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Abstract 
 
As malware continues to grow more sophisticated and more plentiful – traditional signature and 
heuristics-based defenses no longer cut it. Instead, the industry has recently turned to using 
machine learning for malicious file detection. The challenge with this approach is that machine 
learning itself comes with vulnerabilities – and if left unattended presents a new attack surface for 
attackers to exploit. 
 
In this paper we present a survey of research in the area of machine learning-based malware 
classifiers, the attacks they encounter, and the defensive measures available. We start by 
reviewing recent advances in malware classification, including the most important works using 
deep learning. We then discuss in detail the field of adversarial machine learning and conduct an 
exhaustive review of adversarial attacks and defenses in the field of malware classification. 
 
Keywords: Machine Learning, Malware Classification, Adversarial Attacks, Evasion Attacks. 

 
 
1. INTRODUCTION 
In computer security, the detection of malware continues to be of paramount importance. 
Traditional approaches have relied heavily on signatures and heuristics to spot malicious files, 
however, there is increasing recognition in the community that these defenses are too easy to 
evade and don’t scale very well. Instead there seems to be a tectonic shift happening towards 
using machine learning [1], [2], [3]. 
 
First attempts at applying machine learning to malware made use of traditional feature 
engineering [4], [5], [6], however, more recent works attemptedthe more advanced, end-to-end 
deep learning techniques [1], [7], [8], [9]. For example, [7] developed MalConv, a pioneering 
neural network solution able to ingest historically unprecedented byte sequences (over 2 million 
steps), [8] developed an artificial neural network focused on the header of portable executable 
(PE) files and [9] examined the role of spatial and temporal biases in deep learning based 
approaches. 
 
Despite all the successes in applying machine learning to malware, however, it is a well-known 
fact that adaptive adversaries can evade detection through adversarial attacks. Attacks come in 
different shapes, with some leveraging model’s gradients [12], [10], others using the model as an 
oracle [13], [14], [15], and others still relying on nothing more than random perturbations [1], [10]. 
 
In response to such attacks, a number of defense tactics have emerged. These include 
information hiding [12], [16], [17], regularization to prevent overfitting [19], feature selection [19], 
[20], [21], [22], [23], [24], [25], [26], [27], adversarial training [11], [14], [19], [20], [28], [29], the use 
of non-linear kernel functions (for algorithms such as Support Vector Machines) [30], distillation 
[20], [31], [32], and more [20], [32], [33].  
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The motivation for this paper is to review the various adversarial attack and defense methods as 
applied to malware classification. To the best of our knowledge, this is the first work to undertake 
such a survey. 
 
This paper is organized as follows:in Section 2 we review machine learning as applied to malware 
classification, defining static and dynamic analysis and exploring the pros and cons of each;in 
Section 3 we review thetaxonomy of adversarial machine learning;and in Sections 4 and 5 we 
discuss evasion attacks and defenses in great detail.  

 
2. MACHINE LEARNING IN MALWARE CLASSIFICATION 
2.1 Machine Learning 
Machine learning is a process by which computers learn complex representations from sample 
data through a process known as “training”. Typically, a training dataset is put together and fed to 
an algorithm to “learn” the patterns inside of it, with the hope that that same algorithm can later be 
applied to unknown data, or in other words it can “generalize”.  
 
Machine learning can come in a variety of shapes. Perhaps the most basic classification of 
machine learning systems is into supervised and unsupervised. The former relies on the training 
dataset being labeled (eg a pool of malware labeled as “malicious” or “benign”) while the latter, 
generally considered a more advanced form of machine learning, relies on the algorithm 
understanding relationships between various parts of the dataset by itself. Other classifications of 
machine learning systems can be done by type of data (structured / unstructured / semi-
structured), type of algorithm (linear, non-linear, composite), and even type of learning (traditional 
learning, one-shot learning, reinforcement learning). 
 
Machine learning can also be applied to a variety of tasks. The three broad categories are 
regression, classification and clustering. Regression and classification are examples of 
supervised learning and differ in that the former outputs a continuous variable (such as a stock 
price), while the latter outputs a discrete variable (such as a “cats” or “dogs” class). Clustering is 
an example of unsupervised learning and occurs when the algorithm tried to automatically break 
the dataset into “clusters” with similar properties. Clustering is especially helpful in data analysis 
where the analyst may not initially know what the “shape” of the data is or what they might be 
looking for. 
 
