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Abstract

The effect of irregularities present in the surface layer has been discussed in the
present paper. The irregularity is in the form of a finite rigid barrier in the surface
layer. The surface layer has been assumed to be homogeneous, isotropic and
slightly dissipative. The reflected, transmitted and scattered waves have been
obtained by Fourier transform and Wiener-Hopf technique. The numerical
computation has been done by taking the barriers of different sizes. The
amplitude of the scattered and the reflected waves has been plotted against the
wave number. The scattered waves behave as decaying cylindrical waves at
distant points. The amplitude of the scattered waves falls off rapidly as the wave
number increases slowly. The amplitude of the reflected Love wave decreases
rapidly with the wave number and ultimately becomes saturated which shows
that the reflected Love wave takes a very long time to dissipate making these the
most destructive waves during the earthquake.

Keywords: Cylindrical Waves, Fourier Transforms, Scattered Waves, Surface Layer, Wiener-Hopf
Technique.

1. INTRODUCTION

Love waves are surface seismic waves that cause horizontal shifting of earth during the
earthquake. The particle motion of Love waves forms a horizontal line perpendicular to direction
of propagation. The theory of elastic waves finds numerous applications in seismology and
geophysics. Seismic signals are applied to investigate the internal structure of earth. During
earthquake seismic waves such as Love waves are generated from interior of earth. Love waves
are transversely propagated surface waves which we feel directly during earthquake. They are
reflected and transmitted due to the presence of irregularities like rocks, mountains, ditches,
trenches etc. in the crustal layer of earth. The scattering of Love waves due to the surface
defects’ results in large amplification of the waves during earthquake, making these the most
destructive surface waves. The propagation of love waves in the presence of rigid barrier in the
layer of thickness H superimposed on a solid half space z = 0 has been discussed herewith using
Wiener-Hopf technique [6] and Fourier transform [7].

This paper is based on a paper by Sato [8] who studied the problem of reflection and
transmission of Love wave at a vertical discontinuity in a surface layer. The author found the
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approximate solution of the problem and showed the relationship between reflection and
transmission coefficients by graphs, by assuming the layer of small thickness as compared with
the wavelength. Ashgar and Zaman [1] have solved the problem of diffraction of Love waves
normally incident on two parallel perfectly weak half planes lying in surface layer. Tomar and Kaur
[9] have studied the problem of reflection and transmission of a plane SH-wave at a corrugated
interface between a dry sandy half space and an anisotropic elastic half space. They used the
Rayleigh’s method of approximation for studying the effect of sandiness, the anisotropy, the
frequency and the angle of incidence on the reflection and transmission coefficients.
Chattopadhyay et al. [2] have studied the similar type of problem by taking shear waves in
viscoelastic medium at parabolic irregularity. They found that amplitude of reflected wave
decreases with increasing length of notch and increases with increasing depth of irregularity.
Kaur et al. [5] have studied the reflection and refraction of SH-waves at a corrugated interface
between two laterally and vertically heterogeneous viscoelastic solid half-spaces. The
propagation of seismic waves has also been studied by Zaman [10], and Zhang and Chan [11]. In
all the earlier studies, comparative discussion is missing. Here we discuss the propagation of
Love waves through irregularity in form of rigid barrier and for comparison purpose, the numerical
computations have been discussed by taking the different sizes of rigid barrier.

2. PERLIMINARIES

The scattering of incident Love waves at the rigid barrier in the surface layer has been discussed
in the present paper. The problem is two dimensional and is being analyzed in zx plane. The z
axis has been taken vertically downwards and x axis along the interface. The geometry of the
problem is shown in figure 1.

