
Tarang Agarwal, Akhilesh Pathak & Anand Mohan

International Journal of Artificial Intelligence And Expert Systems (IJAE), Volume (2) : Issue (3) : 2011 117

A Novel Hybrid Voter Using Genetic Algorithm and
Performance History

Tarang Agarwal agarwaltarang07@gmail.com
Department of Electronics Engineering
Institute of Technology, Banaras Hindu University
Varanasi, 221005, India

Akhilesh Pathak pathak.akhilesh@gmail.com
Department of Electronics Engineering
Institute of Technology, Banaras Hindu University
Varanasi, 221005, India

Anand Mohan amohan@bhu.ac.in
Department of Electronics Engineering
Institute of Technology, Banaras Hindu University
Varanasi, 221005, India

Abstract

Triple Modular Redundancy (TMR) is generally used to increase the reliability of real time
systems where three similar modules are used in parallel and the final output is arrived at using
voting methods. Numerous majority voting techniques have been proposed in literature however
their performances are compromised for some typical set of module output value. Here we
propose a new voting scheme for analog systems retaining the advantages of previous reported
schemes and reduce the disadvantages associated with them. The scheme utilizes a genetic
algorithm and previous performances history of the modules to calculate the final output. The
scheme has been simulated using MATLAB and the performance of the voter has been
compared with that of fuzzy voter proposed by Shabgahi et al [4]. The performance of the voter
proposed here is better than the existing voters.

Keywords : TMR, Soft Threshold, Genetic Algorithm, Weighted Average Voting

1. INTRODUCTION
The fault tolerant techniques are adopted to increase reliability of critical systems like aerospace,
telecommunication, healthcare etc. Triple Modular Redundancy (TMR) is the most commonly
adopted scheme due to its ease of implementation and considerable increase in the reliability.
Here three modules work in parallel and there outputs are evaluated by a voter which gives an
output based on the voting scheme implemented in the voter. In digital voting scheme, the
determination of exact majority vote is straight forward; however, while in case of analog systems,
finding the majority consensus amongst the outputs of redundant modules of a TMR requires
determination of majority considering two closest matching analog outputs of the redundant
modules. For example, it is very difficult to obtain an exact match between the outputs of
replicated analog sensors of a fault tolerant data acquisition system or if the output is generated
by diversely implemented software using floating point arithmetic. Therefore the design and
performance of analog fault tolerant systems has been greatly focusing on development of
improved voter design which can use ‘hard threshold’ or ‘soft threshold’ based voter
implementation [9,4] The hard threshold based voter implementations determine the majority
consensus among the outputs of redundant analog modules using mid-value, fixed threshold
[5,6]. The mid-value selector voting algorithm [5] generates voted output by considering the mid
values of the outputs of redundant modules, fixed threshold voting [6] scheme generates majority
output if the absolute difference between the outputs of different pairs of redundant modules are
less than a prefixed value. In fixed threshold voting, the output from different modules are in
agreement if the absolute difference between them is less than a fixed value otherwise they will
be in disagreement. But the use of inexact voter with a fixed threshold value encounters many
problems as (i) the value of threshold is application specific so selection of the threshold is
critical. (ii) Different operational modes in applications require may require different value of

Tarang Agarwal, Akhilesh Pathak & Anand Mohan

International Journal of Artificial Intelligence And Expert Systems (IJAE), Volume (2) : Issue (3) : 2011 118

threshold (iii) some acceptable results may get ignored by using fixed threshold. Alternatively, soft
threshold based fuzzy voters [4] has been reported to tackle the voter’s accuracy problem. These
voters convert the mod value of relative differences into fuzzy membership and apply fuzzy rules
to generate consensus output from the voter. The fuzzy voters perform better than hard threshold
voting schemes having fixed threshold but it proves ineffective beyond moderate differences
between outputs of redundant modules. Therefore a need is felt to evolve a new voting logic
adopting best of all method depending on the input.

