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Abstract 

 
This paper proposes a novel approach for measuring Electrical Impedance 
Tomography (EIT) of a living tissue in a human body. EIT is a non-invasive 
technique to measure two or three-dimensional impedance for medical diagnosis 
involving several diseases. To measure the impedance value electrodes are 
connected to the skin of the patient and an image of the conductivity or 
permittivity of living tissue is deduced from surface electrodes. The determination 
of local impedance parameters can be carried out using an equivalent circuit 
model. However, the estimation of inner tissue impedance distribution using 
impedance measurements on a global tissue from various directions is an 
inverse problem. Hence it is necessary to solve the inverse problem of 
calculating mathematical values for current and potential from conducting 
surfaces. This paper proposes a novel algorithm that can be successfully used 
for estimating parameters. The proposed novel hybrid model is a combination of 
an artificial intelligence based gradient free optimization technique and numerical 
integration. This ameliorates the achievement of spatial resolution of equivalent 
circuit model to the closest accuracy. We address the issue of initial parameter 
estimation and spatial resolution accuracy of an electrode structure by using an 
arrangement called “divided electrode” for measurement of bio-impedance in a 
cross section of a local tissue.  
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1. INTRODUCTION 

Biological tissues have complex electrical impedance related to the tissue dimension, the internal 
structure and the arrangement of the constituent cells. Therefore, the electrical impedance can 
provide useful information based on heterogeneous tissue structures, physiological states and 
functions [1, 2]. In addition the concepts of time varying distribution of electrical properties inside 
a human body such as electrical conductivity and (or) permittivity can be used to analyze a 
variety of medical conditions. High-conductivity materials allow the passage of both direct and 
alternating currents and high-permittivity materials allow the passage of only alternating currents. 
Both of these properties are of interest in medical systems since different tissues have different 
conductivities and permittivities [3, 4].  
 
In an effort to obtain more precise evaluations of tissues for diagnostic purposes, bio-impedance 
measurements can be focused on specific local tissues such as tumors, mammary glands and 
subcutaneous tissues [5]. Most importantly tissue impedance at zero frequency, corresponding to 
extra cellular resistances is particularly useful for evaluating mammary glands, lung cancers and 
fatty tissues [6, 7, 8]. In comparison with x-ray images, ultrasonic images and magnetic 
resonance imaging (MRI), electrical impedance measurement is inexpensive. 
 
A variety of medical systems such as X-ray, CT, MRI and Ultrasonic Imaging are used for medical 
tissue diagnosis. These systems create a two-dimensional (2D) image from the information based 
on density distribution of the living tissue. On the other hand, EIT (also called Applied Potential 
Tomography) creates a two-dimensional image from information based on the impedance 
characteristics of the living tissue. This information acquired through EIT can be clinically very 
useful. For example, in order to obtain precise evaluations of tissues for diagnostic purposes, bio-
impedance measurements can be focused on the specific local tissues such as tumors, 
mammary glands and subcutaneous tissues [5]. Additionally, EIT could be extremely convenient 
in several medical conditions requiring bedside therapies such as Pulmonary Oedema, Cerebral 
Haemorrhage and Gastric Emptying among others. Typically, conducting electrodes are attached 
to the skin of the subject and small alternating currents are applied to some or all the electrodes 
in a traverse plane. These are linked to a data acquisition unit, which outputs data to a computer. 
By applying a series of small currents to the body, a set of potential difference measurements can 
be recorded from non-current carrying pairs of electrodes.  
 
When it comes to practical implementation of EIT, there are several limitations such as the 
complicated spatial distribution of the bio-impedance that arises from complex structure of 
biological tissues, in addition to the structure and arrangement of measurement electrodes. To 
obtain reasonable images, at least one hundred, and preferably several thousand, measurements 
are usually carried out. This results in relatively long time for measuring and analyzing 
specifically, due to changing combination of pair of electrodes. Therefore, in many instances, it is 
difficult to achieve high precision and to assert measurement results as clinically relevant 
information. 
 
