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Abstract 

 
This paper deals with the applications of Artificial Intelligence techniques for detecting internal 
faults in Power generators. Three techniques are used which are Neural Net (NN), Fuzzy 
Neural Net (FNN) and Fuzzy Neural Petri Net (FNPN) to implement differential protection of 
generator. MATLAB toolbox has been used for simulations and generation of faults data for 
training the programs for different faults cases and to implement the relays. Results of 
different fault cases are presented and these results are compared among the three 
implemented techniques of relays and with the conventional differential relay of generator. 
  
Keywords: Differential Protection, Generator Internal Faults, Neural Net, Fuzzy Neural and 
Fuzzy Neural Petri Net. 

 
 
1. INTRODUCTION 
Synchronous generator is the most important element of power system. Generators do 
experience short circuits and abnormal electrical conditions. In many cases, equipment 
damage due to these events can be reduced or prevented by proper generator protection. 
Generators need to protect from abnormal conditions, when subjected to these conditions, 
damage or complete failure can occur within seconds, thus requiring automatic detection and 
tripping. All faults associated with synchronous generators may be classified as either 
insulation failures or abnormal running conditions [1, 2]. An insulation failure in the stator 
winding will result in an inter-turn fault, a phase fault or a ground fault, etc. At present the 
generators are protected against almost all kind of faults using differential methods of 
protection. Differential relays, in particular the digital ones, are used to detect stator faults of 
generators. Electric power utilities and industrial plants use electromechanical and solid-state 
relays for protecting synchronous generators [3]. With the advent of digital technology have 
made significant progress in developing protection systems based on digital techniques [4,5]. 
Protection relaying is just as much a candidate for application of pattern recognition. The 
majority of power system protection techniques are involved in defining the system state 
through identifying the pattern of current waveforms measured at the relay location. This 
means that the development of adaptive protection can be essentially treated as a problem of 
pattern recognition. Artificial Intelligences (AIs) are powerful in pattern recognition and 
classification. They possess excellent features such as generalization capability, noise 
immunity, robustness and fault tolerance. AI-based techniques have been used in power 
system protection and encouraging results are obtained [6, 7]. Artificial neural network is a 
kind of network structure based on modern biology nervous system research, which shows 
great application potential on equipment diagnosis by its capabilities of parallel distributed 
processing, associative memory and self learning. Through learning on multiple types of fault 
samples, a single NN can memorize characteristics of such faults, thus a single NN can 



Dr. Abduladhem A. Ali, Dr. Abaas H. Abaas & Ahmed Thamer Radhi 

International Journal of Artificial Intelligence and Expert Systems (IJAE), Volume (3) : Issue (1) : 2012           15 

Σ    

Bias θib 

  

U1   

U2 

  
Uj   

Wib 

Wi1 

Wi2 

Wjb 

Input 

nodes 

Activation 

Function 

Output 

Function 

Output 

ui 

Neuron i 

FIGURE 1: Idealized Neuron Operation 

implement diagnosis of most fault types [8]. In fuzzy neural network (FNN), both fuzzy logic 
and neural network combinations have found extensive applications. This approach involves 
merging fuzzy systems and neural networks into an integrated system to reap the benefits of 
both. FNN is an efficient structure capable of learning from examples.  
 
Petri Nets (PNs) [9] are based on the concept that the relationships between the components 
of a system, which exhibits asynchronous and concurrent activities, could by represented by a 
net. Petri nets are basically developed for describing and analyzing information flow, and they 
are excellent tools for modeling asynchronous concurrent systems such as computer systems 
and manufacturing system, as well as power system protection. The basic concept of PN 
incorporated into a traditional FNN is used to organize a FNPN system to be translated further 
into neural nets to adding the learning abilities of NN to the PN. The new structure of FNPN 
model is trained by the back-propagation way with multi-layered feed-forward nets of ANN 
which makes FNPN model give appropriate output when input sample is different. In this 
paper, a generator differential protection schemes by using NN, FNN and FNPN are 
introduced. The proposed schemes have the ability to detect the fault with higher sensitivity.  

 

2. NEURAL NETWORK 
The ANN theories have been applied to pattern recognition, pattern classification, learning, 
optimization, etc., Rumethart, et al. [10] had proposed a neural network technique called Back 
Propagation (BP) with multi-layered perceptrons. The technique has been successfully 
applied to adaptive pattern recognition problem. 
 
