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Abstract 
  
The world is becoming more digitized and inter-connected by the day and securing our digital 
infrastructure is not a topic we can take lightly anymore. Intrusion detection systems (IDSs) have 
been an integral part of the cybersecurity stack ever since their introduction in the 1980s. 
Traditionally such systems have relied on signatures and heuristics, however, recently growing 
demand for scalability, advances in computational power, and increasing dataset availability, 
have paved the way for machine learning approaches. 
 
The challenge is that even though machine learning can do a better job at detecting intrusions in 
normal conditions – it itself is left vulnerable to adaptive adversaries who understand how these 
systems work and “think”. In this survey we review the different kinds of attacks such an 
adversary can mount on IDSs, and perhaps more importantly, the various defenses available for 
making IDSs more robust. We start by proving some historic context on the matter and 
introducing the basic taxonomy of adversarial machine learning, before diving into the methods, 
attacks and defenses in the second part of the write-up. 
  
Keywords: Machine Learning, Intrusion Detection Systems, Adversarial Attacks, Evasion 
Attacks, Poisoning Attacks. 

 
  
1. INTRODUCTION 
Machine learning in security is not new and has been used for a while. Examples include 
detecting malware on endpoints [1], [2], [3], cloud instance monitoring [4], [5], user behavior 
analysis [6], [7], [8], secure orchestration [9] and even automated data triaging in SIEM [10], [11], 
[12]. 
 
The same is true for intrusion detection systems (IDSs). IDSs are responsible for monitoring 
traffic either on the host device (host IDS or HIDS) or on the network itself (network IDS or NIDS) 
and recently there has been an explosion in research attempting to apply machine learning in IDS 
settings (Hindy et al. [13] identified over 80 separate research papers on the topic, written 
between 2008 and 2018). 
 
It is a well-known fact, however, that machine learning (including deep learning) systems are not 
perfect and can in fact be exploited by adversaries. Previous research has shown that machine 
learning systems can be taken advantage of both during training [14], [15] and during test [16], 
[17] phases. We refer to the former as poisoning attacks – and the latter as evasion attacks (more 
on this in Section 3). Although most of the research, especially on the latter, has been conducted 
in the image realm – it’s actually the security realm that faces the biggest challenge from such 
vulnerabilities.  
 
To prevent such attacks from happening a parallel stream of research in the machine learning 
community has busied itself with defenses against adversarial attacks. For poisoning these 
primarily take the shape of detection of outliers [18] and robust learning [19]; for evasion the 
spectrum is much wider ranging from adversarial re-training [20] to gradient masking [21], input 
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modification [22], detection [23], extra NULL class addition [24], and actual formal methods [25]. 
Not all of the above are applicable to IDSs as we will see in Section 5, but some indeed are. 
 
The motivation for this paper to produce the first-ever survey discussing adversarial attacks and 
defenses on IDSs. There have exist surveys that review the IDS classifiers themselves [13], [26], 
[27], and even ones that review features [28] and branch out into SDN [29] – but none, as far as 
the authors are concerned, that review the adversarial angle of IDSs. It is worth nothing that 
because adversarial attacks and defenses on IDSs are so new, we are sometimes forced to go 
outside pure machine learning-based IDSs and review attacks and defenses conducted on 
traditional rule-base and statistical systems. 
 
This paper is organized as follows: in Section 2 we introduce IDSs, their history, and the role of 
ML in modern IDS systems; in Section 3 we introduce the taxonomy around adversarial machine 
learning to be able to distinguish between different kinds of attacks; in Section 4 we dive deep 
into the various kinds of attacks on IDSs; and finally in Section 5 we touch on defenses. Section 5 
in particular is a brief section due to fundamental lack of research in the area of adversarially 
robust IDSs, something we hope will change in the near future given the importance of these 
systems in enabling organizations to stay secure. 

 
2. INTRUSION DETECTION SYSTEMS AND MACHINE LEARNING 
2.1 Brief History of IDSs 
The concept of IDSs has been around for almost 40 years now, beginning in 1980 with James 
Anderson's seminal paper, Computer Security Threat Monitoring and Surveillance [30]. Written 
for a government organization, Anderson’s work introduced the idea of audit trails and how they 
could be used for tracking misuse and malicious user behavior. It led to tremendous 
improvements in the auditing subsystems of virtually every operating system and seeded the idea 
of what an IDS might be. 
 
