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Abstract 

 
Genes controlling a certain trait of organism is known as quantitative trait loci 
(QTL). The standard Interval mapping [8] is a popular way to scan the whole 
genome for the evidence of QTLs. It searches a QTL  within each interval  
between two  adjacent markers by performing likelihood ratio test (LRT).  
However, the standard Interval mapping (SIM) approach is not robust against 
outliers. An attempt is made to robustify SIM for QTL analysis by maximizing β-
likelihood function using the EM like algorithm. We  investigate the robustness 
performance of the proposed method in a comparison of SIM algorithm using 
synthetic datasets. Experimental results show that the proposed method 
significantly improves the performance over the SIM approach for QTL mapping 
in presence of outliers; otherwise, it keeps equal performance. 
 
Keywords: Quantitative trait loci (QTL),  Gaussian mixture distribution, Likelihood ratio test (LRT), 
Method of maximum likelihood, Method of maximum β -likelihood and Robustness.  

 
 

1. INTRODUCTION 
 

The basic methodology for mapping QTLs involves arranging a cross between two inbred strains 
differing substantially in a quantitative trait: segregating progeny are scored both for the trait and 
for a number of genetic markers. A cross between two parental inbred lines A and B is performed 
to produce an F1 population. The F1 progeny are all heterozygote’s with the same genotype [4]. 
Typically, the segregating progeny are produced by a backcross B1 = F1×parent or an intercross 
F2 = F1 × F1. 
 
 
denote the set of mean and variance of a phenotype in the A, B, F1 and  F2 population, 
respectively. Let µB - µA > 0 denote the phenotypic difference between the strains. The cross will 
be analyzed under the classical assumption that the phenotypic variations are influenced by the 
effects of both genetic and non-genetic (environmental) factors. In particular, we assume 
complete codominance and no epistasis. These implies that 
 
 
 
The variance within the A, B and F1 populations equal the environmental variance, σ2

E among 
genetically identical individuals, while the variance within the F2 progeny also includes genetic 
variance, σ2

G = σ2
F2 - σ2

E. Frequently, phenotypic measurements must be mathematically 
transformed so that parental phenotypes are approximately normally distributed.  
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With the rapid advances in molecular biology, it has become possible to gain fine-scale genetic 
maps for various organisms by determining the genomic positions of a number of genetic markers 
(RFLP, isozymes, RAPDs, AFLP, VNTRs, etc.) and to obtain a complete classification of marker 
genotypes by using codominant markers. These advances greatly facilitate the mapping and 
analysis of quantitative trait loci(QTLs). Thoday [12] first proposed the idea of using two markers 
to bracket a region for testing QTLs. Lander and Botstein [8] implemented a similar, but much 
improved, method to use two adjacent markers to test the existence of a QTL in the interval by 
performing a likelihood ratio test (LRT) at every position in the interval. This is known as standard 
interval mapping (SIM) approach. It is a comparatively popular way to detect a QTL position in a 
chromosome [11]. However, It is not robust against outliers [5, 8, 9]. In this project, an attempt is 
made to robustify the SIM approach [8] by maximizing β-likelihood function [10] using EM like 
algorithm [3]. 
 
In section 2, we discuss the genetic model and its extension to statistical SIM model. 
Section 3 introduce the robustification of SIM approach for QTL analysis. We demonstrate the 
performance of the proposed method using simulated datasets in section 4 and make a 
conclusion of our study in section 5. 
 

2. GENETIC MODEL FOR SIM APPROACH 
 

Let us consider a putative QTL locus Q of two alleles Q and q with allelic frequencies p and (1-p), 
respectively. Define an indicator variable for alleles by 
 
 
 
 
and     
 
 
 

 

 

Figure-1: Phenotype distribution. Schematic 
drawing of phenotype distributions in the A and B 
parental, F1 hybrid and F2 intercross populations. 
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where v is a standardized indicator variable with mean zero. Then the genetic-effect design 
variables for two alleles are defined as 
 
 
 
 
 
and   
  
 
 
 
where v1 and v2 are for the two alleles in an individual. Then the genetic model for a QTL in the 
F2 population is defined as 
 
 
where a and d are additive and dominance effects of QTL, and x*=x and z*=z are the genetic-
effect design variables with p=1/2. Therefore, in matrix notation, the genetic model for a QTL in 
the F2 population can be written as 
 
 
 
 
 
 
It was proposed to model the relation between a genotypic value G and the genetic parameters µ, 
a and d. Here G2, G1 and G0 are the genotypic values of genotypes QQ, Qq and qq. We call D the 
genetic design matrix. The first and second columns of D, denoted by D1 and D2, represent the 
status of the additive and dominance parameters of the three different genotypes.  
 