The back-propagation approach can also be used in power systems. Some applications have 
been made in solving electrical problems such as transient stability [11], high impedance fault 
detection [12], fault location in EHV transmission line, fault location estimator for underground 
cable, and differential protection of power transformer [13]. The neural network with no 
feedback connections from one layer to another or to itself is called a "Feed forward Neural 
Network". A general node model is given in Figure (1) to illustrate the idealized model 
operation. 

 

 

 

 

 

 

 

 

 

Defining output of unit j at the previous layer as uj, the activation or total input of unit i at the 
present layer can be written as: 
 

                                 Si=∑
j

Wijuj +θib                                                                                 (1)                                          

Where: Wij is the weight of the connection from unit j to unit i. 
             θib is the node threshold (or bias vector). 

 
The output ui of the unit i is expressed by unit i input Si: 
 

                                  ui=f(Si)                                                                                               (2)                                    
 
Where, f(x) is usually, but not necessary the sigmoid function such as:   
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                                     f(x)=1/(1+exp(-x))    (- ∞ <x<+ ∞ )                                                       (3)          
 

The outputs of the hidden layer units i are then transmitted to the inputs of next layer units 
through another weighted connections. Figure (1) shows the clearly relationship given by 
Eqn. (1) and Eqn. (2). The error back-propagation algorithm is one of the most important and 
widely used learning techniques for neural networks. The learning rule is known as back-
propagation, which is a kind of gradient descent technique with back error (gradient) 
propagation. The object here is to "train" the network to find a way of altering the weights and 
thresholds so that the error is to be reached to the minimum. Compare the final output signals 
with a target signals, total squared error, Ep is produced which is the sum of squared 
difference between the desired output tp and actual output uip, 

  

                                      Ep=1/2∑ −

i

ipp ut
2)(                                                                          (4) 

Where: tp is a target signal of the unit ui at the output layer, and 
              uip is an actual output signal of the unit ui at the output layer. 
 

The weights adjustment could be done by minimizing Ep in a gradient descent start at the 
output unit and the weight change (∆wij) work backward to the hidden layers recursively. 
 

The weights are adjusted by: 
 

                            wij(t+1)=wij(t)+∆wij                                                                                (5)                               
  

Where: wij(t) is the weight from unit j  to unit i at time t, and ∆wij is the weight             
adjustment. The new weight wij(t+1) is straightforward to the next layer repeatedly. 

 
3. FUZZY NEURAL NETWORK 
Fuzzy neural network (FNN) considered as a special type of neural network [14], every layer 
and every node have its practical meaning because the FNN has the structure which is based 
on both fuzzy rules and inference, Figure (2) show the structure of FNN.  In the following 
items each layer will be described: 
 
           1. Input Layer: Transmits the input  
               linguistic variables xn to the output 
               without changed. 
 

    2. Hidden Layer I: Membership layer 
 represents the input values with the  
 following Gaussian membership 
 functions [14]: 
 

                                    µj
i
=exp(-(xj-cij)

2
/2s

2
ij)                                                                             (6) 

 

Where cij and sij (i=1, 2, …., n; j=1, 2,…, m), respectively, are the mean and standard 
deviation of the Gaussian function in the j

th 
term of the i

th
 input linguistic variable xn to the 

node of this layer. 
 

           3. Hidden Layer II: Rule layer implements the fuzzy inference mechanism, and each 
              node in this layer multiplies the input signals and outputs the result of the product.  
               
 
 
The output of this layer is given as  [14]: 

 

                                    Øi=Πj
n
 µj

i
                                                                                               (7) 
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 Where Øi represent the i
th
 output of  rule layer. 

