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Abstract 

 
The effect of irregularities present in the surface layer has been discussed in the 
present paper. The irregularity is in the form of a finite rigid barrier in the surface 
layer. The surface layer has been assumed to be homogeneous, isotropic and 
slightly dissipative. The reflected, transmitted and scattered waves have been 
obtained by Fourier transform and Wiener-Hopf technique. The numerical 
computation has been done by taking the barriers of different sizes. The 
amplitude of the scattered and the reflected waves has been plotted against the 
wave number. The scattered waves behave as decaying cylindrical waves at 
distant points. The amplitude of the scattered waves falls off rapidly as the wave 
number increases slowly. The amplitude of the reflected Love wave decreases 
rapidly with the wave number and ultimately becomes saturated which shows 
that the reflected Love wave takes a very long time to dissipate making these the 
most destructive waves during the earthquake. 
 
Keywords: Cylindrical Waves, Fourier Transforms, Scattered Waves, Surface Layer, Wiener-Hopf 
Technique. 

 
 

1. INTRODUCTION 
Love waves are surface seismic waves that cause horizontal shifting of earth during the 
earthquake. The particle motion of Love waves forms a horizontal line perpendicular to direction 
of propagation. The theory of elastic waves finds numerous applications in seismology and 
geophysics. Seismic signals are applied to investigate the internal structure of earth. During 
earthquake seismic waves such as Love waves are generated from interior of earth. Love waves 
are transversely propagated surface waves which we feel directly during earthquake. They are 
reflected and transmitted due to the presence of irregularities like rocks, mountains, ditches, 
trenches etc. in the crustal layer of earth. The scattering of Love waves due to the surface 
defects’ results in large amplification of the waves during earthquake, making these the most 
destructive surface waves. The propagation of love waves in the presence of rigid barrier in the 
layer of thickness H superimposed on a solid half space z ≥ 0 has been discussed herewith using 
Wiener-Hopf technique [6] and Fourier transform [7]. 
 
 
This paper is based on a paper by Sato [8] who studied the problem of reflection and 
transmission of Love wave at a vertical discontinuity in a surface layer. The author found the 
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approximate solution of the problem and showed the relationship between reflection and 
transmission coefficients by graphs, by assuming the layer of small thickness as compared with 
the wavelength. Ashgar and Zaman [1] have solved the problem of diffraction of Love waves 
normally incident on two parallel perfectly weak half planes lying in surface layer. Tomar and Kaur 
[9] have studied the problem of reflection and transmission of a plane SH-wave at a corrugated 
interface between a dry sandy half space and an anisotropic elastic half space. They used the 
Rayleigh’s method of approximation for studying the effect of sandiness, the anisotropy, the 
frequency and the angle of incidence on the reflection and transmission coefficients. 
Chattopadhyay et al. [2] have studied the similar type of problem by taking shear waves in 
viscoelastic medium at parabolic irregularity. They found that amplitude of reflected wave 
decreases with increasing length of notch and increases with increasing depth of irregularity. 
Kaur et al. [5] have studied the reflection and refraction of SH-waves at a corrugated interface 
between two laterally and vertically heterogeneous viscoelastic solid half-spaces. The 
propagation of seismic waves has also been studied by Zaman [10], and Zhang and Chan [11]. In 
all the earlier studies, comparative discussion is missing. Here we discuss the propagation of 
Love waves through irregularity in form of rigid barrier and for comparison purpose, the numerical 
computations have been discussed by taking the different sizes of rigid barrier. 
 

2. PERLIMINARIES  
The scattering of incident Love waves at the rigid barrier in the surface layer has been discussed 
in the present paper. The problem is two dimensional and is being analyzed in zx plane. The z 
axis has been taken vertically downwards and x axis along the interface. The geometry of the 
problem is shown in figure 1. 
 
The incident Love wave is given by  
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21 µµ and  being the rigidities of shear waves in the half space and in the crustal layer 

respectively.  
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FIGURE1: Geometry of the problem 

 
The wave equation in two dimensions is given as 
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where, 0>ε  is the damping constant and c is the velocity of propagation. If the displacement be 

harmonic in time, then 
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The above wave equation in the present study can be written as 
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V1
 
and V2 are respectively the velocities of shear waves in the half space z 0≥  and in the layer 

0≤≤− zH .    

                                    
Let the total displacement be given by 
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The boundary conditions are 
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The condition (12) implies that the barrier is rigid and there is no displacement across it. 
Condition (14) specifies the continuity of displacement at the interface. From equations (2) and 
(12), we get 
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Taking Fourier transform of equation (8), we obtain 
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Solving equation (19) by using boundary condition (14), we get 
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Differentiating equation (20) with respect to z  and putting hz −=  and denoting ),( hpj −ν by 

)( pjν  etc., eliminating )( pA , we obtain 
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Now multiplying equation (8) by 
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Changing p to - p   in equation (22) and subtracting the resulting equation from it, we get 
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Using equation (15) in equation (23), we obtain 
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The solution of equation (24) is given as 
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Using boundary condition (13) in equation (25), we find 
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Differentiating equation (26) with respect to z , putting hz −=  in resulting equation and in (26) 

and then eliminating )( pD , we have 
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where  hH −=δ .  
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Eliminating )(2 p+ν  from equations (21) and (27), we get 
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The equation (28) is the Wiener-Hopf type differential equation whose solution will give )(2 p+ν . 