In this paper a new hybrid method of voting using genetic algorithm and history based record is
proposed which overcomes the disadvantages of previous voting methods. The availability and
safety performance of the proposed genetic voter has been evaluated through MATLAB
simulation studies and it is shown that our proposed design gives higher number of correct results
without compromising with safety even in presence of larger mod differences. Section II describes
the basic concepts of genetic algorithm followed by the proposed genetic and history based voter
in section III. Section IV presents the MATLAB simulation of the proposed voter along with the
variation in outputs of redundant modules. The simulation results indicating the error minimization
in the voted output in terms of availability and safety as compared to the fuzzy voter have been
discussed in section V. Section VI contains the conclusion indicating its benefit in design of fault
tolerant systems.

2. GENETIC ALGORITHM
Genetic algorithm introduced by John Holland works on principle of natural evolution [11]. Further
the efficiency of Genetic algorithm has been mathematically established [2].

Solution to problems using genetic approach involves encoding and evaluation. The parameters
of interest are converted into codes and combined together to form a chromosome. Further the
solution is evaluated for a fitness function in an iterative manner. Figure 2.1 shows the basic flow
chart of the genetic algorithm where an initial population of solutions of a given problem is
generated and the value of fitness function (which has to be minimized/maximized) for each
solution is calculated, the solution with better fitness function has a higher probability of survival.
A simple genetic algorithm that yields good results is composed of three operations:

FIGURE 2.1: Flow Chart of Genetic Algorithm Process

1. Reproduction
2. Crossover

Tarang Agarwal, Akhilesh Pathak & Anand Mohan

International Journal of Artificial Intelligence And Expert Systems (IJAE), Volume (2) : Issue (3) : 2011 119

3. Mutation

Reproduction is a process in which individual solutions are selected according to their objective
function values, F (fitness function). Selecting solutions according to their fitness values ensures
that they have a higher probability of contributing one or more offspring in the next generation.
After reproduction, simple crossover may proceed in two steps. First, members of the newly
reproduced solutions are selected randomly. Second, each pair of solutions undergoes swapping
of information at certain position/s.

Mutation is a genetic operator that alters one or more gene value in a chromosome (solution)
from its initial state. This can result in an entirely new chromosome added in next generation.
With these new gene values, the genetic algorithm would be able to arrive at better solution
compared to the previous cycle.

3. THE PROPOSED VOTING METHOD
The proposed voter has been implemented as a Triple Modular Redundancy (TMR); however it
can be extended to N-Modular Redundancy. It has been observed during our study of different
majority voting schemes reported in the literature that a common voting strategy is generally
considered for all categories of module outputs across the board. It is felt that if the voter can be
made intelligent to adopt voting logic depending on the modules’ agreeability with each other, it
can give better results. Therefore here we propose a hybrid voting scheme which adapt itself
depending on the agreeability between different modules. The agreeability between two modules
is defined in terms of their mod differences with each other. If the mod difference is less than a
predefined threshold value (∈); the two modules are said to be in agreement. Let dij

represents

the mod difference between outputs of modules i and j i.e.

In all for a TMR, three cases can occur namely:

Case-1 is the case where all the modules are in agreement with each other i.e. the max
difference is within threshold limit.

Cae-2 is the case where all three modules are not in agreement with each other but atleast one
module-output pair is in agreement with each other so that it follows TMR principle. So in this
case min difference should be less than threshold value.

Case-3 is the case where no module output-pair is in agreement with each other, so here
principle of TMR violates.

The output y will be calculated using weighted average method in all three cases but the strategy
to calculate weight of each module will be different for the three cases.
The procedure to calculate voter output y for (all these three cases) is shown in figure (3.1). The
max value of difference dij less than the threshold value (∈) indicates that all module outputs are
in agreement with each other. Therefore the output y is taken as mean of all three inputs.

 i.e. W1 = W2 = W3 =1 and

 (1)

If the max value of difference dij is not less than threshold value but min value of difference dij is
less than threshold (). It implies that atleast one pair is in agreement with each other, the

weights are calculated using the fitness function defined in eq. (2) which should be minimized to
get the weights for modules:

 ; (2)

The value of output y corresponding to minimum fitness value is considered as the voter output.
The value of weight in genetic algorithm is represented in binary number b and the real value

of this weight is calculated by eq. (3)

 (3)

Tarang Agarwal, Akhilesh Pathak & Anand Mohan

International Journal of Artificial Intelligence And Expert Systems (IJAE), Volume (2) : Issue (3) : 2011 120

 As the values of weights are in [0-1] range so = 0 and = 1, where b is the binary value

of weight and L is no. of bits representing

FIGURE 3.1: Flow chart of proposed voter

When there is no agreeability even between a single module pair (case 3) i.e. min (dij) > the

output y is calculated with the help of previous performance history of each module. A
performance parameter Pi for each module is defined and its value depends upon the
participation history record of each module. The algorithm below describes how the performance
of each module is saved when at least one module pair is in agreement, and when there is no
agreeability even between a single module pair, the performance parameter Pi is used as weight
for each module.