The next big milestone in IDSs came from Dr. Dorothy Denning. Also working on a government 
project, Denning tried analyzing audit trails from government mainframe computers to create 
profiles of users based on their activities. In 1984 she helped develop the first model for intrusion 
detection, the Intrusion Detection Expert System (IDES), and later that same year published An 
Intrusion Detection Model [31], forming the basis for most work on IDS that followed. 
 
Commercial development of IDSs began in early 1990s. The first company to market with a 
commercial IDS (HIDS, to be more specific) was Haystack Labs with their “Stalker” [32]. Others 
were SAIC with their “Computer Misuse Detection System (CMDS)” [33] and the Air Force's 
Cryptologic Support Center with their “Automated Security Measurement System (ASIM)”. In 
1994 the ASIM project turned itself into a commercial company (the Wheel Group) and shipped 
the first-ever commercial NIDS, NetRanger [34]. 
 
2.2 Taxonomy of IDSs 
There are two important axes on which IDSs differ – where they are deployed and what they look 
for. Starting with the former, IDSs can be deployed on either a singular host machine (in which 
case they are termed host-based IDSs or “HIDS”) – or they can be deployed on the network itself, 
overseeing packet flow between all the different endpoints (termed network-based IDSs or 
“NIDS”) (Figure 1). As we’ve seen above HIDS have been the first to be invented and deployed, 
while NIDS were a more recent development.  
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FIGURE 1: A graphical representation of a typical network and the role of HIDS and NIDS in it. 

 
Each of course has its advantages and disadvantages. HIDS, for example, can be installed in 
isolation, is good at preventing inside intrusions, and is excellent at determining the extent of 
damage. NIDS, on the other hand, is useful for being a holistic solution saving time and cost of 
installation and is generally considered the go-to defense for outside intrusions [27]. Today many 
organizations will use both in combination. 
 
The second axis on which IDSs differ is the way they operate. Broadly speaking IDSs break down 
into signature-based and anomaly-based. Similar to the anti-virus world, signature-based IDSs 
focus on finding known threats. Signatures are effectively fingerprints that allows IDSs to quickly 
scan a packet and determine if it is carrying anything harmful. Anomaly IDSs, as the name 
suggests focus on detecting unknown threats [27]. They generally are more sophisticated than 
signature-based systems, have recently evolved to use machine learning, and are hence the 
main focus of this survey. 
 
2.3 Machine Learning in IDSs 
One of the first works that tried to integrate machine learning into IDSs was this 2002 work by 
Mahoney and Chan [35]. As the authors themselves claim, their system “learns protocol 
vocabularies (at the data link through application layers) in order to detect unknown attacks that 
attempt to exploit implementation errors in poorly tested features of the target software”. 
 
Machine-learning based IDSs can use a variety of features. One of the most popular datasets in 
the IDS community, KDD-99 [36] and its offspring NSL-KDD [37], for example have as many as 
41 features available for modelling, each (Figure 2). Different works have leveraged different 
number of features, pre-processed in different ways in the past [38], [39], [40]. Other approaches 
have relied on end-to-end machine learning (typically deep learning) and avoided manual feature 
pre-processing altogether [41], [42]. 
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FIGURE 2: KDD-99 and NSL-KDD feature list. Copied from [93].  

Note that 42th attribute (attack_type) is not actually a feature, but rather the prediction vector. 

 
Regarding machine learning algorithms applied in IDS, previous work leveraging virtually every 
type of algorithm exists. One of the most complete surveys in the space done by Hindy et al. [13] 
compared over 80 works on IDS using machine learning, and concluded that the most popular 
algorithms were artificial neural networks (19%), SVMs (14.4%), k-means (11.7%), decision trees 
(9.0%), Bayesian (9.0%), fuzzy logic (7.2%), and kNNs (5.4%). Full details can be seen in Figure 
3. 

 
 

FIGURE 3: Algorithms examined in [13].  