One of the most exciting recent developments in machine learning has been the emergence of 
deep learning. Although neural networks, the algorithms used in deep learning, have existed 
since the 1950s [51], it is only recently that they were able to achieve best in class results on 
various classification and regression tasks. 
 
Perhaps the pivotal moment in the evolution of deep learning has been the 2012 ImageNet 
competition, where for the first time ever a team using deep learning came first, outperforming the 
next team by 41% [52]. The next year, most teams relied on deep learning [53], and just 5 years 
after the competition had to be shut down because the accuracy results achieved left little room 
for further improvement. 
 
2.2 Static and Dynamic Analysis 
Machine learning can be used to perform two kinds of analysis on malware – static and dynamic. 
Static analysis attempts to classify a file as benign or malicious without actually executing it [29]. 
Instead a static classifier will look at the file’s features – from individual strings, functions and API 
calls to metadata and file’s size – and try to make a decision if the file is suspicious. It is typically 
the first line of defense in any anti-virus or endpoint protection product, as its cheap and fast.  
 
In contrast, dynamic analysis generates its classification based on the run-time behavior of the 
file [29], [34], [35], [36]. Here the file will typically be placed inside a sandbox and executed. The 
analyzer then monitors the behavior of the file looking for malicious indicators, such as a file 
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attempting to reach out to a remote server and start a download process. Dynamic analysis tends 
to be more expensive and hence is typically reserved for files already marked as “suspicious” by 
static analysis. 
 
From an attacker’s perspective it is generally safe to assume that the malware, if it is to be 
evasive, needs to evade both static and dynamic classification. Hence over the years attackers 
have developed techniques to evade both [29], [34], [35], [36], [37], [38], [39], [40].  
 
Evasion of the dynamic layer typically takes the form of recognizing the environment the malware 
is placed in (that it’s a sandbox) and suppressing the file’s malicious attributes. Evasion of the 
static layer, however, is much more reliant on understanding the classifier at hand and what 
features it’s looking for. In this survey, because we are primarily concerned with the security of 
the machine learning classifiers themselves, we will only focus on static evasion. 

 
3. TAXONOMY OF ADVERSARIAL MACHINE LEARNING 
3.1 Types of Adversarial Attacks 
In order to understand the kinds of attacks an adversary might mount on a machine learning 
system it is important to understand the main steps involved in machine learning, of which there 
are two (Figure 1). First, the machine learning model ingests carefully prepared and labelled 
training data in order to learn its representation, like we discussed in Section 2. Second, the 
newly trained model can now be used to make predictions about new inputs hitting its API. 
 

 
 

FIGURE 1: Simplified diagram depicting two steps of the machine learning process. 

 
Each of the two steps described opens up possibilities for the adversary to interfere with model’s 
normal behavior, and hence also its output. At training, the attacker can inject bad data into the 
model’s training pool to make it learn an incorrect representation – an attack known as data 
poisoning. During poisoning, an attacker can do one of two things: 
 

1. They can inject few carefully selected inputs with specific labels, which the model will 
learn to recognize and respond to (backdoor poisoning) 

2. They can inject many random inputs to the point that the boundary that the model learns 
basically becomes useless (availability poisoning) 

 
At test time, the attacker can make use of what seems to be a common vulnerability across 
virtually every type of machine learning system – susceptibility to adversarial examples [11]. 
Adversarial examples are carefully perturbed inputs that mislead the model into making an 
incorrect prediction, while seemingly only changing a few features (Figure 2) [54]. 
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FIGURE 2: Perturbation applied to an image that although makes no difference to the human observer – still 

successfully throws of the classifier. Taken from the seminal paper by Goodfellow et al. [54]. 

 
Adversarial examples are also often simply referred to as evasion attacks. Due to their popularity 
in research literature and seeming much higher potential for damage, we will focus the rest of the 
survey on these evasion attacks. 
 
