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Abstract 
 
Computing revolution is heralding the transition from digital to cognitive that is the third significant 
era in the history of computer technology: the cognitive era. It is about the use of computers to 
mimic human thought processes, such as perception, memory, learning and decision-making in 
highly dynamic environments. In recent years, there is a growing research interest in the 
development of cognitive capabilities in radio frequency technologies. Using cognition-based 
techniques, a radar system would be able to perceive its operational environment, fine-tune and 
accordingly adjust its emission parameters, such as the pulse width, pulse repetition interval, and 
transmitter power, to perform its assigned task optimally. It is certain that traditional electronic 
warfare (EW) methods, which rely on pre-programmed attack strategies, will not be able to 
efficiently engage with such a radar threat. Therefore, the next generation of EW systems needs 
to be enhanced with cognitive abilities so that they can make autonomous decisions in response 
to changing situations, and cope with new, unknown radar signals. Because the system 
architecture is a blueprint, this paper presents a conceptual cognitive EW architecture that carries 
out both electronic support and electronic attack operations to synthesize close-to-optimal 
countermeasures subject to performance goals. 
 
Keywords: Cognitive Electronic Warfare, Intelligent System Architecture, Previously Unknown 
Threat, Feedback-based Decision-making.

 
 
1. INTRODUCTION 
In recent years, there are more and more commentators who are talking about that we are 
entering a new third era of computing — cognitive era — making cognitive capabilities available 
on a large scale [1][2][3]. The two previous eras are: 1) the “tabulating era” (1900s-1940s) was 
made up of the early use of mechanical systems that can perform simple tasks as tabulate 
calculations; and 2) the programming era (1950s-present) is the era that began during World War 
II and today’s computing professionals have been so involved. It is marked with a shift from 
mechanical tabulators to electronic systems that can be reprogrammed to run different algorithms 
and carry out multiple tasks. The cognitive computing (2011-future) is the third era that brings 
with it a fundamental change with which cognitive systems are built to be able to think like human 
beings [1][4][5]. 
 
Cognitive computing takes computing concepts to a new level to mimic the way the human brain 
works [6], such as perceiving, thinking, learning, remembering and problem solving. Cognitive 
computing is a combination of cognitive science and computer science although they may have 
essentially differences from research objects and methods. Cognitive science refers to the 
interdisciplinary scientific study dealing with the process of cognition that investigates how 
information is stored, arranged and transferred in human mind. As an inter-disciplinary science, it 
encompasses the traditional disciplines of philosophy, psychology, computer science, artificial 
intelligence (AI), linguistics, neuroscience, and others [7]. Cognition originates from Latin [8], is a 
mental process of obtaining knowledge through thought, experience and the senses. It 
fundamentally controls our emotions, thoughts and behaviors. Human cognition is an adaptive 
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complex system, which is changing, adapting and responding to the informational processing 
demands of interactive environments [9]. To catch the cognitive wave, there are growing research 
interests in the development of cognitive capabilities in various electronic systems in recent 
years. Mitola and Maguire first introduced the concept of cognitive radio in 1999 [10]. Haykin 
proposed the idea of cognitive radar (CR) that is a dynamic system to adapt and optimize 
transmitted waveforms based on the operational environment in 2006 [11]. As reported in [12], 
the development of cognitive electronic warfare (CEW) was recommended by a Defense Science 
Board study in 2013 to respond to adaptive radar systems and detect and counter tricky new 
sensors. Because CEW is a relatively new research area, there are not many articles on this 
subject. Most of the existing publications remain focused on introducing, explaining, and 
developing the concepts [13-16]. For example, in [13], the author discussed what is the cognitive 
technology, analyzed the differences between the CEW and adaptive electronic warfare (EW), 
presented the reasons why CEW is required to identify and counter future dynamic radar threats, 
and pointed out that “the true value and operational impact of cognitive EW will be seen in the 
battlespace”. There are a few other articles either focused on evaluating the performance of 
cognitive electronic support (CES) [17], or on cognitive electronic attack (CEA) [18]. In 
comparison, the major contribution of this paper lies in establishing a full system architecture with 
both CES and CEA sub-systems described in detail. 
 