Note how the overwhelming majority of papers on IDSs published between 2008 and 2018 are machine-
learning based (97.3%). 
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Despite the many research studies on machine learning-based IDSs, there nevertheless seems 
to be a glaring gap in terms of actual deployments. Sommer and Paxson [43] conducted an 
insightful review into the issue and concluded that this is due to five key factors: 

1. Machine learning is generally better at finding similarities than anomalies. Even thought 
anomaly detection can be seen as a classification problem, if you’re looking for new 
threats you by definition have a class that is under-represented 

2. IDSs have an outsized cost of errors. False positives become very expensive very 
quickly, while false negatives can cause serious damage. 

3. There exists a semantic gap between results and their operational interpretations. An 
“anomaly” doesn’t necessary imply an attack – and it is difficult to separate malicious 
anomalies from benign. 

4. There exists enormous variability in input data. Even within a single network, 
characteristics like bandwidth duration of connections, and application mix can exhibit 
immense variability – more so when viewed over short periods of time. 

5. Practical limitations preventing sound evaluation. It is most difficult to obtain a functional 
network dataset due to sensitivity and so publicly available datasets tend to be either 
synthesized or anonymized – both not representative of production environments. 

 
3. TAXONOMY OF ADVERSARIAL MACHINE LEARNING 
Like in other areas of security, attacks on machine learning can be grouped based on a variety of 
properties. These include adversary’s goal, timing, and capability. 
 
When thinking about adversary’s goals we borrow the popular security paradigm of 
Confidentiality, Integrity, and Availability (CIA) [44]. According to CIA, the attacker can have one 
of three goals: 

1. Confidentiality – get access to sensitive, private information, such as the underlying 
dataset the machine learning system was trained on, or the model itself. 

2. Integrity – violate the authenticity of the machine learning system, such as for example 
get it to misclassify an input without the host noticing. 

3. Availability – take the machine learning system down entirely, which, for example, could 
be useful with IDSs, thus leaving the network undefended. 

 
Timing refers to where in the machine learning pipeline [45] the attacker performs the attack. 
Machine learning is broadly speaking a two-step process (Figure 4). At first the system “trains” on 
a known body of training data, trying to learn the patterns hidden in that data (supervised 
learning) or understand relationships between various parts of the dataset (unsupervised 
learning). Later the system is put to a test and it issues predictions on new, previously unknown 
inputs. Depending on the task, those predictions can take the form of class labels (classification), 
continuous variables (regression), or cluster assignments (clustering). 
 

 
 

FIGURE 4: Simplified diagram depicting two steps of the machine learning process. 

 
It turns out that both of these steps – training and prediction – are vulnerable to adversarial 
attacks. Attacks performed at training time aim to inject bad, malicious data into the training pool 
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to teach the model something it shouldn’t be learning [14], [15]. We refer to such attacks as 
poisoning attacks.  
 
Attacks performed at test time make use of an intriguing property [16] machine learning systems 
seem to universally possess – they are easily fooled by inputs carefully perturbed in a particular 
direction [16], [17]. We refer to them as evasion attacks. The vulnerability has been discovered in 
2013 by Szegedy et al. [16] when trying to understand how a neural network “thinks”. Ever since 
there has been a cambrian explosion in “adversarial example” research, signifying community’s 
interest in the security and robustness of machine learning systems (Figure 5). 
 

 
 

FIGURE 5: Number of “adversarial machine learning” papers released on arxiv [94]. 

 
One other type of attacks that can be performed at test time are privacy attacks [48], [49], [50] – 
those designed to elicit information from the machine learning system rather than directly 
influencing its predictions. 
 
Taking attacker’s goal and timing together we can arrive at the following output (Figure 6): 

 

 
 

FIGURE6: Summary of the types of attacks on machine learning classifiers. 

 
Finally, capability refers to adversary’s level of knowledge about the target machine learning 
system. Although scientific literature tends to vary in how they use the below terms [45], [46], [47], 
there seems to be broad agreement that there are three possible levels of knowledge: 

- WhiteBox refers to the type of adversary who has detailed understanding of the internals 
of the targeted machine learning model. This typically involves all of the following: model 
architecture, model weights, and training data sample or at least training data distribution. 