In order to overcome this drawback, there is a need to address several issues for employing EIT 
in medical application such as, estimating impedance parameters for local tissue (i.e. inner tissue 
impedance distribution) and the shape of electrode structure. In this paper, we address the issue 
of electrode structure by using an arrangement called “Divided Electrode” for measurement of 
bio-impedance in a cross section of a local tissue. The determination of local impedance 
parameters can be carried out using an equivalent circuit model. However, the estimation of inner 
tissue impedance distribution using impedance measurements on a global tissue from various 
directions is an inverse problem. Hence it is necessary to solve the inverse problem of calculating 
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mathematical values for current and potential from conducting surfaces. Experiments were then 
conducted by using two different algorithms, Newton Method and Alopex method for 
determination of impedance parameters in the equivalent circuit model. Newton method is 
deterministic since it uses steepest descent approach while Alopex is a stochastic paradigm. 
 
Experimental results show that, higher accuracy can be obtained while estimating the parameter 
values with Newton method. However, selecting an appropriate set of initial parameters with 
Newton method is highly complicated and is based on trial and error. This translates into a 
leading disadvantage in the effectiveness of Newton method. Since Alopex is a stochastic 
approach it is able to seek out the global minima using any arbitrary set of parameter values. 
However it takes several iterations and often converges on a near optimum solution rather than 
the precise parameter values. Therefore, to obtain results with appropriate initial parameters with 
high accuracy, simulations were carried out using a novel approach, which relies on stochastic 
approach initially and then uses deterministic calculations to obtain the final parameter values 
with a high accuracy. Thus, the novel method overcomes the distinct disadvantage of each of the 
methods. Overall this ameliorates the performance of spatial resolution of equivalent circuit model 
to the closest accuracy.  
 

2. BACKGROUND 

EIT system primarily comprises of the electrodes attached to a human body, a data acquisition 
unit and an image reconstruction system. Voltage is measured through data acquisition system, 
which is then passed to another system for reconstruction the image [9]. The goal here is to 
distinguish various tissue types. This is possible because the electrical resistivity of different body 
tissues varies widely from 0.65 ohm-m from cerebrospinal fluid to 150 ohm-m for bone. T. 
Morimoto and Uyama, while studying the EIT for diagnosis of pulmonary mass emphasized that 
the electrical properties of biologic tissues differ depending upon their structural characteristics 
and differences in the electrical properties of various neoplasms [10]. As impedance is an 
important electrical property, intra operative impedance analysis can be used to measure the 
impedance of pulmonary masses, pulmonary tissues, and skeletal muscle [5].  
 
The first impedance imaging system was the impedance camera constructed by Henderson and 
Webster [11]. This system used a rectangular array of 100 electrodes placed on the chest that 
were driven sequentially with a 100 kHz voltage signal. A simple conductivity contour map was 
produced based on the assumption that current flows in straight lines through the subject. This 
was one of the initial efforts towards practical implementation of EIT technology in a medical 
system. In [47], Agarwal et al. have discussed the novel approach medical image reorganization 
with GMDH algorithm.   
 
In the early eighties, Barber and Brown constructed a relatively simple yet elegant EIT system 
using 16 electrodes by applying the constant amplitude current at 50 kHz between two electrodes 
at a time [12]. Ten images per second were generated, which were computed using back-
projection. This method has been applied with great success in the field of X-ray tomography. 
The image depicted the structure of bones, muscle tissue, and blood vessels. However, the 
resolution of the image was very low. This image is generally regarded as the first successful vivo 
image generated by an EIT system. 
 
There are mainly two methods in EIT that have been explored in depth: 2-D EIT and 3-D EIT. 
Commonly, 2D EIT systems could be divided into two different category sets namely: Applied 
Potential Tomography (APT) and Adaptive Current Tomography (ACT).  In 2-D EIT system 
electrodes are positioned at an equal spacing around the body to be imaged thus, defining a 
plane through the object. Images are then reconstructed assuming that the data were from a 2-D 
object. These objects mainly demonstrate a significant amount of contribution to the image from 
off-plane conductivity changes. It further implies that unlike in any 3D X-ray image that can be 
constructed from a set of independent 2-D images, for 3D EIT it is necessary to reconstruct 
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images from data collected over the entire surface of the object volume [13]. Metherall, et al, 
1996, researched the impact of off-plane conductivity changes on to the reconstructed image in 
2-D EIT. Metherall et al, [14] further studied 2D EIT and used these observations to further carry 
out comparisons between 2D and 3D EIT. They produced the images using a 16-electrode 
system with interleaved drive and receive electrodes [15]. With the 3-D methods, the 
reconstructed images are more accurate as compared to original images. Lionheart et al [16] 
constructed a 3D EIT image at Oxford Brookes University. They constructed a time average EIT 
image of cross section of a human chest. For constructing a 3-dimensional (3D) EIT image, 
conducting electrodes were attached around the chest of a patient. The lungs were presented as 
a low conductivity region. The resulting image was a distorted image as a 2D reconstruction 
algorithm was employed instead of a 3D reconstruction algorithm [17].  
 