Since system architecture, which takes place within the design phase of the life cycle, is a 
blueprint that guides system development and defines the structural and behavior properties of 
the system [19], a high-level system architecture is presented in this paper as a starting point. 
Key architectural elements, such as components and system modules, are defined and the 
interactions among them are described. The rest of the paper is organized as follows. Section 2 
introduces some background information on cognitive engineering and artificial cognitive system. 
Section 3 provides a brief review of CR. In Section 4, a CEW system architecture is established 
which decomposes the system into modules and defines the system’s behavior by specifying 
interfaces between units, as well as towards the environment. Finally, Section 5 concludes the 
paper with further scope of research.  

 
2. COGNITIVE ENGINEERING AND COGNITIVE SYSTEM 
As mentioned above, cognitive science is an interdisciplinary study of the mind, which is an 
umbrella term that covers a variety of approaches aiming to understand the mental phenomena of 
thinking, learning, decision-making, etc. It is not a unified field of study, but a collaborative effort 
among researchers working in various fields [20]. Norman introduced the term “cognitive 
engineering” in 1980 and suggested to develop this capability as an application-oriented partner 
to cognitive science [21]. Therefore, cognitive engineering is an application-oriented partner of the 
cognitive science, which focuses on applying findings about the fundamental nature of cognition 
whether carried out by human, machine, or a combination of them. As stated in [22], cognitive 
engineering is the application of knowledge and techniques of cognitive psychology and related 
disciplines to the principle-driven design of human–machine systems. It is about the design and 
development of computer-based systems that are analogous to that way humans acquire, store, 
retrieve, and process information. That is cognitive engineering combines cognitive psychology 
and information technology to design systems compatible with the way humans structure and 
solve problems, such as establishing a goal, executing the action, and evaluating the results. 
According to Norman [23], when people do things in our everyday life there occur 7 stages of 
action: 1) establishing a goal, 2) forming the intention, 3) specifying an action, 4) executing the 
action, 5) perceiving the system state, 6) interpreting the state, and 7) evaluating the outcome 
with respect to the goal (Figure 1). 
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FIGURE 1: Norman's Seven-stages of Action Model. 

 
Computer science has a very important role in cognitive engineering not only because computers 
can be used as tools to create, run, and test models of mental organization and functioning, but 
also can offer the information processing concepts and algorithms to perform tasks commonly 
associated with human intelligence [24]. Recently, the development of cognitive systems, 
oriented at modelling human abilities and performance, has received great attention [25]. A 
simplified model of human information processing, as shown in Figure 2, is the theoretical basis 
for understanding how cognitive processes are implemented for constructing the knowledge 
structures of computer agents in the system [26].  
 

 

 

FIGURE 2: Wickens’ Model of Human Information Processing. 

 
The computer scientists and psychologists coined the new field of AI in 1956 with the ultimate aim 
of building computers and robots that could perform tasks commonly associated with human 
intelligence [27]. As stated in [28], “An artificial cognitive system is a system that is able to 
perceive its surrounding environment with multiple sensors, merge this information, reason about 
it, learn from it and interact with the outside world”. It is not meant to replace human thought or 
actions — but rather to provide computational representations of human cognitive processes, and 
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help people interpret the collected data and offer them conclusions [29]. The aim is to build 
cognitive models that mimic human thought process on the basis of Fuster's principles of 
cognition, namely perception-action cycle (PAC), memory, attention, and intelligence [30]. PAC is 
the backbone for system implementation, which forms a closed-loop feedback system between 
the actuator (transmitter) and the perceptor (receiver). It works reciprocally with memory to play 
an important role for recalling past actions and their effectiveness, holding environment 
information and current scenario, and continually updating the knowledge to predict the 
consequences of actions taken [31][32]. Attention refers to the efficient use of resources when 
dealing with a task. It is algorithmic in nature, which processes the perceptor output to extract 
information and concentrate on relevant observations [33]. Intelligence is the most complex one 
because it is built on the former three functions. The functionalities of intelligence include 
assessing events and conditions, reasoning about likely outcomes, and selecting the optimal 
solution through algorithmic decision-making mechanism [34]. As shown in Figure 3, the process 
cycle can be constantly repeated as a loop between perception and action with the environment 
as the external part and the controller as the internal part. 
 

 

FIGURE 3: Perception-action Cycle. 