- BlackBox refers to the type of adversary who doesn’t possess the above knowledge. 
BlackBox adversaries have to mount their attacks having no more access than the 
classifier’s output. If they receive only the class label from the classifier the attack is 
known as hard-label, otherwise, if they also get access to a confidence score, it is known 
as confidence attack. 
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- GrayBox, perhaps the most ambiguous out the three, refers to adversaries who sit 
somewhere in the middle. Such an attacker might be able to query the model and hence 
get its output, but also have knowledge of the model’s feature space and distribution of 
the underlying dataset it was trained on. 

 
In this survey we focus on both evasion and poisoning attacks, however, we leave out privacy 
attacks on IDSs. Where possible, we try to note down whether the attack is done in a WhiteBox 
or BlackBox fashion, as this greatly influences the power of the attack. 

 
4. ATTACKS ON INTRUSION DETECTION SYSTEMS 
Like we mentioned in the introduction, because of the relative scarcity of adversarial attacks 
works on IDSs we start by reviewing attacks on pre-machine learning IDSs, ie ones based on 
signatures / statistical properties. Such attacks also provide useful historical context. Later, we 
move to discuss evasion attacks on machine learning-based classifiers and finish the section with 
a review of poisoning research. 
 
4.1. Evasion Attacks on Non-Machine Learning-Based IDSs 
TCP/IP transformation attacks are ones that leverage the intricacies of TCP/IP protocol design to 
prevent IDS from doing its job correctly. It is not hard to imagine that IDSs have gained most 
popularity with the development of the internet [51] – and hence the first serious attacks focused 
strictly on properties related to its protocol design [52], [53], [54], [55].  
 
Chung et al. [52] mounted one of the first TCP/IP transformation attacks in 1995 (just 1 year after 
the first commercial IDS was released). In this pioneering work, authors showed how to evade 
detection by distribution malicious activity over several sessions. 
 
Paxson [53] was the first to introduce a formal classification of evasion attacks on IDSs. 
Specifically, they introduced 3 attacks: 

1. Overload attack, which overburdens the monitor to the point where it fails to keep up with 

the data and start to drop packets. 

2. Crash attack, which knocks the monitor out of action by causing it to fault or run out of 

resources. This attack type is much more subtle than the overload type, but also requires 

more work by the attacker to figure out a flaw in the monitor’s design. 

3. Subterfuge attack, which perturbs the input in a way that prevents the monitor from 

seeing it. For example, in the paper the authors inserted ‘NUL’ into the text in the hope 

that the monitor would miss everything after it. 

The first two can also be seen as first variations of the modern DoS attack (also below), while the 
third is a classical evasion TCP/IP transformation. 
 
Ptacek and Newsham [54] have introduced their own classification of TCP/IP transformation 
attacks: 

1. Insertion attack: because an IDS will accept every packet but the end system will not, an 

attacker can "insert" packets that only the IDS sees. eg they can convert "\GET/cgi-

bin/phf?" into "\GET/cgi-bin/pleasedontdetecttthisforme?" by sending "leasedontdetectt" 

and "is" and "orme?" to the IDS. 

2. Evasion attack: opposite of insertion, here the attacker makes sure some packets don't 

reach the IDS. Taking the above example, the attacker might split "\GET/cgi-bin/phf?" 

into "\GET/cgi-bin/p" and "hf?", and as long as IDS receives only one of the two, it won't 

pick up on the intrusion.There are many different ways (1) and (2) can be done both at IP 

and TCP layers, mainly due to the reassembly property of TCP. 

3. DOS attack can be used to take the IDS down and leave the network "fail-open" - eg 

through resource exhaustion. 
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The authors tested the above three attacks against 4 commercial IDSs 
(WheelGroup'sNetRanger, InternetSecuritySystems'RealSecure, AbirNet'sWall-3, 
NetworkFlightRecorder'sNFR) – and found them all to be vulnerable. They concluded by saying 
it’s unclear how to fix some of the vulnerabilities explored without building a second layer of 
protection for the IDS itself. 
 