 
2.1 Challenges in EIT 
There are few issues that need to be addressed for implementing EIT in practical medical 
systems: (1) the complicated spatial distribution of the bio-impedance that arises from obscure 
structure of biological tissue; (2) the structure and arrangement of measurement electrodes.  
 
In EIT realm for local tissue a new simulation method was introduced which is a combination of 
divided electrodes and guard electrodes [18]. In this method required data are obtained by one 
time measurement. In this paper, we evaluate the efficiency of the new method by computer 
simulations, where a typical multilayer tissue model composed of skin, fat, and muscle is used. 
As an example, conductivity distribution in a cross section of the local tissue is estimated using 
the resistances measured by the divided electrodes. Tissue structures are also estimated 
simultaneously by increasing the number of the divided electrodes.  
 
Estimation of inner tissue impedance distribution using impedance measurements on a global 
tissue from various directions is an inverse problem. This results in relatively long time for 
measuring and analyzing especially due to changing combination of pair of electrodes. There are 
various concerns that need to be addressed for implementing and deploying EIT system in a real 
world scenario as a medical imaging system. This includes estimating parameters and electrode 
structure. Therefore, in many instances, it is difficult to achieve high precision and exactly define 
the measurement result as clinically relevant information. 
 
 
2.2 EIT Applications 
In EIT imaging, significant alterations in interior properties could result only in minor changes in 
the measurements [19], implying that it is nonlinear and is extremely ill posed in its behavior 
resulting the need for high-resolution image measurements with very high accuracy. Thus, 
converting EIT principles into a commercial application is a challenging process.  
 
There are two main methodologies that have addressed this issue: Applied Potential Tomography 
(APT) system and Adaptive Current Tomography (ACT) system. APT was developed by Barber 
and Brown in Sheffield, England [20]. APT system has been successfully employed in the 
research of various physiological processes, such as blood flow in the thorax, head, and arm, 
pulmonary ventilation and gastric emptying. ACT was developed at Rensselaer Polytechnic 
Institute. ACT method has been employed to produce images of the electrical conductivity and 
permittivity in the human thorax, and breast studies. EIT techniques can be applied to a medical 
system for acquiring constructive information. This results in various applications [21].  
 
Breast Imaging Using EIT [22, 23]: In [46] Ahmed el. al. have provided a detailed review about 
breast cancer prognosis. X-ray mammography is the standard imaging method used for early 
detection of breast cancer. However, this procedure is extremely uncomfortable and painful for 
most women. The high cost of the system forbids its widespread use in developing countries. In 
addition, the ionizing radiation exposure is damaging to the breast tissue and its harmful effects 



A. S. Pandya, A. Arimoto, Ankur Agarwal & Y. Kinouchi 

International Journal of Biometrics and Bioinformatics, (IJBB), Volume (3): Issue (5) 70 

are cumulative. This method further suffers from high percentages of missed detection and false 
alarms resulting in fatalities and unnecessary mastectomies.  
 
On the other hand, EIT is an attractive alternative modality for breast imaging. The procedure is 
comfortable; the clinical system cost is a small fraction of the cost of an X-ray system, making it 
affordable for widespread screening. The procedure further poses no safety hazards and has a 
high potential for detecting very small tumors in early stages of development [24]. Hartov et al. at 
Dartmouth constructed and analyzed a 32-channel, multi-frequency 2D EIT systems. Newton’s 
method was the base for the image construction [25]. Osterman et al. further modified the 
Dartmouth EIT system in a way, so as to make it feasible for routine breast examinations [26]. 
More efforts were later put in, in order to achieve more consistency of the results with an 
improved breast interface [24].  
 