 
As a summary, a cognitive system is an abstract framework that models brain perception. It 
perceives its surrounding environment via sensors to measure and estimate the environmental 
state. The decision-making controller plays a supervisory role that is responsible for perceiving 
the environment, conducting situation assessment, and determining the next actions taken to 
achieve the optimal control of the system. PAC is the circular flow of information in which any 
current perception can be stored to become the basis of memories that can be used intelligently 
to aid perception, apply attention, form predictions and engage actions [35]. Major characteristics 
of cognitive system include:  
 

 Perceiving the environment in which it operates using whatever sensory input is 
available; 

 Evaluating the acquired information and generating an environmental model; 

 Processing information both acquired from the environment and recalled from memory to 
make judgments about the scenario; 

 Learning and reasoning to select a specific action; 

 Interacting with a changing environment to adjust controller parameters; 

 Using cognitive feedback to create new perceptions, which then lead to new actions, and 
so on. 

 
3. COGNITIVE RADAR 
Since it was originally developed to detect distant objects in the 1930s, radar has been 
demonstrated as an effective tool for surveillance, tracking, and targeting applications in both 
civilian and military applications. With the widespread use of radio frequency (RF) devices, radar 
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systems need to handle increasingly complex signal waveforms in dense signal environments — 
both self-generated and interferences caused by communication and other RF systems. The 
system performance in terms of detection, tracking, and target recognition in complex 
environments has become a serious challenge for modern radars. In the last decade, the radar 
world has been revolutionized by incorporating the adaptive and cognitive approaches. The 
theory of adaptive radar was introduced by Brennan and Reed in 1973, which aims to 
continuously maximize the probability of radar detection [36]. It is desirable to have an ability to 
adapt radar transmit waveform in adverse and crowded signal environments to optimally suit the 
needs for a particular radar tasking [37]. The adaptive radar systems can be categorized into two 
basic types: open-loop systems and closed-loop systems (Figure 4). Open-loop adaptive radar 
focuses more on the adaptation at the receiver to automatically adapt signal processing 
parameters [38]. Adaptive controller deals with the waveform design, such as coding, modulation 
and filtering of radar signals for target tracking, as well as adaptive cancellation to cancel the 
clutter effect and interference. In a closed-loop adaptive radar system, adaptive controller obtains 
feedback from the transmitter so that the optimization criteria can be determined based on both 
receiving and emitting sides. That is the current radar waveform will be considered in the 
calculations for the next measurement. 

 

FIGURE 4: Block Diagram of Adaptive Radar Systems. 

 
Motivated by the echo-location system of a bat to adjust the parameters of its transmitted sound, 
the concept of CR was proposed to improve the radar performance with cognitive mechanisms. 
Table 1 shows a mapping between biological cognitive properties and CRs [39]. 

 
 
 
 
 

 
 

 

TABLE 1: Biological Cognitive Properties vs. CR. 
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measurement of the target and environment to enable identification and recognition. The working 
memory has a short-term nature for temporary information storage of prediction and attention 
[40]. The executive memory resides in the transmitter part plays a key role to achieve specific 
goals while action is being determined. By establishing a feedback structure from the receiver to 
the transmitter, a CR system forms a dynamic closed loop including the transmitter, the receiver 
and the environment [41][42]. 
 

 

 
FIGURE 5: Block Diagram of CR with Memory. 

 
The proposed CR system is characterized by the following four key features [43][44]:  
 

1) The receiver learns, iteratively, from experience gained through interaction with the 
environment; 

2) The transmitter adapts its parameters in an optimal manner in accordance with 
information about the environment passed on to it by the receiver;  

3) The feedback link from receiver to transmitter makes it possible to optimize the 
operations of the transmitter by adjusting its illumination intelligently based on continuous 
learning the operational environment; 

4) The memory plays a very important role in CR systems because a learning process relies 
on the ability to store and retrieve necessary information.  