Handley et al. [55], similarly to Ptacek and Newsham [54] explore the idea that the IDS can see 
the network very different to how the end system does – and that can be leverage by adversaries 
to their advantage. They discuss the differences at the network topology and exact protocol 
implementation levels and mention how attackers can leverage such network properties as IP 
fragmentation, TTL, and overlapping IP fragments. 
 
Next class of attacks are mimicry attacks. Such attacks involve the attacker taking a malicious 
packet and modifying parts of it to “mimic” a benign version. For example, an attacker might want 
to include specific strings or functions, or API calls known to be associated with benign version in 
an attempt to hide the true malicious nature of its payload. 
 
Wagner and Soto [56] successfully mounted one of the first mimicry attacks on a HIDS. They 
used WhiteBox access to a HIDS to understand what it was looking for, and then manually 
perturbed the file in order to evade detection. Their method included replacing system calls with 
their own and inserting plenty of no-op calls to obfuscate real, malicious activity. 
 
Tan et al. [57] examine two different HIDSs based on system calls and given a fairly restrictive 
"normality" model successfully devised versions of several exploits that mimicked benign files and 
hence escaped detection. In addition, they demonstrated a way of masquerading the attack to 
look like adifferent (less dangerous) one. The latter is particularly interesting as it opens up the 
possibility of not just evasion, but using adversarial attacks as a red herring. Similar work has 
been done in [58]. 
 
Next we examine polymorphic blending attacks. Polymorphism describes malware that changes 
its shape from instance to instance; and is typically designed in such a way to evade detection by 
signatures. Blending, on the other hand, is effectively the same as mimicry: malware that 
attempts to look benign by copying attributes of benign versions. Put together, thus, polymorphic 
blending refers to malware that both differs from sample to sample, and blends in with “normal” 
traffic as not to be picked up by the anomaly IDS. 
 
The idea of polymorphic blending was pioneered by Fogla et al. [59]. The authors launch a 
polymorphic blending attack on a byte distribution classifier [60] that, as the name suggests, looks 
at frequency of occurrence of various n-grams and decides if that frequency is "normal". Their 
attack involves three steps: 

1. Decide on the right packet size that is not abnormal given the target network’s packet 

size distribution. Then break their payload into the respective number of packets. 

2. Develop a substitution algorithm that learns to "encrypt" characters in the payload to 

make their distribution look benign. For example, normal network traffic mainly has 

mainly printable characters, while malicious payload doesn't. The right substitution table 

(found using the algorithm) fixes this.  

3. Pad the packets with some terminal bytes to make them blend with normal traffic still 

more. 

The authors show their attack is successful at evading the target IDS (they used a pure 
polymorphic attack as baseline, which as expected fails, as it doesn’t “blend” and hence is an 
anomaly). 
 
In an extension of [59]’s work, Kolesnikov and Lee [61] built their own "blender" that takes in 
normal traffic profile and spits out an evasive variant. Similar to [59], they use a substitution table 
to achieve this. The authors successfully tested their attack on 4 different IDSs. 
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The idea of polymorphic blending is further formalized in [62], which also presents a framework 
for automatic generation of such attacks. 
 
4.2 Evasion Attacks on Machine Learning-Based IDSs 
We will start with the discussion of WhiteBox attacks. Remember from the Section 3 that these 
attacks are the ones where the adversary has the highest level of knowledge possible – typically 
including model’s gradients. This allows them to mount attacks that directly optimize the model’s 
loss function, except the other way around (gradient ascent). A lot of these attacks have been 
invented in the computer vision realm and hence we’ll see a pattern where the algorithms used to 
execute them are often directly transcribed from there. 
 
Huang et al. [63] launched 3 separate WhiteBox attacks on 3 types of deep learning based IDSs 
(MLP, CNN, LSTM). The authors used the infamous FGSM [17] and JSMA [47] algorithms from 
vision. The most serious damage was done by FGSM, which managed to reduce LSTM’s 
accuracy from 98% to 42% (ie over half). 
 
Rigaki and Elragal [64] attacked an SVM, decision tree and random forest using adversarial 
examples generated on a neural network, and then transferred [75]. They too attempted FGSM 
[17] and JSMA [64], but concluded that the formal was unusable (modified too many features). 
JSMA, on the other hand, altered on average just 6% of the features of the packets to 
successfully evade detection. As a result the authors managed to reduce the accuracy of the 
classifiers from 5 to 28%, with random forest coming out as the most robust classifier. 
 