The incident Love wave is given by

Vo, = Acos 0, He Ovetnd) 72>, (1)
Vo =Acos@,,(z+H)e ™, —H<z<0 )
where,

O,y = k22 _klzN’ Oy :VklzN —ki |k1| <|k2| ®)

and k,, isarootof the equation

tané,, = 7/91—N, Y = ﬂ, (4)

O,x i,

M,and i1, being the rigidities of shear waves in the half space and in the crustal layer
respectively.
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FIGURE1: Geometry of the problem
The wave equation in two dimensions is given as

o’u azu_iazu £ Jdu

= - 5
ox’ - 9z ¢* or? —i_c2 or’ )

where, £ > 0 is the damping constant and c is the velocity of propagation. If the displacement be
harmonic in time, then

u(x,z,1) = v(x,z)e” (6)
and equation (5) reduces to

o’v v |

The above wave equation in the present study can be written as

(V2+kiv, =0, j=12 8)

where,
L /co2 +icw o .
= |——— =k . +1ik ..
J 2 J J
Vj

V;and V, are respectively the velocities of shear waves in the half space z> 0 and in the layer
-H<z<0.

Let the total displacement be given by

V=V, +V, 7220 , —o<x<oo, (10)

=Vy, Vs, —H<7<0 , —o<x<oo, (11)

The boundary conditions are
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Vo, Vv, =0, —-H<z<-h,x=0, (12)

0

B_Z(V0’2+V2):O’ x>0, x<£0, z=-H, (13)
av, av,

V, =V, 1 —— =, , 2=0, —co<x<oo, (14)
0z 0z

The condition (12) implies that the barrier is rigid and there is no displacement across it.
Condition (14) specifies the continuity of displacement at the interface. From equations (2) and
(12), we get

VZ:—ACOSQZN(z+H)e_lk1Nx, —-H<z<-h, x=0. (15)
Taking Fourier transform of equation (8), we obtain
OV.(p.2)

where 6, =+./p’ —kf and V; (p,z) represents Fourier transform of v, (p,z) which can
be defined as

v, (p,2)= .[Vj(x,z)e[”xdx, p=a+if

0 ')
= .[vj (x,z)e™ dx + .[vj (x,2)e™dx
oo 0

=V, (p.2)+V,(p.2). (17)

If for a givenz,as | xl—> o and M,7>0, IVj (x,2) 1~ Me_T bd, then l7j+(p,z) is analytic in

B >-tand v, (p,z) is analyticin § <7 (=Im(k;)). By analytic continuation, V', (p, z) and its
derivatives are analytic in the strip —7 < < 7 in the complex p - plane [3].

Solving equation (16) and choosing the sign of Hj such that its real part is always positive,

we obtain
_ _ -6,z
v, (p,z)=A(p)e , 220 (18)
and
= _ -6,z 0,z
V,(p,z2)=B(pe +C(p)e?~, —H<z<0. (19)

International Journal of Applied Sciences (IJAS), Volume (1), Issue (2) 33



P. Kadian & J. Singh

Solving equation (19) by using boundary condition (14), we get

7, (p2) = A(p) [0, cosh 62z;7/6’1 sinh 6, 7] . (20)
2

Differentiating equation (20) with respect to z and putting z = —h and denoting V; (p,—h)by

Vv, (p) etc., eliminating A(p) , we obtain

0, cosh8,h+ y6, sinh 6,h
0, (6, sinh 6,h + y6, coshb,h)

V, (p)=[va:(p)+va-(p)]=— X[V, (p)+V,_(p)]. (21)

Now multiplying equation (8) by e”* and integrating from 0 to oo (j =2)

d’ _ d .
F[VH(])’ 2)]- 622 Vo, (P, 2) :( aV2 J —ip(V,) o - (22)
z X x=0

Changing pto - p inequation (22) and subtracting the resulting equation from it, we get
2

?[‘7%(1” )=V, (=p. D)= 6V, (p.2) =V, (=P, )] = =2ip(V,) . (23)
Using equation (15) in equation (23), we obtain

dZ

?[‘72+(p’ Z) - ‘72+(_P, Z)] - 022[‘72+(p’ Z) - ‘72+(_P, Z)] = ZiPACOSQZN(Z + H) (24)
The solution of equation (24) is given as