3.2 Adversarial Capability 
An adversary’s capability refers to the amount of knowledge he or she has about the target 
classifier. On one end of the spectrum, the attacker might have full knowledge of the system. This 
is known as a WhiteBox attack. In a WhiteBox attack, the attacker knows what type of learning 
algorithm is used, the distribution of the training data, and what features the algorithm uses [43].  
 
On the other end of the spectrum is a BlackBox attack. In a BlackBox attack, the adversary 
knows nothing about the internals of the system, however they are able to query the system 
freely [43]. If the attacker can get back both the class labels and the confidence score it is 
referred to as a confidence-score attack, otherwise, if the attacker can only obtain the label we 
call it a hard-label attack. 
 
In the middle of these two extremes are GrayBox attacks. For example, the attacker might have 
access to the distribution of the training data, but not know specifics about the model used [42], 
[43].  
 
3.3 Difference Between Malware and Images 
Much of the research on evasion attacks has been done in the image domain, in the context of 
computer vision. We believe there are a number of reasons for that. Firstly, images by definition 
are visual and easy to understand for any person, hence it’s an attractive research subject. 
Secondly, since the success of ImageNet competition in 2012, images and computer vision have 
taken center stage in the AI community; it’s only natural then that once accuracy is solved the 
community turns its attention to security and robustness. But thirdly, and perhaps most 
importantly, images are significantly easier to perturb from an attacker’s perspective than 
malware is. 
 
There are two important differences between images and malware. Firstly, images present the 
attacker with a much bigger “playground” or perturbation space than malware does. In a 
1000x1000 colored image the attacker has 3 million values to choose from for perturbation, and 
255 dimensions to perturb each of those values in. They can tweak the color, opacity, lightning, 
saturation and many other properties until an evasive variant is found. Malware, on the other 
hand, is binary (it either has a particular API call or it does not), with far fewer options for the 
attacker to choose from [20], [42]. 
 
Secondly, images come with effectively unbounded perturbation space, while perturbing malware 
is a delicate process that needs to first and foremost preserve the file’s functionality. There is no 
way to “break” an image by perturbing it, unless some of the pixel values are set outside the 
possible 0 to 255 range. Malware, on the other hand, can easily be made useless if even a single 
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function or API call in the file ceases to function correctly. Within the image realm, research 
typically relies on distance metrics to cap the possible perturbation space, however, even that has 
been brought into question from a practical security standpoint [50]. 
 
In the next two sections, we will review in more detail evasion attacks and defenses in the context 
of machine learning based malware classifiers. 

 
4. EVASION ATTACKS ON MALWARE CLASSIFIERS 
We will now discuss evasion attacks in more detail, split into WhiteBox and BlackBoxin-line with 
taxonomy presented in Section 3. 
 
4.1 WhiteBox Attacks 
Snrdic and Laskov [12] attempted attacks on a PDF malware classifier, PDFRate. They executed 
2 attacks: mimicry (malicious file is made to look benign) and gradient-based (the data sample is 
manipulated in the reverse direction of the loss function) under 4 distinct knowledge scenarios 
(ranging from just knowing highlights to knowing everything about the objective classifier). Their 
attacks were successful and managed to get theaccuracyof the classifier down from 100% to 28-
33%. 
 
Biggio et al. [10] conducted a simple yet effective gradient-based attack on a PDF classifier, 
achieving successful evasion with as few as 5 to 10 modifications to the PDF file structure. It was 
found that /Linearized, /OpenAction, /Comment, /Root and /PageLayoutcould be added to PDF 
documents to mislead the classifier. The major limitations of their work is that they only perturbed 
the input in feature space and never actually checked if proposed perturbations could lead to real, 
functional malware in problem space. 
 
Grosse et al. [20] mounted an evasion attack on a neural network model as described by 
McDaniel et al. [44]. The authors adapted an attack algorithm initially developed in computer 
vision [17] and successfully generated adversarial examples causing up to 85% misclassification 
rate of the target model. 
 
Another work that attacked a neural network model using a gradient-based attack was that by 
Kolosnjaji et al. [1]. In order to prevent the malware from breaking, the authors restricted 
perturbations to just adding padding bytes, generate both randomly and using the model’s 
gradients. As a result the authors managed to decrease the accuracy of MalConv [7] by 50%. 
 