Clements et al. [65] attempted to attack a deep learning-based NIDS system with 4 different 
attack algorithms, borrowed from vision: FGSM [17], JSMA [64], C&W [67], and ENM [68]. They 
performed two sets of attacks – first set targeting integrity, second availability (as discussed in 
Section 3) – and managed to find adversarial examples using all 4 methods in 100% of cases. 
Moreover, the best method, ENM, managed to generate evasive variants with as few as 1.38 
features perturbed. 
 
Wang [66] also explored attacks from the vision realm on IDSs. Specifically, they mounted JSMA 
[64], FGSM [17], LL-FGSM [69], Random FGSM [70], DeepFool [71], and C&W [67] attacks on 
the infamous NSL-KDD dataset [37]. They found that JSMA required the least features to be 
perturbed to generate an effective attack, however, all algorithms proved successful in empirical 
evaluation. 
 
We now move to BlackBox attacks. Like we discussed in Section 3, BlackBox attacks are much 
more restrictive than WhiteBox. The adversary typically has far less information to work with and 
hence can optimize their attacks a lot less. This is not to say that BlackBox attacks are not 
powerful, in fact, some of the simplest yet most powerful attacks in computer vision fall into this 
bucket [68], [72], [73], [74]. 
 
The definitive study of BlackBox attacks in IDSs was done by Rigaki and Garcia [76]. The authors 
explored the idea of modifying network traffic post-exploitation (during C&C) to avoid detection by 
the IDS. They built a generative adversarial network (GAN) using benign Facebook chat traffic, 
placed it on a separate server, and modified the malware to periodically request new network 
behavior prototype it should follow. After just 400 training epochs they managed to successfully 
guide the malware to evade detection 100% of the time. The study is still the more significant 
because of how little data it took to train the GAN – just 200 network flows. 
 
4.3 Poisoning Attacks on IDSs 
One of the first attempts at poisoning IDSs was performed by Chung and Mok [77]. The authors 
developed an “allergy” attack against the Autograph worm signature generation system [82]. 
Autograph operates in two phases: 1)it finds suspicious nodes in the network based on their 
behavior, and 2)it then observes those nodes and their traffic, and turns those into blocking rules. 
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The allergy attack 1)convinces the Autograph that the node is indeed infected, and 2)after the 
Autograph learnt to recognize a certain kind of traffic as malicious based on that node, sends 
exactly that kind of traffic. This is an example of a poisoning attack targeting availability. 
 
While Chung and Mok [77] tried poisoning a signature-based IDS, Nelson and Joseph [78] were 
the first to look at poisoning a machine learning-based IDS. Their work, although lacking empirical 
evaluation, came to a surprisingly positive conclusion: the attacker needed exponential amounts 
of data to subvert a learning algorithm. It can be argued, however, that the authors used an 
unrealistic assumption of the classifier retraining with an infinite training window (instead of 
sliding). A more realistic assumption would be to adjust to non-stationarity of data. 
 
In [19] Rubinstein et al. wanted to poison a classifier to make it miss an upcoming DoS attack. 
They did this by injecting useless data (“chaff”) into its training pool beforehand. In general, the 
authors were able to achieve high level of evasion for the DoS attack, eg 28% with as little as 
10% chaff inserted. They also looked at the impact of the level of adversary’s knowledge and 
their timing strategy on the success of the attack. 
 
Kloft and Laskov [80] attempted a poisoning attack on a centroid-based clustering algorithm used 
by an anomaly IDS. They randomly chose an exploit and a normal training set out of the prepared 
data and ranpoisoning attacks until success, ie until its vector was accepted by the anomaly 
detector. They found that in order to stage a successful poisoning attack the attacker needs to 
control 35% of the training pool (when they're able to ingest an arbitrary large number of points) 
or 5-15% of all traffic (when they're restricted to only a certain number of samples). 
 