V. > -6 0,z 2ipAcos®,, (z+H
V2+(p’z)_V2+(_p’Z):D1 (P)€ 2Z+D2(p)€ ZZ— P ZN(Z )

25
ey (25)
Using boundary condition (13) in equation (25), we find
_ _ 2ipAcos@,, (z+H
P2 (P27 ()= DAp)cosh (24 H)~2PA3 2 Zt ) (26)
S

Differentiating equation (26) with respect to z , putting z = —h in resulting equation and in (26)
and then eliminating D(p) , we have

= _ cothd,d| _ _ 2ipA@,, sinb,, 0| 2ipAcosé,,o
V2+(p)—V2+(—p)=—2 V2’+(p)+l/2’+(—p)— PA%N 2N _ < N

0, pz_klzzv pz_k121v

(27)

where 0=H —h.
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Eliminating V,, (p) from equations (21) and (27), we get

coth8,dA8,, sinb,, 0 N iAcos®, 6 f (p)V,.(p)

=V, (p)—V,.(=p)

6,(p+k,y) p+k,y 6, f, (p)sinh 6,0
N [5 (p)V; (p) iAcos,,0 coth,dAE,, sinb,,0 cothf,v;, (—p)
ezfz (p) p_km 02 (p_kuv) 02
where,

f, (p)=6, sinh 6,H + y6, coshb,H,
f, (p) =6, sinh ,h+ y6, coshé,h,

f3 (p)=0, coshb,h+y6, sinh 6,h.

(29)

(30)

(31)

The equation (28) is the Wiener-Hopf type differential equation whose solution will giveV,, (p).

2.1 Solution of the Wiener-Hopf Equation

/i ([9)
/s ([9)

0,0
For solution of equation (28), we factorize( - 2 j
sinh

( 6,6 J JLP) _ g (K (p),

sinh 8,0 ) f, (p)
where,
K.(p)=K_(=p)= (p)H (p+pi)

H. (p)wd (p+py)

p=1%p, and p==xp, beingthe zerosof f, (p)and f, (p)respectively.

We now decompose M as
0,0
cothé,d
—— 2% —F (p)+F.(p).
6,0 (P +F.(p)
where,
> 1

F.(p)=F (-p)=-

+ .
2k,0(p+ky) = p,o(p+ip,)

Also we write,

/5 (p)

=R(p)=R.(p)R (p),
6,1, () (p)=R.(p)R.(p)
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and ? Ep; tends to 1 as | p| — eo.
2 (P
/5 (p) . o
Now mcan be factorized by infinite product theorem as
2 (P
LW 220G (6 p)
fp) wa pr-p T
where,
) k k
1 - 1t M, -M ¢ 1
logG,(p)=— Nl—_det——J. g — [ —an,
Ty t—ip Ty t+p T tp
and
anN. = a'cosa'h
1 = 1 5
W+ k) 2 sin '
1
N = 7/(t2+k12)/2 cosa'h
g a'sina'h ’
anM. = a'"cosa'"h
1 = 1 ’
Y —2) 2 sin @'
M y(k’ — tz)y2 cosa"h
2 = )

o'sima'"h

a'=,t* +ki and o = .|k —1.

Hence we can write,

G WGP LEPw) _p (R ()

NS | By

R(p)=

(37)

(39)

* p,, being the zeros of f, (p). Now using equations (32), (35) and (39) in equation (28) and

simplifying, we obtain
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iAcos 6,,0 +iAt92N sin6,,0F (k) 1 V5, (DK, (p) V5, (ky)K, (k,)
(p+k K (k) (p+k, K _(—k,y) (p—ky)o p+k, 2k,
VPR DR P P - Vi (k,)