4.2 BlackBox Confidence Score Attacks 
Xu et al. [19] proposed an attack method that doesn’t require access to a model’s gradients – 
however, does still require access to the predicted confidence scores. They implemented a 
system that makes use of genetic algorithms and a sandbox to verify the malware’s functionality 
and used it to successfully evade PDFrate [17] and Hidost [30]. It is worth pointing out that this 
work is one of the few where the authors have put in the extra effort to ensure the perturbed 
samples remain functional malware (in other words, they attacked the model in “problem space”, 
not “feature space” [28]). 
 
4.3 BlackBox Hard-Label Attacks 
Maiorca et al. [13] proposed a methodthey termed “reverse mimicry” to generate evasive variants 
of PDF malware. The intuition is to inject malicious code into a benign sample rather than doing 
the reverse, thus preserving most of the benign features used for classification. The authors were 
successful in their experiments, although their approach is overly manual. 
  
Hu and Tan [14] proposed a generative adversarial network (GAN)-based approach, which takes 
original samples as inputs and outputs adversarial examples. Authors motivate their work by 
saying that intrinsic non-linear structure of neural networks enables them to generate more 
complex and flexible adversarial examples to fool the target model. The detector part of the GAN 
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is a surrogate model built from the original classifier in a BlackBox fashion (only assumes 
knowledge of the feature space). Experimental results showed that virtually all of the adversarial 
examples generated by MalGAN could successfully bypass the detection algorithm (true positive 
rate drops close to 0%). 
  
Dang et.al. [15] proposed a new method for attacking malware classifiers with no knowledge of 
their internals and no confidence scores. They constructed a system with three components - the 
detector (BlackBox API for the malware classifier), the tester (confirms maliciousness), and the 
morpher (perturbs the file). They then proposed a scoring mechanism that assigns real-value 
scores to samples based on the binary outputs obtained from the tester and detector. The 
intuition is to measure the number of morphing steps required to change the detector and tester’s 
decisions, and derive the score based on these values. 
 
Finally, they empirically demonstrated that their approach can find evasive variants 100% of the 
time, outperforming random perturbation by as much as 80x in terms of execution cost. The 
approach is interesting because unlike other most BlackBox approaches that require a substitute 
model - this approach is direct and makes no assumptions about the transferability property of 
adversarial attacks [55]. 
 
Rosenberg et al. [46] not only developed a system to launch a BlackBox attack on malware 
classifiers, but also built a generalized and end-to-end framework to do it. The effectiveness of 
their framework was tested against 14 different models achieving successful evasion in 70-90% 
of the time, depending on the model. Apart from the original training dataset, they also proved the 
effectiveness of the proposed framework on previously unseen malware, including WannaCry. 
  
Yang. et al. [47] took a unique approach to perturbing malware to generate evasive variants. 
First, instead of taking vanilla static or dynamic features the authors extracted features from 
Android benign and malicious samples based on the RTLD (Resource, Temporal, Locale, and 
Dependency) model. Then they proposed 2 types of attacks. The evolution attack looks at 
malware family trees, finds the most popular mutations that the malware authors have used, and 
tries to re-apply them to malware samples that don’t yet have them. The confusion attack tries to 
replace features that are unique to malware samples with features that can be found in both 
malware and benign samples, but that lead to the same functionality. The authors investigated 
the success of the two attacks each individually and together (under the “MRV” umbrella) and 
found that they were able to evade VirusTotal 80% of the time, Drebin 60% of the time, and 
AppContext 20% of the time. 
 
Hu and Tan [48] argued that malware detection will move in the direction of sequential classifiers 
based on RNNs. Hence they mounted an attack on 6 different RNN classifiers. To be able to 
inject whole API sequences they developed their own unique attack algorithm that relies on a 
generative RNN to perturb the files. Eventually they successfully reduced the accuracy of 6 RNN 
models from 90% to low single digits, even when the adversarial examples were prepared on a 
substitute RNN with a different architecture. Thus they also reaffirmed adversarial example 
transferability in the malware space [55].  
 