Initialize all Pi’s to 0 and j=0
For each cycle
{
If min (dij) < threshold
Calculate weights Wi’s with the help of genetic algorithm;
Increment Pi by 1 corresponding to the module with max weight;
j = j+1;
When min (dij) > threshold

Tarang Agarwal, Akhilesh Pathak & Anand Mohan

International Journal of Artificial Intelligence And Expert Systems (IJAE), Volume (2) : Issue (3) : 2011 121

For each module, weight Wi = ;

}
The performance parameter corresponding to the module whose weight is highest will get
incremented by 1 and in each cycle this procedure will be repeated so in totally disagreement
condition these Pi’s will be used as weights for the modules. j represents total number of cycles.

IV. MATLAB Simulation:
The proposed genetic voter has been designed in MATLAB R2009a which uses genetic toolbox.
The schematic depicting the experiment conducted using the proposed genetic voter based TMR
system is shown in figure (4.1) below.

FIGURE 4.1: Simulation Model

 An input data generator is used to generate data and error in two channels is injected. The input
data generator produces correct output in each cycle and uniformly distributed random errors are
injected in this notional correct output. Now these faulty outputs are supplied to the genetic voter
and voter result is compared with the notional correct output. If the voter output is within an
accuracy threshold value from the notional correct output, the voter output is considered to be
correct while if the difference is larger than threshold value, output is considered to be incorrect.
The method adopted is same as used by shabgahi et al.[4] where a fuzzy based voter has been
proposed.

The following parameters are used to do experiment on proposed voter:

• Input data: u (t) = 100+100*sin (t) sampled at 0.1 sec.

• Accuracy Threshold value=0.5

• One module is fault free, while the error in other two has been injected randomly by uniform
distribution in interval [-emax +emax].

• The simulation experiment is performed for 10
4
 cycles and no. of correct results nc, no. of

incorrect results nic, and no. of benign results nd are calculated. Benign output means that
voter is not able to produce any output.

• The availability A of the system is defined as:

• The safety S of the system is defined as:)

 Where n is total no. of outputs i.e.

Tarang Agarwal, Akhilesh Pathak & Anand Mohan

International Journal of Artificial Intelligence And Expert Systems (IJAE), Volume (2) : Issue (3) : 2011 122

5. SIMULATION EXPERIMENTS
Experiments compare the performance of proposed genetic voter with the fuzzy voter [4] in terms
of safety and availability parameter defined above. Figure 5.1(a) and 5.1(b) shows the availability
and safety performance respectively of two voters when one module is fault free and the fault in
other two modules has been injected randomly with uniform distribution in range [-emax +emax].
The x-axis in graph shows the value of maximum amplitude emax. It is observed that our proposed
voter gives [0-32]% better availability and [0-5]% better safety results as compared to fuzzy voter
proposed in [4]. For example when the fault injected in two modules are of magnitude [-5 +5], the
following table shows the results for both the voters:

Voter No. of correct
outputs (nc)

No. of incorrect
outputs (nic)

No. of benign outputs
(nd)

Genetic Voter 5515 2390 2095
Fuzzy Voter 2503 2391 5106

TABLE 1: comparison of results for max error amplitude of 5

Tarang Agarwal, Akhilesh Pathak & Anand Mohan

International Journal of Artificial Intelligence And Expert Systems (IJAE), Volume (2) : Issue (3) : 2011 123

FIGURE 5.1(a): Performance comparison of voters in terms of availability when fault injection in two modules is

within the same range

FIGURE 5.1(b): Performance comparison of voters in terms of safety when fault injection in two modules is within

the same range

Figure 5.2(a) and 5.2(b) shows the availability and safety performance respectively of two voters

when one module is fault free, second module is more faulty where the fault has been injected

randomly with uniform distribution in range [-5 +5], and fault in third module is varied from [-emax

+emax]. The x-axis in graph shows the value of maximum amplitude emax. It is observed that

without compromising with safety our proposed voter gives [1-35] % better availability in this case

as compared to fuzzy voter.

