity.  
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