Finally, Anderson et.al. [29] wanted to perform an attack as closely grounded in reality as 
possible. This meant both a)only relying on hard label output of the classifier and b) holding no 
assumptions about the features space used by the model. They built a reinforcement learning 
system that stochastically modified PE binaries with features sampled from a benign feature list, 
capped at 10 mutations per file. Depending on the dataset used (authors tried 4), they managed 
to generate evasive malware in 10-24% of cases. Because of the extremely limited threat model 
the results appear modest compared to other papers; what’s more their results seem to have 
done no better than random perturbation would have, as the authors themselves point out in their 
paper. This highlights just how challenging adversarial attacks on malware classifiers under 
realistic, 0-knowledge threat models are.  
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Clearly, there is no shortage of methods to evade malware classifiers – be itBlackBox or 
WhiteBox. It is thus paramount that such classifiers are hardened and made more robust, which 
is exactly what we review in the next section. 

 
5. DEFENSES FOR MALWARE CLASSIFIERS 
In this section we will review a number of defensive strategies that can help make the classifiers 
more robust to evasion attacks. 
 
5.1  Information Hiding 
Information hiding is perhaps the most obvious place to start when thinking about classifier 
defenses, because many attacks rely on access to model’s gradients or at least confidence 
scores. Such defenses were discussed and attempted in previous literature [16].  
 
A somewhat related method is injecting randomness into the classifier system through for 
example multiple classifier ensembling [22]. This makes it more difficult for the attacker to reverse 
engineer the classifier and mathematically prepare adversarial examples. 
 
The biggest downside of this approach is that it doesn’t fix the underlying problem (classifier 
making decisions based on non-robust features) but simply hides behind a curtain of obscurity. 
The security community in general is rightly skeptical of such security through obscurity approach 
and it indeed can backfire [12], [17], [19]. 
 
5.2 Adapting to Evasive Variants 
To be able to develop an evasive sample, the attackers would first need to test multiple samples 
on the classifier. Therefore, in an online scenario, the classifier can learn and adapt to the 
attempted alternates by storing and training again on every sample recognized by the API. It 
should be noted, however, that retraining is usually cost ineffective and potentially makes the 
classifier vulnerable to alternate evasion strategies such as poisoning [18], [19].  
 
In [18], Chinavle et al. the authors presented an approach to retrain the classifier using pseudo 
labels as soon as the evasive variants were first detected from an ensemble model. This type of 
approach was particularly effective in solving a spam detection task [18]. 
 
5.3 Preventing Overfitting 
Xu et al. [19] argue that the problem of evasion is really a problem of overfitting. In this case, 
common machine learning strategies generally used to combat overfitting can be implemented. 
For example, methods such as training on a significantly larger dataset or using strategies such 
as model averaging to reduce the variance may be employed. It is unlikely, however, that these 
strategies would confer true robustness – it is impossible to collect a complete data set that would 
include all future malware variants, and hence some degree of overfitting should always be 
expected. 
 
5.4 Feature Selection 
Xu et al. [19] demonstrated that even features used by popular classifiers such as PDFRate and 
Hidost are non-robust (they are meaningless in the context of malware). Instead, in order to build 
better classifiers the authors proposed to use deeper features that resist evasion. Such features 
could be crafted from higher-level semantic analysis of the input file and would target properties 
of the file difficult to change without disrupting the malicious behavior.  
 
Grosse et al. [20] considered manual feature selection, restricting possible features only to 
AnroidManifest.xml and discarding those with the highest cardinality. Unfortunately, this turned 
out to make the neural network less secure. Other works have similarly found that feature 
selection can in fact make the classifier less robust, not more [21], [22], [23], [24], [25]. 
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Nevertheless, Zhang et al. [26] took a different approach to feature selection that proved to be 
effective. The authors first added a regularization term to the loss function that represents 
robustness to adversarial attacks. They then conducted forward selection and backward 
elimination of features, until only robust features were left. It is noteworthy that this approach, in 
contrast to previous ones [21], [22], [23], [24], [25], didn’t require any assumptions about the 
model’s feature space. 
 
Finally, in [27] the authors successfully combinedfeature selection and ensembling to build 
arobust classifier for Android malware. Their system enjoyed true positive classification rates of 
greater than 80% under heavy attacks, compared to 20-60% for an undefended model. 
Unattacked, their system performed on par with undefended classifiers in terms of accuracy. 
 