           4. Output Layer: The nodes in this layer represent output linguistic variables. Each node 
              Yo(O=1, …, No), which computes the output as [14]: 

 

                                   Yo=Σi
m
wi

o
 Øi                                                                                          (8) 

 

The main goal of learning algorithm is to minimize the mean square error function [14]: 

                                      E=1/2(Yo-Yp)
2
                                                                                        (9) 

 
               Where Yo is the actual output and Yp is the desired output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The gradient descent algorithm gives the following iterative equations for the parameter 
values [14]: 

                        wi(k+1)=wi(k)-ηw∂E/∂wi                                                                        (10) 
 

                            cij(k+1)= cij(k)-ηc∂E/∂cij                                                                        (11) 
 

                                sij(k+1)= sij(k)-ηs∂E/∂sij                                                                        (12) 
 
 

               Where η is the learning rate for each parameter in the system, i=1, 2, …., n and j=1, 
2,…, m. 

 

Taking the partial derivative of the error function given by Eqn. (9), gets the following 
equations: 

                                      ∂E/∂wi=(Yo-Yp) Øi                                                                                (13) 

                                ∂E/∂cij=(Yo-Yp) Øi wi(xj-cij)/s
2
ij                                                              (14) 
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                                ∂E/∂sij=(Yo-Yp) Øi wi(xj-cij)
2
/s

3
ij                                                             (15) 

Hence, the new value of wi, cij & sij after adaptation is equal to: 

                                      wi(k+1)=wi(k)-ηw(Yo-Yp)Øi                                                                   (16) 

                               cij(k+1)= cij(k)-ηc(Yo-Yp) Øi wi(xj-cij)/s
2
ij                                                (17) 

                                sij(k+1)= sij(k)-ηs(Yo-Yp) Øi wi(xj-cij)
2/s3

ij                                                (18) 

 

4. FUZZY NEURAL PETRI NET 
The structure of the proposed Fuzzy Neural Petri Net is shown in Figure (3). The network has 
the following three layers [15]: 

 
1- An input layer composed of n input places. 
2- A transition layer composed of hidden transitions. 
3- An output layer consisting of m output places. 

 

The input place is marked by the value of the feature. The transitions act as processing units. 
The firing depends on the parameters of transitions, which are the thresholds, and the 
parameters of the arcs (connections), which are the weights. The marking of the output place 
reflects a level of membership of the pattern in the corresponding class. 
 

 

 

 

 

 

 

 

 

 

 

 

The specifications of the network for a section of the network is shown in Figure (4) are as 
follows [15]: Pj is the marking level of j-th input place produced by a triangular mapping 
function. The top of the triangular function is centered on the average point of the input 
values. The length of triangular base is calculated from the difference between the minimum 
and maximum values of the input.  
 
The height of the triangle is unity. This process keep the input of the network within the period 
[0, 1]. This generalization of the Petri net will be in full agreement with the two-valued generic 
version of the Petri net. 
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                                      Pj=f(Input(j))                                                                                       (19)                            

 Where f is a triangular mapping function shown in Figure (5). 

 

 

 

 

 

 

 

 

Wij is the weight between the i-th transition and the j-th input place; 
rij is a threshold level associated with the level of marking of the j-th input place and the i-th 
transition; 
Zi is the activation level of i-th transition and defined as follows [15]: 
 

                                      Zi= )],([
1

jijij

n

j
PrSW →Τ

=

 j=1, 2,…., n; i=1, 2,…., hidden                     (20) 

Where, "T" is a t-norm, "S" denotes an s-norm, while →  stands for an implication 

operation expressed in the form: 
 

                                      a→b=sup{c∈[0,1],aTc≤ b}                                                               (21) 

             Where a, b are the arguments of the implication operator confined to the unit interval.  

 

In the case of two-valued logic, Eqn. (21) returns the same truth value as: 

                                        a →b=


 〉

otherwise

baifb

,1

,
=


 ==

otherwise

bandaif

,1

01,0
          a, b ∈  [0, 1] 

If T-norm is defined as a multiplication operator ( Π  ) then 
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Yk is the marking level of the k-th output place produced by the transition layer and performs a 
nonlinear mapping of the weighted sum of the activation levels of these transitions (Zi) and the 
associated connections Vki, such as given: 
 

                                      Yk = f( ),
.

1
iki

TransitionofNo

i
ZV

=

Σ j=1, 2,….,n                                                (22)  

               Where "f" is a nonlinear monotonically increasing function from [0, 1]. 