K _(_pZm) n=l pné'(p + lpn )K _(_lpn) 2k2 5(p + kZ )K —(_kZ )
+ A6y 5in 6,y0 +AB,ysin 6, 6 _ ! _ _
2k,0(p+ky)K _(=ky )k, + k) = P,0(p+ip,)K _(=ip,)(k,y +ip,)
iA6,, sin ,,0 iA6,, sin 6,,0

i 2k, 0(p+k,)K _(—k,)(ky, —k,\) - 2k, 0(p+ kK _(=k,\ )k, — k)

A6, sin6, 52 1 N Ab,, sin6,,0 i 1
N Y p S(p+ip K _(=ip, )k, —ip,)  (p+k K _(—ky) S p, Sk, —ip,)

=0 _(p), (40)

where p, =k, and Q_(p) includes the terms which are analytic in S <7 and left hand
member of equation (40) is analytic in the region [ > —. Therefore, by analytic continuation

each member tends to zero in its region of analyticity as |p| —> oo, Hence by Liouville’s theorem,
the entire function is identically zero. So equating to zero the left hand side of equation (40), we
obtain

T(p" =k V3 (kK. (k) (ptky) | V5 (=P2 )R (P, )(P* ~k3)IR.(p)
‘72,+(p): p+k1N 2k2 K+(p2m)

~2iA8,,5in 0,,8.(p> k)Y ——— L T k)(p—ky)
= (kjy+p,)(p+ip)K, (ip,) 2k, K, (k,)

RS ivs, (ip, )(p* —k3) | iAsin6,,8(p—k,) | 1 )
n=l1 pn(p+lpn)K+(lpn) gZNK+(k2) K+(p),
where,
T=[A6, 506,65 —+iAG, sin6,,5F, (k) — 2w SN 0O
= Pk —ip,) 2k, (k, —kiy)
+iAd cos 02N5];. (42)
K, (ky)
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Similarly, we find

NP’ =k) ¥ (kK (k) (p=ky) V3 (P2,)R.(P,)(P* =k;)OR _(p)

v, (p)=
? P~k 2k, K, (py,)
+2iA6,), sin 6,,5.(p> — 2)2 1 L BCh)(pth)
(kiv+p)(p=ip)K.Gp,)  2k,K (k,)
‘Z iv, (=ip,)(p* —ky) _iAsin8,,0(p+ky) | 1 )
S p.(p-ip)K,(p,) 6K, (k) K (p)
where,
1 A i
N=|-A86,, sin6,,5. Z— —iA,, sin 8,,OF (K, )+ 20uy 510 040
n=1 pn (klN n) 2k2 (kz _klN)
—iAd cosf 5] (44)
” <km>
The displacement v,(x, z) is obtained by inversion of Fourier transform, as
oo+iff '
v,(x,2) = g_o;[;z (p,2)e ™dp
1 " -1[ 8, coshé, sinh 6,7 | _ i
— =18 S OL | (5 () (p)ledp 45)

2r s 492 0, sinh 8, h+ )6, coshb,h

where V,,(p) and V,_(p) are as given in equations (41) and (43) respectively .

2.2 Scattered Waves
The incident Love waves are scattered when these waves encounter with surface irregularities
like rigid barrier in the crustal layer of earth. For finding the scattered component of the incident

Love waves, we evaluate the integral in equation (45). There is a branch point p = —k, in the
lower half plane. We put p =—k, —it; t being small. The branch cut is obtained by taking

Re(6,)=0. Now & = p> —k?, gives 6, =+if, and 6, =6, The contour of integration is

shown in figure 2. The imaginary part of &, has different signs on two sides of the branch cut.
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FIGURE 2: The contour of integration in complex p-plane

L

Now integrating equation (45) along two sides of branch cut, we get

- — —xk,  —1x
Vz,l(x, 2=—|l" (p, Z)}g —iB -V, (p, Z)}gz_i§ le “edt
o7y 1=i8 d

—13| &0k coshd, (z+ H) . N7k cosh 8, (z+ H)