EIT in Gastrointestinal Tract: EIT images of the lungs and gastrointestinal system were 
published in 1985 [27]. Studies were undertaken to assess the accuracy of the gastric function 
images and good correlation with other methods was obtained. Experiments were also 
undertaken to assess the system’s use for monitoring respiration, cardiac functions [28], 
hyperthermia [29], and intra-ventricular haemorrhage in low-birth weight neonates. This study 
established that, citrate phosphate buffers can be used as an alternative test liquid for EIT 
monitoring, and that pH has a systematic effect on gastric emptying and the lag phase [30]. 
 
Hyperthermia: In 1987 in vitro and in vivo studies were carried out to determine the feasibility of 
imaging local temperature changes using EIT to monitor hyperthermia therapy [31]. EIT may be 
used for temperature monitoring because tissue conductivity is known to change with 
temperature. Malignant tumors might be treated by artificially increasing temperature by 
microwave radiation or lasers. 
 

3. EQUIVALENT CIRCUIT MODEL 

 
Figure 1: Equivalent Circuit Model. 

 
In every living tissue there is always spatial non-uniformity present even if it is the same tissue 
such as muscular or hepatic tissue. The presence of this non-uniformity within the living tissue 
can be determined by using either the Cole-Cole distribution [32] or the Davidson-Cole 
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distribution [33] to estimate the distribution of the time constant (electric relaxation time) of the 
circuit model. In this research, impedance distribution in the tissue cross section is represented 
by a 2D distributed equivalent circuit model as shown in Figure 1.  
 
This spatial distributed equivalent circuit is used to model at individual cell or small tissue level. 
Therefore, it reflects the impedance spatial distribution. In other words, each small tissue is 
expressed as an equivalent circuit, which can be expressed using three parameters, namely, the 
intracellular and extracellular resistances denoted as Ri and Re respectively, and cell membrane 
capacitance denoted as Cm. In this model, equivalent circuits with three parameters are 
connected in the shape of a lattice. The electrodes used to measure v and i are assumed to be 
point electrodes.  
 

4. DIVIDED ELECTRODE METHOD 

 
 

FIGURE 2: Experimental setup for Divided Electrode Method for Impedance Measurement. 
 

The divided electrode method for impedance measurement, which was used in this study, is 
shown in Figure 2. The figure also shows the top view and the cross sectional view of the divided 
electrode arrangement. This type of electrode is referred to as divided electrode because it has a 
shape of a plate, which is divided by slits. 
 
 

 
 
 
 
 
 
 
 

 
 
 

 
FIGURE 3: Placement of Guard Electrodes on Both Sides of the Current Electrode. 
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Note that the current electrodes are arranged on both sides of the voltage electrode, which is 
located in the centre. The current flows simultaneously from all the current electrodes. To control 
the flow of the current, a guard electrode is placed around each current electrode. Figure 3 shows 
this arrangement. 
 
Due to the presence of this guard electrode the current from the current electrode flows right into 
the cross section without spreading. This allows us to measure the value of the 2D impedance 
distribution [34, 35]. The current electrodes control the measuring range in the direction of depth 
while the voltage electrodes are employed for controlling the measuring range in the direction of 
the electrode-axis. Therefore, the number of impedance values obtained at once is given by 

{m×n} where m is the number of current electrodes (i1,i2,…,im) and n is the number of voltage 
electrodes (v1,v2,…,vn). This allows one to obtain high-resolution measurements at a high-
speed. 
 

5. ESTIMATION METHOD 

Figure 4 shows the system model for the proposed novel approach. As shown in the Figure 4, the 
proposed noble approach, we use the Alopex algorithm – a stochastic approach, to determine the 
initial set of parameter values. Later, deterministic calculation (Newton’s method) is applied to 
calculate the final set of parameters with high accuracy and precision.  
 

 
 

Figure 4: System Model for the Proposed Novel Approach. 
 