The learning process depends on minimizing certain performance index in order to optimize 
the network parameters (weights and thresholds). The performance index used is the 
standard sum of squared errors. The errors are the difference between the marking levels of 
the output places and the target values. The training set (p, t), which is the marking levels of 
the input places (denoted by p) and the required marking of the output places (target "t"), are 
presented to the network in order to optimize the parameters. The performance index is as 
follows: 
 

                                         E= ∑
=

−

m

k

kk Yt
1

2
)(

2

1
                                                                           (23)                                                      

  
               Where:   
              tk is the k-th target; 
              Yk is the k-th output. 
 
The updates of the parameters are performed according to the gradient method: 
 

                                      param(iter+1)=param(iter)- Eparam∇α                                                 (24) 

                                  
 

                Where Eparam∇  is a gradient of the performance index E with respect to the 

network parameters, α  is the learning rate coefficient, and iter is the iteration counter. 
 

 
The nonlinear function associated with the output place is a standard sigmoid described as: 
 

                         Yk=
∑−+ )exp(1

1

kiiVZ
                                                                     (25)                                                    

The flow chart of algorithms learning is shown in Figure (6). 
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5. PROPOSED RELAYING APPROACH OF GENERATOR 
Power generator is the major component in power system and any fault will effect on the 
availability of the power. Differential protection is the most common system employed for the 
protection of stator windings against earth faults and phase to phase faults makes use of 
circulating current principle. The sensitivity of such protection for earth fault depends upon the 
resistance in neutral to earth connection. The resistance of the neutral may not cause the 
relay to operate, the magnitude of the unprotected zone depend upon the value of resistance 
employ in neutral earth and the relay setting. The value of this protected zone about (80%-
85%) of the winding, which mean (20%-15%) of the winding near neutral point can not cause 
tripping [16]. This approach produce a protective relay to solve this problem and to protect 
power generator, where the input variables of the proposed relay are differential current [16] 
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Normalization 

and third harmonic method [17]. The differential current at two ends of protected generator 
are compared, under normal operation conditions these currents are equal, but may be differ 
when a fault occurs in the protected section. 
The difference of the current under fault condition is made to flow through the relay operation 
coil. Differential protection protects the stator windings against earth faults and phase to 
phase faults [16, 18].Differential third harmonic current provide stator ground fault protection. 
The compared third harmonic component in the neutral of machine and in the terminal give a 
pilot for normal and earth fault operation condition. Power supervision is incorporated allowing 
sensitive settings on machine that have their third harmonic content varying significantly as 
exported power changes. The third harmonic component differs as the location of earth fault 
change. 

  
5.1 Generator Simulation Model 
Power generator with (22 kV, 23 MVA) is simulated by using MATLAB simulation software as 
shown in Figure (7). The scenario of training and test the proposed approaches are 
generated during nominal power system operating conditions. Full load, 0.5 full load and 0.25 
full load cases are taken to cover wide range of fault events. Fault type, fault location (i.e. 
internal and external protected zone), fault resistance (0, 5Ω) and fault inception time were 
changed to obtain training patterns covering a wide range of different power generator faults 
conditions.  
 

 

 

 

 

 

 

 

 

 

 

 

5.2 Patterns Generation and Preprocessing 
The differential current and differential third harmonic current were processed by simple 2nd-
oredr low-pass filters. The filters had a cut-off frequency of 400 Hz which introduces just a 
small time delay. These two inputs are sampled at a rate of 20 samples per cycle and 
normalized to have a maximum value of +1 and a minimum value -1 as shown in Figure (8). 
Multilayer feedforward network were chosen to process the prepared input data. The input 
layer contains 5 sample for each input, since there are two inputs in the model, therefore, the 
input layer required 10 input nodes. Various networks with different number of nodes in their 
hidden layer were studied. The output layer consists of only one node, which has value 1 if 
fault occurs to indicate tripping or 0 for no fault. 
 