Finally, Biggio et al. [81] performed 3 different attacks – one of them backdoor poisoning – on an 
IDS system. Each network packet was considered an individual sample to be labeled as normal 
(legitimate) or anomalous (malicious) and represented as a 256-dimensional feature vector. They 
assumed the attacker had knowledge of the features used by the system, but no access to the 
detector itself (neither any knowledge of how it works – ie BlackBox scenario).Samples injected 
were on purpose made to emulate other existing network traffic (same histogram of payload’s 
bytes), so that they are not excluded as anomalous during detector re-training. As a result, the 
authors managed to more than half the accuracy of the system. 
 
The overall picture that we hope this section has manage to portray is that of a “well and alive” 
world of adversarial research in the field of IDSs. This is not unexpected; IDSs are one of the 
most important components of modern security systems and it is paramount that we think about 
how an adaptive adversary may attempt to make use of them. 

 
5. DEFENSES FOR INTRUSION DETECTION SYSTEMS 
We now switch to our final topic, discussing what can be done to make machine learning-based 
IDSs more secure. Unlike in other areas of machine learning - such as computer vision, NLP, 
speech and even malware classification - the adversarial defense landscape for IDSs is rather 
scarce. This is only fair because there are far fewer attack papers as well. Nevertheless, below is 
our best attempt at summarizing existing work on protecting IDSs against adversarial attacks - 
split the same way as the attacks section - into evasion and poisoning. 
 
5.1 Defenses Against Evasion Attacks on IDSs 
The first defense type we will discuss is detection. Most of the worms today are polymorphic - 
they use an encryptor / decryptor to hide the actual shellcode behind a randomly generated key. 
There are, however, certain components, that are left unencrypted - such as the decryptor itself. 
Those can be used to detect even the most evasive types of worms. 
 
This idea formed the basis for the work done by Akritidis et al. [83]. The authors designed a 
heuristic defense for IDSs that relies on detecting “sleds” - a common feature of buffer overflow 
attacks. Very simply a “sled” is a sequence of NOP commands that the attacker needs to have as 
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part of their malicious payload in order to successfully execute a buffer overflow attack. Although 
their work was not the first to introduce the idea of looking for sleds [84], [85] – their defense was 
a major improvement over previous attempts. Specifically, their system, called STRIDE, detected 
several types of sleds that other techniques were blind to, demonstrated a lower false positive 
rate, and proved to be more computationally efficient. 
 
Another defense type, normalization, was introduced and attempted in [55]. The authors 
explained that the biggest challenge faced by IDSs is that they sometimes see the network very 
differently to how the end system does. Indeed, we discussed a number of TCP/IP transformation 
attacks in Section 4 that made use of this property [54], [55]. The proposed defense, thus, 
attempts to level those differences. The authors propose a normalization component that 
prefaces the IDS and tries to resolve any ambiguities and differences between how the IDS and 
the end system might view the network packets. The biggest challenges with this approach are 
the “cold start” problem (when the normalizer goes online it has no "state" to compare to) and the 
fact that the normalizer itself can fall victim to an adaptive adversary. 
 
In [60] Wang introduce randomized modeling / testing as a defense against evasion (mimicry) 
attacks [56], [57], [58]. Under randomized modeling / testing, each monitor randomly partitions the 
payload before running any analysis on it. The intuition is that because the mimicry attacker 
doesn’t know how their payload will be partitioned and analyzed, it’s much harder for them to 
simply “pad” the payload to make it blend with normal traffic. Thus even if the attacker has global 
knowledge of the target network and IDS - the randomization component makes naïve mimicry 
virtually impossible. Similar randomization-based defense against polymorphic blending was 
discussed in [59]. This type of defense of course only works until the attacker discovers the 
randomization seed – yet another reminder of the “cat and mouse” nature of the security game. 
 
Finally, we discovered one work that attempted a version of adversarial training against attacks 
on IDSs [86]. In general, we found it surprising that adversarial training received so little attention 
in the IDS community, given that it is hands down the most popular defense in the rest of the 
adversarial examples literature [20], [87], [88], [89]. 
 
The authors in [86] attribute the problem of poor IDS performance to limited and imbalanced 
datasets. Their solution is a form of data augmentation (can be thought of as adversarial 
training).They first generate synthesized intrusion data using Monte Carlo method and then use 
that data to augment the learning of the IDS. Eventually the authors prove that their framework 
outperforms existing learning based IDSs in terms of improved accuracy, precision, recall, and 
F1-score. 
 