T 0_22sinh2§2H+7/2§12c0sh2§2H 0_22sinh2§2h+7/2§12c0sh2§2h
x e e dt
= I t%l//(t) e"dt, (46)
0
where,
_ 2k" 1/2 Y =
(o) = y(2k)) - g’f(tzcosh 6, (_z+ H) S ﬂ(t)_coshﬁz(_z+h) |
0, sinh’ @, H+y°6 cosh’ 8, H 6, sinh’ @, h+ ¥ cosh’ 6, h
and
E) = ngz + V.. (ky) K, (ky)(k, =k, —it) + v, (_pZm)R+(p2m)5§22R+(_kl —ir)
klN _kl_lt 2k2 K+(p2m)
— > V. (k) (k, + Kk, +it
—2iA0,,6; sin 6,,6.) ———— ! . —+ 2 () +h +iT)
= (ki +p)p, —k, —it)K (ip,) 2k,K, (k,)
- v (ip )02 s . L
iy v, (lpn.) > iAsin 6,,0(k, +k, +it) K (—k —it) sinh 6), ) 48)
P, (ip, —k, —i)K, (ip,) O,n K, (k,) 6,6
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NO; | Vi (kK (ky)(ky +k +it) Vi (Pa)R.(P, )30 R (K ~it)

)=
e k,y +k, +it 2k, K, (p,,)
_ oo V_(—k)(k, —k —it
—2iA0,,6; sin 6,,6.) ———— ! : 42 (h)k, K —i1)
o (ki +p)Gp, +k +it)K, (ip,) 2k,K, (k,)
+i '1172;,(—1'197)922 | _iAsin 6,,8(k, —k, —it) 1 . o)
= p,(ip, +k +iK, (ip,) 6,.K, (k,) K_(—k, —it)
Now using the result of Ewing et al. [5],
R o OI'@3/2 "OI'G/2 (O)I(7/2
It”zl//(t)e dr =¥ )x3,(2 A ))CS,(Z A ))67/(2 R (50)

0

where I'(x) is Gamma function. Neglecting first and higher order derivatives of ¥/(¢) at t =0
and using equations (46) and (50), we obtain

0OI'(3/2)
i = HOTED) -

where,

_ = 7(2k)"*| £(0)cos b, (z + H) _ 71(0)cos 0,(z+h)

0 ; : - :
Vo) 0, sin’ 6,H 6,”sin’ 6,h

and 6, = k> —k>2.

The equation (51) represents the scattered waves due to the presence of a rigid barrier
—H<z<-h, x=0 in the crustal layer —H <z<0 and the amplitude of the scattered
waves is given by equation (52).

2.3 Reflected and Transmitted Waves
The incident Love waves are not only scattered but they are reflected also by the surface
irregularity. For finding the reflected component, we evaluate the integral in equation (45) in upper

half plane when x < 0.There is a pole at p =k, and the corresponding wave is given as

V,,(x,2)=A, cosbyy (z+H)e™, x<0, —H<z<-h, (53)

where,
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A = ZK+ (kz)vz— (_kz)(ku\/ - kz) _ ”72+ (pzm )R_(k1N)R+(p2m) ) 5_ ”72— (_kz)(kz + k1N)

" 2k, K.(P,) N 2k, K, (k,)
o oo ‘7,7 3 82
_2A823N sin 92N5'z 2 2 ! . —t 2 ( 'an) 2 ;
v (kiy + p,)(kyy —ip)K (p,) 5 p,(ky —ip,)K (ip,)
_ASin 02N5(k2+k1N)] sin 6,, 0K , (k) (54)
K
Ok () 02N5C0802NH|:d 161(17)}
dp p=kiy
and
{iﬂ(m} =k1N{Mcos02NH SO 02NH} (55)
dp p=kiy elN 2N

The amplitude of reflected Love wave is given by taking modulus of Am_ Now we evaluate the

integral (45) in lower half plane when x > 0. There is a pole at p = —k,, and the corresponding
wave is given by