 

 

 

FIGURE 7: Simulated Model of Generator 
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6. TEST RESULTS 
The data of training and testing the proposed approaches are generated during nominal 
power system operating conditions by using MATLAB simulation software. Full load, 0.5 full 
load and 0.25 full load cases are taken to cover diversity of fault event. The types of faults 
that simulated are includes: 
 
-Normal operation 
-Normal with unbalance load 
-Normal with non-linear load 
-External L-G 
-External L-L-G 
-External L-L 
-External symmetrical fault 
-Internal L-G 
-Internal L-L-G 
-Internal L-L 
-Internal symmetrical fault 
-Inter-turn fault at 20% of winding 
 

6.1 Full load Case 

Table (1) explaining the magnitude and time delay of output for proposed approaches, NN 
relay, FNN relay,  FNPN relay and Conventional differential relay  for full load case. Table (1) 
shows that the proposed approaches have no output trip for (Normal operation and external 
fault cases).  NN-relay has output trip for internal faults cases with time delay (2-4) ms, FNN-
relay has output trip for internal faults cases with time delay (2-4) ms and FNPN-relay has 
output trip for internal faults cases with time delay (2-3) ms. Conventional differential relay has 
no output trip for normal operation and external fault cases, while for  nternal fault cases has 
output trip with time delay (2-9) ms. 
Example of this case is Internal L-G fault shown in Figure (9), an Internal L-G fault (phase A-
G) occurs at t=6ms, as seen from Figure (9) all relays detect the fault at t=6ms, NN-relay 
output trip after 2ms but FNN-relay and FNPN-relay are both output trip after 1ms of fault 
occur, hence FNN-relay and FNPN-relay are gives output trip faster than NN-relay. 
 
 

 

 

 

 

 

No Case NNRelay FNNRelay FNPNRelay Conventional 
Diff. Relay 

ROut T 
(ms) 

ROut T 
(ms) 

ROut T 
(ms) 

ROut T 
(ms) 

1 Normal Operation 0.0003 - 0 - 0.0058 - No Trip - 

2 Normal with unbalance load 0.0011 - 0 - 0.005 - - - 

3 Normal with Non-linear load 0 - 0.0014 - 0.0001 - - - 

4 External L-G 0.0017 - 0.0005 - 0 - No Trip - 
5 External L-L-G 0 - 0.0067 - 0 - No Trip - 

6 External L-L 0 - 0.0033 - 0.001 - No Trip - 

7 External symmetrical fault 0.0087 - 0.01 - 0 - No Trip - 

8 Internal L-G 1 3 0.9998 2 0.9997 2 Trip 5 

9 Internal L-L-G 1 4 1 4 1 3 Trip 2 

10 Internal L-L 1 3 1 4 1 3 Trip 3 

11 Internal symmetrical fault 1 2 1 2 1 2 Trip 2 
12 Inter turn at 20% of winding 1 4 0.9991 4 0.9994 3 Trip 9 

TABLE 1: Results of Simulation for Full Load Case 
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FIGURE 9: Relay Output for Internal L-G Fault for Full Load Case 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2 Half Full load Case 
Table (2) explaining the magnitude and time delay of output for proposed approaches, NN 
relay, FNN relay,  FNPN relay and Conventional differential relay  for half full load case. Table 
(2) shows that the proposed approaches have no output trip for (Normal operation, and 
external fault cases). NN-relay has output trip for internal faults cases with time delay (2-5) 
ms, FNN-relay has output trip for internal faults cases with time delay (2-4) ms and FNPN-
relay has output trip for internal faults cases with time delay (2-3) ms. Conventional differential 
relay has no output trip for normal operation and external fault cases, while for internal fault 
cases has output trip with time delay (3-11) ms. 
 
Example of this case is Internal L-L-G fault shown in Figure (10), an Internal L-L-G fault (2-
phase A-B-G) occurs at t=3ms, as seen from Figure (10), NN-relay detect the fault after 2ms 
(i.e. at t=5ms) and output trip after 3ms (i.e. at=6ms), while FNN-relay and FNPN-relay are 
both detect the fault after 1ms (i.e. at t=4ms) and output trip after 2ms of fault occur (i.e. at 
t=5ms), hence FNN-relay and FNPN-relay are gives output trip faster than NN-relay. 
 