Tarang Agarwal, Akhilesh Pathak & Anand Mohan

International Journal of Artificial Intelligence And Expert Systems (IJAE), Volume (2) : Issue (3) : 2011 124

FIGURE 5.2 (a): Performance comparison of voters in terms of availability when fault injection in two modules is in

the different ranges.

FIGURE 5.2 (b): Performance comparison of voters in terms of safety when fault injection in two modules is in the

different ranges.

The majority voting techniques for analog inputs work towards an approximation for approval of

agreeability between the modules. It becomes a challenging task to evolve a method for the

approximation which is a compromise between safety and availability of the system output. The aim is

to suggest a scheme to maximise both these parameters so that these schemes can be used as a

generic algorithm for critical fault tolerant systems. Among the existing algorithms reviewed in the

literature it has been seen that the fuzzy voter proposed by Shabgahi provides a better fault tolerant

solution both in terms of the safety and availability parameters. However the voter falls short of

expectations for larger errors. The new hybrid scheme based on genetic algorithm and performance

history has been validated through simulation and found to be better in terms of availability [0-32]% for

all the cases with higher magnitude and the safety parameter has been ensured to be better to some

extent [0-8]%.

6. CONCLUSION
In this paper we propose a novel hybrid voter using genetic method and performance history of

the modules. The algorithm has been simulated using MATLAB and its performance with respect

to safety and availability has been found to be better than the existing voting techniques. This

voter can be implemented for systems requiring high availability without compromising with the

safety; however for time critical applications better genetic search techniques would be required

to ensure time bound response of the system.

REFERENCES:
Books:
[1] Parag K. Lala, “Fault Tolerant and Fault Testable Hardware Design”, BS Publications, ISBN: 81-

7800-038-5

Tarang Agarwal, Akhilesh Pathak & Anand Mohan

International Journal of Artificial Intelligence And Expert Systems (IJAE), Volume (2) : Issue (3) : 2011 125

[2] David E. Goldberg, “Genetic Algorithms in Search, Optimization & Machine Learning”, Addison-

Wesley Publications, ISBN : 981-405-394-5

Journals:

[3] Von Neumann, J., “Probabilistic logics and synthesis of reliable organisms from unreliable

components”, Automata Studies, in Annals of Mathematical Studies, No. 34, 43-98(ED.: C. E.

Shannon and J. McCarthy), Princeton University Press (1956).

[4] G. Latif-Shabgahi, A.J. Hirst, “A Fuzzy Voting Scheme for Hardware and Software Fault Tolerant

Systems”, Fuzzy Sets and Systems 150 (2005) 579–598, Elsevier Publication.

[5] M.D. Krstic, M.K. Stojcev

 G. Lj. Djordjevic and I.D. Andrejic," A mid-value select voter

",Microelectronics Reliability, Volume 45, Issues 3-4, March-April 2005, Pages 733-738, Elsevier

Publication.

[6] Behrooz Parhami, "Voting algorithms", IEEE Trans. Reliability, Vol. 43, No. 4, pp. 617-629,

December 1994.

Conference Proceedings:

[7] G. Latif-Shabgahi, J. M. Bass, S. Bennett, “History-based weighted average voter: a novel software

voting algorithm for fault-tolerant computer systems,” in 9
th
 workshop Parallel and Distributed

Processing, 2001, pp. 402-409

[8] Milos Manic, Deborah Frincke, "Towards the Fault Tolerant Software: Fuzzy Extension of Crisp

Equivalence Voters", IECON’01: The 27th Annual conference of the IEEE Industrial electronics

Society, 2001.

[9] Behrooz Parhami, "Optimal Algorithm for Exact, Inexact and Approval voting", FTCS- 22: Twenty

second International symposium on fault tolerant computing, Boston, July 1992, pp. 404-411.

Electronic References:

[10] Darrel Whitley, “A genetic algorithm tutorial”, Statistics and Computing (1994) 4, 65-85.

[11] John H Holland, “Genetic Algorithms”, Internet:

http://www2.econ.iastate.edu/tesfatsi/holland.gaintro.htm