5.1 Alopex Algorithm 
Alopex (Algorithm for Pattern Extraction) is an iterative process [36], which was originally 
proposed for the study of visual receptive fields of frogs, relied on optimization based on cross-
correlations rather than derivatives. Originally the goal of Alopex was to find a visual pattern (an 
array of light intensities) which maximizes the response from individual neurons in the brain [37, 
36, 38].  Later the Alopex algorithm was developed [38, 39] for application to a variety of 
optimization problems where the relationship between the cost and optimization parameters 
cannot be mathematically formulated. In 1990 Pandya [39, 40, 41] introduced Alopex as a 
learning paradigm for multi-layer networks. They claimed their new version of Alopex to be 
network-architecture independent, which does not require error or transfer functions to be 
differentiable and has a high potential for parallelism [42]. Since then, many versions of the 
ALOPEX have been developed [43, 44, 45].  
 
As a generic optimization framework, ALOPEX has certain prominent advantages. It is a gradient 
free optimization method, totally network architecture independent and provides synchronous 
learning. These exclusive features make ALOPEX a distinguishable tool for optimization and 
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many machine learning problems [42]. In optimization process, Alopex chooses set of variables, 
which actually describe the state of the system at any given time. A “cost function” F is derived as 
a function of these variables. The cost function now acts as a object of the optimization process 
and represents the degree of the closeness of the system to several possible states, one of which 
is the desired, in our context it is the ‘error minimization’.  At each iteration, the values of these 
variables get updated and cost function is recalculated. Over several iterations the cost function 
can be brought to an absolute minimum. This state is referred as “convergence” or “global 
minimum”. Similarly Artificial Neural Networks have found several applications in medical field 
[48].  

 

5.2 Mathematical Framework for Novel Approach  
In order to evolve a model connecting N equivalent circuits with three parameters as shown in 
Figure 1 it is necessary to estimate the circuit parameter p. Here p is a vector composed of circuit 
parameters, Ri, Re and Cm corresponding to N circuits. This is an inverse problem and the p 
values must be estimated using measured impedance data. Impedance data ZD measured by K 
electrodes arrangement is expressed as: 
 

   (1) 
 

 
The parameter vector p is expressed as: 
 

        (2) 
 

The initial value of the parameter p is set to p0. The proposed novel method relies on a stochastic 
approach during the initial period of estimation and then uses deterministic calculations to obtain 
the final parameter values with a high accuracy. During the initial stochastic phase the value of 
the error is calculated using equation 3: 

 

          (3) 
Where, M, N, K, ZD and ωi denote the number of voltage electrodes, number of current 
electrodes, number of frequencies, impedance values calculated using the equivalent circuit 
model, and the value of the frequency respectively. During the initial phase, at the nth iteration 
the Pi(n) value is calculated as follows: 
   

    (4)  
where δPi is given by: 

 

∆i(n) = + d with probability P     (5) 

          

Where is given by,   (6) 
and the value for P(∆i(n)) is given by: 
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         (7) 
 

In equation 7, T represents the temperature value. Using the p(n) values the corresponding 

Z(p,ω) value is calculated based on the equivalent circuit model and equation 3 is used to 
determine the error. Once the value of the error is within the tolerance limit the estimation of p 
values is switched to a deterministic algorithm. The goal here is to change the value of Z, by 

changing the value of p so that δZ approaches to zero. 
 

        (8) 
The mathematical equations for calculating the final value of the error and the estimated 
parameters are calculated using the following equations: 

 

              (9) 

       (10) 
Where the value of A is: 
 

     (11) 
 

Here A is an M×N x K matrix and b is a K-dimensional vector. Substituting the value of A from 
equation 11 in equation 10, the equation 10 becomes,                 
 

      (12) 
 

Z(p,ω) can be obtained using the p values and the equivalent circuit model. Here, A can be 
obtained from the numerical analysis based on the equivalent circuit model shown in Figure 1. 
Therefore, calculation of the least squares method of equation 11 is expressed by equation 12 to 

obtain δp, which denotes the change in the parameter value with respect to the initial value p0. 
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6. SIMULATION RESULTS 

 
FIGURE 5: Convergence Graph for the Proposed Noble Algorithm. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6: Algorithm for the Proposed Novel Approach. 
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Ideally, a deterministic method likes Newton Method yields quick convergence for inverse 
problems. However, in this case it was found that Newton method often failed to converge due to 
the presence of local minima, if the initial parameter set was not reasonably close to the global 
minimum. Selecting a set of appropriate initial parameters with Newton’s method is highly 
complicated and is based on trial and error. Alopex being a stochastic method takes several 
iterations (in the order of thousands) to converge. However, it is able to seek out the global 
minima from any arbitrary set of initial parameters.  
 