5.2 Defenses Against Poisoning Attacks on IDSs 
Before we discuss defenses against poisoning, let us briefly touch on why machine learning 
models are even susceptible to it. The much too simplified answer is that in order to function and 
be able to “learn” anything at all, machine learning models have to make assumptions. These 
assumptions exist at two levels: the model level and the data level. 
 
Modelling assumptions are those that involve the classifier model and its representation of the 
data. One example of this is data linearity, where the model assumes that there indeed exists a 
linear function that can correctly represent the learning task. Other examples include data 
separability (there indeed exists a boundary that can correctly separate the two or more classes) 
and feature independence (each feature is an independent indicator of a latent variable behind 
the true class of an object). 
 
Data assumptions are assumptions about data’s distribution. Probably the most common 
assumption made is that of data stationarity - ie that train and test datasets follow the same data 
distribution. Another popular one is that each data point is independent and identically distributed 
(i.i.d).  
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Poisoning attacks intentionally violate the above assumptions. For example in [79] the authors 
craft spam emails that come from a different data distribution than the ones used for training (data 
stationarity), while in [19] the authors attack an anomaly IDS by breaking the i.i.d assumption 
(only a subset of the data is perturbed, making it non-identical).Defenses against poisoning 
attacks try to work around the above assumptions, to mitigate their impact. Broadly speaking 
poisoning defenses fall into one of two categories - data sanitization and robust learning. 
 
Data sanitization involves scrutinizing incoming data before adding it to the training pool for the 
model. The goal is to understand whether newly added data is likely to be adversarial, and hence 
exclude it before it can poison the model. The term “data sanitization” in the context of machine 
learning was first used by Cretu et al. in their 2008 seminal paper [90]. The authors used the 
information about when each datapoint was added to the dataset as an indication of how likely it 
is to be poisonous. The intuition, as the authors themselves describe it, is such that “in a training 
set spanning a sufficiently large time interval, an attack or an abnormality will appear only in small 
and relatively confined time intervals”. 
 
Another popular defense that falls under the sanitization umbrella is the Reject On Negative 
Impact (RONI) technique [18]. It measures the empirical effect of adding each training instance 
and discards instances that have a substantial negative impact on classification accuracy. The 
defender first trains a model with the new inputs excluded, then a second copy with the new in-
question inputs included. They then compare the accuracy on the two and if adding the candidate 
instance damages the accuracy, it is rejected. The authors applied this defense to a spam 
classifier and found it to be very successful. Specifically, they managed to improve classifier’s 
spam detection from 80% to 87%, while keeping non-spam detection rate consistently high above 
95%. 
 
In the field of robust learning it is assumed that the bulk of the data originates from a known, 
trustworthy source, but that a part of the data comes from an unknown and assumed to be 
adversarial source. The goal then is to limit the impact of this unknown source. As such, the 
authors in [19] looked at improving the robustness of a principal component analysis (PCA)-
based IDS. They postulated that because PCA is known to be strongly affected by outliers [91] – 
a better algorithm is needed to protect against poisoning. They hence examined the PCA-Grid 
algorithm proposed by Croux et al. [92] and found that it substantially reduced the effect of 
outliers and was able to reject poisonous training data successfully. 

 
6. CONCLUSION 
Digitization is the undisputed trend of our generation. As more devices come online and the world 
turns into a one big computer, cybersecurity will only become more important. Traditional 
approaches to security, such as signatures and heuristics, don’t scale well and will soon likely be 
replaced by more automated techniques, such as machine learning. 
 
In this survey we looked at machine learning and its role in intrusion detection. We gave a brief 
overview of IDSs history and how machine learning came to be in the space. Most importantly, 
however, we looked at how machine learning IDSs themselves can be taken advantage of by 
adaptive adversaries – and how they can be made robust to such attacks.  
 
We are cautiously optimistic about the future – we believe machine learning holds great promise 
for improved security including that of networks, however, we also believe more work is needed in 
the area of adversarial attacks – and especially defenses – for IDSs. 
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