5.5 Distillation 
Distillation, first proposed by Hinton et al. [31], refers to the transfer of knowledge from a large, 
teacher neural network to a smaller, student network. Papernot et al. [32] suggested distillation 
could be used to defend classifiers against evasion attacks.  
 
Grosse et al. [20] found that malware classifiers trained via distillation did show enhanced 
robustness against attacks. However, improvements in accuracy were significantly lower than 
what was originally observed in the image domain (misclassification rates decreased only to 40% 
vs to 5% in images) [32]. 
 
5.6  Adversarial Training 
Adversarial training was originally proposed by Szegedy at al. [11] and involves the following 
three steps [20]: 
 

1. Train a classifier on the original, benign dataset 
2. Craft adversarial examples for the classifier trained in (1) 
3. Iterate additional training epochs of the original classifier, this time including correctly 

labeled samples from (2) 
 
Grosse et. al. [20] showed that re-training the classifier on the newly created training data 
improves its effectiveness against evasion attacks. However, the gains were minimal, topping out 
at around a 6% improvement in misclassification rate.  
 
Hu and Tan [14] explored using adversarial training against GAN-based attacks.While the re-
trained model did show improvement, once its new weights became publicly known, the GAN was 
able to always generate new adversarial examples, with 100% success rate.  
 
Tong et al. [28] showed that it took ten rounds of adversarial re-training to finally confer 
robustness against the attack method by Xu et al. [19]. They also, however, drew a distinction 
between two types of attacks - those constructed in problem space (actual code is modified and 
the file is then checked for maliciousness through a sandbox) vs those constructed in feature 
space (feature vectors are modified using gradients, and then translated back into problem 
space, if possible). They pointed out that adversarial retraining with feature space-based attacks 
doesn’t always confer resistance to problem space-based attacks, and hence robustness against 
[19] doesn’t necessarily imply “actual” robustness. 
 
In [29], the authors successfully improved classification accuracy by 33% by using adversarial 
training. However, the authors noted that the library used for binary manipulation seems to be 
leaving unique fingerprints in the code, and suspected that adversarial training simply learnt to 
detect those fingerprints, rather than to generalize to detect evasive malware samples. 
 
Finally, researchers from MIT re-trained a classifier using adversarial samples from four different 
attacks [49]. The authors managed to increase the robustness of the model, including against 
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attacks from [20], reducing fooling rate from near 100% on undefended model to 35% on the 
defended one. Other works have also found success with adversarial re-training [47]. 
 
5.7  Non-linearity 
In [30] the authors found that using an RBF kernel reduced the effectiveness of evasion attacks 
on SVMs from 50% down to practically 0%. The same paper found decision trees to be infinitely 
vulnerable to evasion, to the point where the authors strongly recommended not to use them in 
security-conscious applications. This work is in-line with one of the most important research 
papers in the space, written by Goodfellow et al. [54], where the authors postulate that the entire 
reason adversarial examples exist is excessive linearity of modern machine learning models. 
 
5.8 Micro-detectors 
The final defensive approach seen in the literature utilizes multiple smaller machine learning 
models (termed “micro-detectors”) working together to confer classifier robustness [33]. Each of 
the micro-detectors is trained on a sub-portion of data and learns to recognize a particular 
malware type or family. A key benefit of such a design is its adaptability. If one model becomes 
obsolete or needs to be re-trained, it can be done so quickly and inexpensively, without having to 
affect other models. 

 
6.    CONCLUSION 
This survey looked at machine learning in the malware classification domain, and more 
specifically how such classifiers can be attacked by and protected from adversaries wishing to 
evade detection. We have provided a background on machine learning and adversarial attacks 
and dived deep into a particular class of attacks - evasion attacks. Finally, we have reviewed the 
available research that can help make malware classifiers more resistant to such attacks. 
 
Machine learning is destined to take central place in the future of our cybersecurity systems, and 
we believe it is absolutely paramount that we learn to build classifiers that are not only effective, 
but also robust. We would hate a future where machine learning itself becomes the weakest link 
in the security chain– and hope this survey inspires new research that will prevent that from 
happening. 
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