V,5(x,2) =B, cos@,, (z+ H)e"™, x>0, —H<z<0 (56)
where,

ZK+(k2)‘72+ (kz)(kz _k1N) ”72— (_pZm)R+(_k1N)R+(p2m) 2 v, (kz)(kz +k1N)
= = _ S——2
; 2k, K. (p,) . 2k,K., (k,)

;. = 1 = v,.(ip,)6s,
—2A6;, smHZN&Z 5 5 : , —z ; ;
v (kiy +p )k —ip)K (p,) 7= p,Gp, —k K, (p,)

_ Asin 8,0k, + klN)} sin 6,y 6 K, (k;y) (57)
02NK+(k2) 02N5C0502NH|:df1(p):|
dp p=—kiy
and
d d
{d—pﬁ(ml_%w = {d—pﬁ(ml_kw- (58)
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Equation (56) gives the transmitted waves and their amplitudes are given by taking the modulus
of B

2.4 Numerical Computations and Discussion of Results

The incident Love waves are scattered as well as reflected due to the presence of rigid barrier in
the surface layer of earth. The scattered Love waves move with the speed of waves in the half
space and not with the speed of waves in the layer. The mathematical calculations have been

done by taking h=049m., H=0.51km., y=2, v,/v,=3/4, k, =k, z=—-H and

considering k,0 very small. The graph of amplitude versus the wave number of the scattered
waves has been plotted in figure 3.

1 1
Q 0.5 1 1.5 2 2.5 3 35 4 4.5 11

Wave number k

FIGURE 3: Variation of amplitude versus wave number k of scattered waves

The graph indicates that the amplitude of the scattered waves depends on the wave number and
hence on the wavelength of the scattered wave. Also the scattered waves given in equation (51)

—kl"x

are of the form which shows that the scattered waves decrease for large values of x and

3/2
X

they behave as decaying cylindrical waves at the distant points. The reflected and transmitted
waves are respectively given by equations (53) and (56) and their amplitudes are given in
equations (54) and (57) respectively. The graph showing the variation of amplitude versus wave
number of reflected Love waves by taking the barriers of different sizes is shown in figure 4.
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Lmplitade

Wave ymmber k
FIGURE 4: Variation of amplitude versus wave number for different values of H

For computation and graphical purpose we have fixed h = 0.49 km. and graphs has been plotted
by taking H = 0.50, 0.55, 0.60, 0.65, 1.00, 1.50 km. Taking H = 0.50 km., the amplitude attains
saturation at 3.0010 km. and for H= 0.55 km., it fixes at 3.0030 km. If we take H = 1.5 km., the
amplitude becomes approximately stable at 5.0032 km. It is clear from comparison that amplitude
of the reflected Love waves depends upon size of barrier to some extent.

3. CONCLUSIONS AND FUTURE WORKS

The results indicate that amplitude of the scattered waves decreases very rapidly with the slower
increment in the value of wave number which signifies that as the wave number increases, the
amplitude decreases at a faster rate but reduces to zero after a very long time. This is the
practical reason why the scattered Love waves are considered one of the most destructive
seismic waves during earthquake. The amplitude of reflected Love waves falls of rapidly as the
wave number increases and then it decreases at a very slow rate with the increase in wave
number and becomes stable at a particular value showing that the reflected Love waves take a
very long time to dissipate. The theory presented in this paper also indicates that the behavior of
reflected Love waves depends on the size of irregularity. In particular, the results show that larger
is the size of barrier, larger is the amplitude of reflected wave resulting into more energetic
reflected Love waves. This explains why the regions with more irregularities in earth surface face
frequent earthquakes with high intensity.

We derived the approximate numerical solution for the
case that the thickness difference for the surface layer is small as compared with the wavelength,
leaving the scope for larger difference in future. The barrier may also be considered as a
horizontal barrier instead of vertical one and the problem may be discussed accordingly.
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