 
Unlike conventional radar systems that use the fixed transmit-waveform, cognitive abilities could 
allow radar to fine-tune and adjust its emission parameters, such as the waveform, pulse width, 
pulse repetition interval, and pulse compression technique, to perform its assigned task optimally. 
As an essential characteristic of CR system, PAC produces information about how the state of 
the environment is inferred by the system with the gain progressively increasing from one cycle to 
the next [42]. Further extending the concept of CR, the architectures of fully adaptive knowledge-
aided (KA) radar [39] and cognitive fully adaptive radar (CoFAR) [45] were designed to improve 
performance and adapt to unknown environmental scenarios. The objective is to make the radar 
system be able to 1) effectively sense the environment; 2) learn from its experience; and 3) adapt 
to the changes. Figure 6 shows a conceptual framework of a cognitive fully adaptive radar that 
includes these three components.  
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FIGURE 6: Illustration of Conceptual CR Architecture. 

 
In Figure 6, the feedback from receiver to transmitter plays a crucial role to make the radar 
intelligently focus on primary targets but not be disturbed by the interferences or clutter. With 
knowledge of the transmit parameters, the adaptive receiver will thus perform corresponding 
pulse compression and optimize the receiver weighting vector. The KA/Cognitive coprocessor is 
introduced to guide the operation of transmitter and receiver functions in the processing back 
end. The system is operated based on a sense-learn-adapt framework with which observations, 
predictions, decisions and actions can be applied for adaptively detecting and tracking objects 
[46]. 
 
In summary, the concept of CR was proposed as an effective solution in increasingly crowded 
electromagnetic spectrum (EMS) environment within which the conventional radar has difficulty to 
obtain satisfactory performance. It is necessary to point out that there is often confusion over the 
terms of adaptive radar and CR that is called ‘advanced adaptive radar’ or ‘fully adaptive radar’ by 
some people in the radar community. As indicated in [47][48], a CR distinguishes itself from an 
adaptive radar in the following respects: 
 

1) The CR embeds knowledge-aided processing and expert reasoning in both transmitter 
and receiver modes and adjusts its system parameters on-the-fly to match with highly 
dynamic working environments. 

2) The CR is enabled to continuously learn from interactions of the receiver with the 
surrounding environment and update the receiver with the relevant information to 
maximize signal-to-noise ratio. 

3) The CR intelligently and dynamically adjusts the radar illumination and transmission 
waveform based on the operational environment in an effective and robust manner. 

4) The whole CR system constitutes a closed loop including the transmitter, the 
environment and the receiver called ‘global feedback’. It is the global feedback that 
makes the CR be able to refine the choices in uncertain varying environments. 
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EW, the winner is the one that can quickly incorporate the emerging technological advancements. 
Although fully CRs, inspired by the bat and dolphin bio-sonars, are not yet a reality [50], some 
attempts have been initiated to add cognition to conventional radar systems, such as adaptive 
waveform generation and optimization of target detection. Therefore, cognition is the key feature 
to defend against CR systems in the development of next-generation EW systems. A two-step 
deductive and inductive approach has been carried out. Based on principles of cognitive science, 
first a scoping study was conducted to build a conceptual framework of CEW system with a focus 
on the advantages of cognitive capability. Then, from reviewing the challenges of the current EW 
system against future CR, the CES and CEA sub-systems were developed with the relationships 
among each component as the procedures explained in [51]. 
 
4.1 Motivation and Drivers for Cognitive EW 
Over the last century, EW has grown to become an important component of military operations 
since the implementation of radar system during World War II. It includes three major 
subdivisions: electronic support (ES), electronic attack (EA) and electronic protection (EP) for 
either offensive or defensive operations to prevent hostile use, but retain friendly use, of the EMS. 
An EW system consists of antenna(s), receiver(s), processing unit(s), and database to provide 
the means to intercept, identify, analyze and locate radiated electromagnetic energy, and then 
deploy countermeasures. Historically, EW systems were developed based on knowledge of 
specific, previously learned threats. The received RF signals are processed, analyzed, and 
categorized as either threatening or non-threatening associated with actions to be taken. The 
database contains two tables, one stores previous known threats that the system had been 
thoroughly tested against, while the other contains the corresponding pre-programmed 
countermeasure techniques. Thus, there exists a close cooperation between ES and EA 
divisions. Figure 7 shows a block diagram of conventional EW system. 
 