 
2.1 Solution of the Wiener-Hopf Equation   
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npp 1±=    and  npp 2±=  being the zeros of )(1 pf and )(2 pf respectively. 
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n
p3±   being the zeros of )(3 pf . Now using equations (32), (35) and (39) in equation (28) and 

simplifying, we obtain 
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Similarly, we find 
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The displacement ),(2 zxv  is obtained by inversion of Fourier transform, as  
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where  )(,

2 p+ν  and )(,

2 p−ν  are as given in equations (41) and (43) respectively . 

2.2 Scattered Waves 
The incident Love waves are scattered when these waves encounter with surface irregularities 
like rigid barrier in the crustal layer of earth. For finding the scattered component of the incident 

Love waves, we evaluate the integral in equation (45). There is a branch point 1kp −= in the 

lower half plane. We put itkp −−= 1 ; t  being small. The branch cut is obtained by taking 
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shown in figure 2. The imaginary part of 1θ has different signs on two sides of the branch cut.   
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FIGURE 2: The contour of integration in complex p-plane 

 
Now integrating equation (45) along two sides of branch cut, we get 
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Now using the result of Ewing et al. [5], 
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where )(xΓ  is Gamma function. Neglecting first and higher order derivatives of )(tψ  at 0=t  

and using equations (46) and (50), we obtain 
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The equation (51) represents the scattered waves due to the presence of a rigid barrier 

0, =−≤≤− xhzH  in the crustal layer 0≤≤− zH   and the amplitude of the scattered 

waves is given by equation (52).  

2.3 Reflected and Transmitted Waves 
The incident Love waves are not only scattered but they are reflected also by the surface 
irregularity. For finding the reflected component, we evaluate the integral in equation (45) in upper 

half plane when .0<x There is a pole at Nkp 1=  and the corresponding wave is given as 
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The amplitude of reflected Love wave is given by taking modulus of .m
A  Now we evaluate the 

integral (45) in lower half plane when .0>x   There is a pole at Nkp 1−=  and the corresponding 

wave is given by 
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Equation (56) gives the transmitted waves and their amplitudes are given by taking the modulus 

of .m
B  

 

2.4 Numerical Computations and Discussion of Results 
The incident Love waves are scattered as well as reflected due to the presence of rigid barrier in 
the surface layer of earth. The scattered Love waves move with the speed of waves in the half 
space and not with the speed of waves in the layer. The mathematical calculations have been 

done by taking HzkkvvkmHkmh N −====== ,2112 ,4/3/,2.,51.0,.49.0 γ  and 

considering δ2k    very small. The graph of amplitude versus the wave number of the scattered 

waves has been plotted in figure 3.  
 

 

 
 

FIGURE 3: Variation of amplitude versus wave number k of scattered waves 

 
 

The graph indicates that the amplitude of the scattered waves depends on the wave number and 
hence on the wavelength of the scattered wave. Also the scattered waves given in equation (51) 

are of the form
2/3

"
1

x

e
xk−

  which shows that the scattered waves decrease for large values of x  and 

they behave as decaying cylindrical waves at the distant points. The reflected and transmitted 
waves are respectively given by equations (53) and (56) and their amplitudes are given in 
equations (54) and (57) respectively. The graph showing the variation of amplitude versus wave 
number of reflected Love waves by taking the barriers of different sizes is shown in figure 4. 
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FIGURE 4: Variation of amplitude versus wave number for different values of H 

 
For computation and graphical purpose we have fixed h = 0.49 km. and graphs has been plotted 
by taking H = 0.50, 0.55, 0.60, 0.65, 1.00, 1.50 km. Taking H = 0.50 km., the amplitude attains 
saturation at 3.0010 km. and for H= 0.55 km., it fixes at 3.0030 km. If we take H = 1.5 km., the 
amplitude becomes approximately stable at 5.0032 km. It is clear from comparison that amplitude 
of the reflected Love waves depends upon size of barrier to some extent. 

3. CONCLUSIONS AND FUTURE WORKS 
The results indicate that amplitude of the scattered waves decreases very rapidly with the slower 
increment in the value of wave number which signifies that as the wave number increases, the 
amplitude decreases at a faster rate but reduces to zero after a very long time. This is the 
practical reason why the scattered Love waves are considered one of the most destructive 
seismic waves during earthquake. The amplitude of reflected Love waves falls of rapidly as the 
wave number increases and then it decreases at a very slow rate with the increase in wave 
number and becomes stable at a particular value showing that the reflected Love waves take a 
very long time to dissipate. The theory presented in this paper also indicates that the behavior of 
reflected Love waves depends on the size of irregularity. In particular, the results show that larger 
is the size of barrier, larger is the amplitude of reflected wave resulting into more energetic 
reflected Love waves. This explains why the regions with more irregularities in earth surface face 
frequent earthquakes with high intensity. 
                                                                We derived the approximate numerical solution for the 
case that the thickness difference for the surface layer is small as compared with the wavelength, 
leaving the scope for larger difference in future. The barrier may also be considered as a 
horizontal barrier instead of vertical one and the problem may be discussed accordingly.  
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