Figure 5 shows that the proposed novel approach employs Alopex algorithm for selecting the 
initial parameter value. Once the error value converges within the acceptable bound, the 
Newton’s method is employed for converging to local minimum. Figure 6 shows a flow chart for 
the final algorithm for the proposed novel approach. 
 

 
FIGURE 7: The Tissue Divided into 10 Parts. 

 

Figure 7 shows the equivalent circuit model used for our simulations, where a tissue is divided in 
to 10 cells. Since each cell (or equivalent circuit) has 3 parameters, this model involves 30 
parameters. The number of voltage electrodes is 5 (M) and the number of current electrodes is 6 
(N). The number of measurement frequencies is 10 (K) in the range of 0 to 100[kHz] (ωi). 

Therefore, the number of measurement data is 5×6×10=300.  
 
Table 1 shows the model parameters and the initial estimated parameter for the proposed novel 
algorithm. Alopex algorithm converges to initial parameter values such that the error is within the 
10% range. The final values obtained from the Alopex algorithm are represented as the estimated 
parameter values in Table 1. 
 
 

Parameter Values Re[Ω] Ri[Ω] Cm[nF] 
No. 1 180 180 10 

Model Parameters 
No. 2 80 70 11 

No. 1 0 0 0 
Initial Parameters 

No. 2 0 0 0 

No. 1 174.9 161.8 6.9 Estimated 
Parameters No. 2 86.0 117.7 17.6 

 
TABLE 1: Selecting Initial Parameters through Alopex Method. 

 
Note that here model parameter values represent the global minimum for parameter values for p. 
No.1 relates to the 2-D model while no.2 relates to the 3-D model. These values were obtained by 
actually removing the living tissue through dissection and measuring the values. The initial 
parameter values were set to 0 for Alopex for both models. 
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The estimated parameter values from Table 1 are applied as the initial parameter values for 
determining the final values of all the parameters as shown in Figure 6. One can clearly analyze 
that the output (estimated parameter) from Table 1 is the input (initial parameters) in Table 2. 
 
 

Parameter Values Re[Ω] Ri[Ω] Cm[nF] 
No. 1 180 180 10 

Model Parameters 
No. 2 80 70 11 

No. 1 174.9 161.8 6.9 
Initial Parameters 

No. 2 86.0 117.7 17.6 

No. 1 180.0 180.0 10.0 Estimated 
Parameters No. 2 80.0 70.0 11.0 

 
TABLE 2: Calculating the Final Values through Newton’s Method. 
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FIGURE 8: Convergence Graph Using the Alopex Algorithm. 
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FIGURE 9: Convergence Graph Using the Proposed Novel Algorithm. 
 
Figure 8 shows the error value as a function of iterations during the stochastic phase. Figure 9 
shows the error values starting at 3.5% (ending value in Figure 8) and converging to zero within 3 
iterations during the deterministic phase. 
 
 

7. CONCLUSION 

EIT, a non-invasive method, creates a two-dimensional image from information based on the 
impedance characteristics of the living tissue. In this paper a living tissue is represented by the 
two-dimensional equivalent circuit. The equivalent circuit is composed of intracellular and 
extracellular resistances Ri, Re, and cell membrane capacitance Cm which allows for modelling 
the non-uniformity of living tissue. The paper addresses the issue of electrode structure by using 
an arrangement called “divided electrode” for measurement of bio-impedance in a cross section 
of a local tissue. Its capability was examined by computer simulations, where a distributed 
equivalent circuit was utilized as a model for the cross section tissue. Further, a novel artificial 
intelligence based hybrid model was proposed. The proposed model ameliorates the 
achievement of spatial resolution of equivalent circuit model to the closest accuracy. While 
measuring the impedence value, it is extremely important to estimate appropriate values for all 
initial parameters. However, estimation of these initial parameters using Newton’s method is 
extremely difficult. The proposed novel algorithm which uses a combination of stochastic and 
deterministic approach addresses this issue. Thus, the results obtained were highly accurate.  
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