 

FIGURE 7: Block Diagram of Conventional EW System. 
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known emitter databases to characterize the threat and deploy the response with pre-
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tried is to implement some generic countermeasures. However, this most likely cannot resolve 
the problem. In current operation, unknown received signal will be recorded and taken back to a 
laboratory for post-mission analysis and countermeasure development. As a consequence, 
conventional EW systems may lose the EMS dominance when encountering a new threat 
previously unknown to the system [52].   
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A hypothesis is that this challenge can be effectively addressed with cognitive technology by 
sensing, adapting and learning environment changes and possible interference, and embodying a 
feedback-based decision-making mechanism to intelligently deploy optimal countermeasures. 
Figure 8 shows a block diagram of generic CEW system. In the system, Environmental 
Perception focuses on sensing of the operational environment and observing the changes to 
optimize further processing procedures. Intelligent Signal Characterization uses machine learning 
algorithms to assess and characterize EMS signals and classifies them as either known or 
unknown threats. The objective of the CEA module is to synthesize close-to-optimal 
countermeasures subject to transceiver limitations, user-input restrictions and performance goals. 
Dynamic Knowledge Base contains not only a priori information of environmental and target 
aspects, but also information on recently learned threats. The feedback loop plays a key role in 
monitoring and evaluating the jamming performance, and adjusting the transmission parameters 
to achieve optimal effectiveness.  

 

FIGURE 8: Block Diagram of CEW System. 

 
In summary, a conventional EW system responds to a threat in a pre-programmed manner, either 
based on rules or pre-processed knowledge obtained off-line. A CEW system overcomes the 
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make the system better aware of the environment in which it is being operated. The feedback 
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the loop makes it possible to learn from interactions with the environment. It is the learning 
capability that makes CEW distinguished in comparing with conventional ones. 
 
4.2 CEW System Architecture 
In view of aforesaid, a CEW system needs to contain both ES and EA capabilities to detect, 
deceive, and defeat CR threats. Especially, the ES and EA modules need to be enhanced with 
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cognitive algorithms and act together synchronously and coordinately. This collaboration ensures 
the system could identify source and intent of signals in a highly dense RF environment, and 
decide where and how to apply countermeasures to achieve optimum effects. 
 
4.2.1  CES sub-system 
As mentioned above, a CEW system consists of CES, CEA, performance evaluation, dynamic 
knowledge base, and feedback loop. Here, in the CES sub-system, the captured data need to be 
processed in two steps as shown in Figure 9. 
 

 

 
 

FIGURE 9: Functional Blocks of CES Sub-system. 
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such as support vector clustering [54], fuzzy clustering [55], and in-pulse characteristics analysis 
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[56]. Online learning is performed to create and retain new emitter threats in a short-term 
memory. These records make possible a later fine analysis to extract radar parameters for the 
intercepted unknown emitters. The initial estimations tend to be poor but will be rapidly improved 
as more data is collected. Finally, the resulting threats are updated into the knowledge base so 
that they can be retrieved in future ES efforts. 
 
4.2.2  CEA sub-system 
EA, another principal division of EW, was previously referred to as "electronic countermeasures" 
(ECM), which involves the use of directed energy, deception, and neutralization techniques 
against radars [57]. Radar jamming is the emission of RF signals to prevent or reduce effective 
use of a radar by flooding its receiver with noise or false information [58]. The objective of noise 
jamming is to mask the actual signal by injecting an interference signal into an opponent’s radar 
receiver. Gaussian noise is the most common noise-jamming waveform that generally includes 
barrage jamming, spot jamming, and swept spot jamming [59]. On the other hand, deception 
jamming uses specialized waveforms to degrade radar performance. The objective is to mislead 
an opponent by manipulating its perceptions in order to degrade the accuracy of its intelligence 
and target acquisition [60]. Deception jamming can be performed with non-coherent signals and 
in that case the jammer is called a transponder, while repeater jamming generates coherent 
returns which attempt to imitate the amplitude, frequency, and temporal characteristics of the 
victim radar signal. 
 
The concept of CEA was introduced in [13] for not only optimizing the jamming performance to 
counter those threats in the existing database, but also defeating previously unknown threats. As 
shown in Figure 10, there are two major countermeasure modules in the CEA sub-system to deal 
with previously known and unknown threats separately. The previously known threats will be 
responded based on the solutions stored in the countermeasure knowledge database with 
jamming scheduled to ensure friendly unimpeded access to the EMS.  