No Case NNRelay FNNRelay FNPNRelay Conventional 
Diff. Relay 

ROut T 
(ms) 

ROut T 
(ms) 

ROut T 
(ms) 

ROut T 
(ms) 

1 Normal Operation 0.0006 - 0.02 - 0.0036 - No Trip - 

2 Normal with unbalance load 0.001 - 0 - 0.0038 - - - 

3 Normal with Non-linear load 0.008 - 0 - 0.0016 - - - 

4 External L-G 0.0036 - 0.0003 - 0 - No Trip - 

5 External L-L-G 0 - 0.0001 - 0 - No Trip - 

6 External L-L 0 - 0.0034 - 0 - No Trip - 

7 External symmetrical fault 0 - 0.019 - 0.002 - No Trip - 

8 Internal L-G 0.9994 2 0.9993 2 0.9981 2 Trip 5 

9 Internal L-L-G 1 5 1 4 1 3 Trip 3 

10 Internal L-L 1 3 0.9912 3 0.9995 3 Trip 3 

11 Internal symmetrical fault 0.9999 3 0.9882 2 1 2 Trip 3 

12 Inter turn at 20% of winding 1 4 0.9999 4 0.9991 3 Trip 11 

 

 

 

TABLE 2: Results of Simulation for Half Full Load Case 
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FIGURE 10: Relay Output for Internal L-L-G Fault for Half Full Load Case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
6.3 Quarter Full load Case 
Table (3) explaining the magnitude and time delay of output for proposed approaches, NN 
relay, FNN relay,  FNPN relay and Conventional differential relay  for quarter full load case. 
Table (3) shows that the proposed approaches have no output trip for (Normal operation, and 
external fault cases). NN-relay has output trip for internal faults cases with time delay (3-6) 
ms, FNN-relay has output trip for internal faults cases with time delay (3-5) ms and FNPN-
relay has output trip for internal faults cases with time delay (2-5) ms. Conventional differential 
relay has no output trip for normal operation and external fault cases, while for internal fault 
cases has output trip with time delay (3-12) ms. 
 
Example of this case is Internal L-L-L-G fault shown in Figure (11), an Internal L-L-L-G fault 
(3-phases A-B-C-G) occurs at t=10ms, as seen from Figure (11), NN-relay detect the fault 
after 1ms (i.e. at t=11ms) and output trip after 2ms (i.e. at t=12ms), while FNN-relay and 
FNPN-relay are both detect the fault at t=10ms) and output trip after 1ms of fault occur (i.e. at 
t=11ms), hence FNN-relay and FNPN-relay are  gives output trip faster than NN-relay. 
 

 
 

No Case NNRelay FNNRelay FNPNRelay Conventional 
Diff. Relay 

ROut T 
(ms) 

ROut T 
(ms) 

ROut T 
(ms) 

ROut T 
(ms) 

1 Normal Operation 0.0011 - 0 - 0.0093 - No Trip - 

2 Normal with unbalance load 0.0001 - 0 - 0.0068 - - - 

3 Normal with Non-linear load 0 - 0 - 0 - - - 

4 External L-G 0.086 - 0.0233 - 0.001 - No Trip - 

5 External L-L-G 0 - 0.0021 - 0 - No Trip - 

6 External L-L 0 - 0.0032 - 0 - No Trip - 

7 External symmetrical fault 0 - 0.0196 - 0 - No Trip - 

8 Internal L-G 1 6 0.9999 5 0.9376 5 Trip 7 

9 Internal L-L-G 0.9908 6 1 5 1 4 Trip 3 

10 Internal L-L 1 3 1 4 1 2 Trip 3 

11 Internal symmetrical fault 1 3 1 3 1 4 Trip 3 
12 Inter turn at 20% of winding 1 4 0.9978 5 1 4 Trip 12 

TABLE 3: Results of Simulation for Quarter Full Load Case 
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FIGURE 11: Relay Output for Internal L-L-L-G Fault for Quarter Full Load Case 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

7. CONCLUSION 
The relaying approaches are proposed to protect power generator, by using basic principle as 
differential current and third harmonic differential current. These methods are used as an 
input to the NN-relay, FNN-relay and FNPN-relay, which have good solution for uncertainty 
cases. Comparison of these proposed approaches with conventional differential protection, 
which have the properties of good protection relays from speed of operation, sensitivity and 
reliability, where which have less than half cycle as an average to operate, these approaches 
have good sensitive to generator inter-turn fault at each point in the stator winding, with high 
reliability to distinguish between fault cases and non fault cases. The obtained results show 
that the proposed approaches represent a proper action and good performance. The test 
results also explained that FNN-relay and FNPN-relay are faster in operation than NN-relay in 
some fault cases. 
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