 

 

FIGURE 10: Functional Blocks of CEA Sub-system. 
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When encountering new emitter threats, it is not appropriate to choose an existing response in 
the countermeasure library, but to perform learning and reasoning to generate an action. Figure 
11 shows a typical framing of a reinforcement learning (RL) scenario: an agent takes actions in 
an environment, which is interpreted into a reward and a representation of the state fed back into 
the agent.  

 

 
FIGURE 11: Reinforcement Learning Process. 
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FIGURE 12: CEW System Architecture. 
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 For the new and previously unknown signals, it may take months to develop new profiles 

and deploy countermeasures. 

On the contrary, the proposed CEW system has the ability to detect, characterize, and counter 
both known and unknown threat transmissions in real time. In the CES sub-system (Figure 9), 
from signal processing point of view the previously unknown radar signal cannot be detected by 
the legacy processing module. After all the detected previous known radar signals are taken out 
from the data received, if there does not exist any other radar signal, the leftover data should be 
just random noise. Otherwise, if there exists a previously unknown radar threat, although mixed 
with the background data, its pulses will show some signal pattern. Therefore, it is reasonable to 
conclude that new or unknown radar emitters are present. The leftover data will be processed by 
the CES module to characterize the threat parameters that are then sent to the CEA sub-system. 
Based on the information passed by the CES sub-system, learning and reasoning are performed 
to generate a jamming strategy that will be modified if the feedback on jamming effectiveness is 
unsatisfactory (Figure 10). This case study demonstrates that by using cognitive methods the 
proposed CEW system makes it possible to detect, deceive and defeat previously unknown radar 
threats.  

 
5. CONCLUSIONS AND FUTURE WORK 
Radar and radar electronic warfare (REW), like a spear and a shield, were born almost at the 
same time and developed in the competition for spectrum superiority. With the evolution of radar 
technology from adaptive radar systems to cognitive ones, legacy EW systems have to be 
modernized to keep up with the fast-paced changes. The introduction of cognition into 
engineering systems has made it possible to construct systems that mimic human intelligence 
which is the key to the development of next-generation EW systems. By using machine learning 
techniques, it is possible to make the CEW system able to detect, deceive and defeat previously 
unknown radar threats. It is pointed out that a cognitive architecture is a blueprint for developing 
intelligent agents which specifies the underlying infrastructure of an intelligent system to model 
human behavior [61][62]. The intent of building a conceptual model is to direct attention at an 
appropriate decomposition of the system. Therefore, a conceptual architecture of cognitive EW 
system is presented in this paper, which integrates perception, learning and action components. 
The CES and CEA sub-systems and the relationships among each component are discussed in 
detail. The objectives are two-fold: (1) to functionally decompose the system into a meaningful 
integrated hierarchy in terms of its components and show the relationships among them, and (2) 
to identify directions for further research in the development of a prototype CEW system.  
 
It was stated that the interest in CEW “reflects a recognition of the potential impact of applications 
of machine learning to enable more adaptive countermeasures to seize dominance in the 
electromagnetic spectrum” [63]. The intention of this paper is to provide theoretical background, 
general system architecture and key components for the development of a prototype system. 
Therefore, it is hoped that this paper can not only serve as a source of new ideas as well as a 
useful starting point for researchers and engineers who are interested in the field of REW, but 
also can benefit managers and policy makers in strategic planning for development of next-
generation EW systems. As a scoping study, the research is conducted without the involvement 
of practitioners, which is a limitation of the current work. To achieve further progress, the vision of 
academics and practitioners should come together to jointly develop an action strategy in the next 
step [64]. Further research will be continued with focus on the following issues:  
 

1) Develop analytic abilities to perceive the surrounding environment;  
2) Implement fuzzy logic techniques to deal with environmental uncertainty;  
3) Investigate the method to switch learning from batch mode to online learning mode; 
4) Develop new algorithms that could detect and identify emitters with unknown behaviors 

and agile waveforms in heavily dense electromagnetic environment; 
5) Design data management strategies for representing cognitive information in the dynamic 

knowledge base; 
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6) Develop new methods to perform jamming effectiveness assessment from the emitter 
side, but not the threat side, to optimize the countermeasure strategy.   

 
The objective is to develop a proof-of-concept prototype CEW system with capability to adapt to 
existing radar threats and recognize new radar emitters in a complex, dynamic environment. 
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