Let loci M, with allels M and m, and N with alleles N and n, denote two flanking markers for an 
interval where a putative QTL is being tested. Let the unobserved QTL locus Q with alleles Q and 
q be located in the interval flanked by markers M and N. The distribution of unobserved QTL 
genotypes can be inferred from the observed flanking marker genotypes according to the 
recombination frequencies between them. To infer the distribution of QTL genotype, we assume 
 

Table 1: Conditional Probabilities of a putative QTL genotype given the flanking 
marker genotypes for an F2 population. 
Marker genotypes Expected 

frequency 
QTL genotypes 

  QQ(pj1)     Qq(pj2)         qq(pj3) 
MN/MN 
MN/Mn 
Mn/Mn 
MN/mN 
MN/mn  (or mN/Mn) 
Mn/mn 
mN/mN 
mN/mn 
mn/mn 

(1-r)2/4 
r(1-r)/2 
r2/4 
r(1-r)/2 
(1-r)2/2+ r2/2 
r(1-r)/2 
r2/4 
r(1-r)/2 
(1-r)2/4 

1                  0                    0        
1-p               p                    0      
(1-p)2          2p(1-p)           p2  
p                  1-p                 0 
cp(1-p)      1-2cp(1-p)    cp(1-p) 
0                  1-p                 p 
 p2 

                 2p(1-p)          (1-p)2
 

0                  p                     1-p 
0                  0                     1   

p=rMQ/rMN, where rMQ is the recombination fraction between the left marker M and 
the putative QTL and rMN is the recombination fraction between two flanking 
markers M and N. c=r2

MN/[r2
MN+(1-rMN)2]. The possibility of a double recombination 

event in the interval is ignored. 














qqp

Qqp
QQp

vvx
for             2
for          21
for      )1(2

21














qq,p
Qqpp
QQp

vvx
for             2
for       )1(2
for      )1(2

2
2

2

21

(1)                                                                                                   , ** dzaxG  

.1     
1

0
1

1
1
1

13

2
1

2
1
2
1

0

1

2

DE
d
a

G
G
G

G 



























































 









Md. Nurul Haque Mollah 

International Journal of Biometrics and Bioinformatics (IJBB), Volume (4): Issue (2) 16 
 

 
that there is no crossover interference and also that double recombination events within the 
interval are very rare and can be ignored to simplify the analysis. The conditional probabilities of 
the QTL genotypes given marker genotypes are given in Table 1 for the F2 population. We 
extract the conditional probabilities from this table to form a matrix Q for F2 population. 
 
 
2.1 Statistical Model for SIM Approach 
 
 

Let us assume no epistasis between QTLs, no interference in crossing over, and only one QTL in 
the testing interval. A statistical model for SIM approach based on the genetic model (1) for 
testing a QTL in a marker interval is defined as 
 
 
 
where  
 
 
 
 
 
 
yj is the phenotypic value of the jth individual, µ is the general mean effect; and єj  is a random 
error. We assume єj  ~ N(0, σ2). To investigate the existence of a QTL at a given position in a 
marker interval, we want to test the following statistical hypothesis. 
 
Null Hypothesis, H0 :  a=0 and  d=0   (i.e. there is no QTL at a given position).  
Alternative  Hypothesis, H1 :  H0  is not true (i.e. there is a QTL at a given position). 
 
 
2.2 SIM Approach by Maximizing Likelihood Function 
 
In the SIM model (2), each phenotypic observation (yj) is assumed to follow a mixture of three 
possible Gaussian densities with different means and mixing proportion, since observation yj's are 
influenced by three QTL genotypes QQ, Qq and qq. Therefore, the density of each phenotypic 
observation (yj) is defined as 
 
 
 
 
where θ=(µ,p,a,d,σ2), Ø is a standard normal probability density function, µj1=µ+a-d/2, µj2 = µ + d/2 
and µj3 = µ - a - d/2. The mixing proportions pji's which are functions of the QTL position 
parameter p, are conditional probabilities of QTL genotypes given marker genotypes. For n 
individuals, the likelihood function for θ=(µ, p,a,d,σ2) is given by 
 
 
 
 
To test H0 against H1, the likelihood ratio test (LRT) statistic is defined as 
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where θ0 and θ are the restricted and unrestricted parameter spaces. The threshold value to 
reject the null hypothesis can't be simply chosen from a chi-square distribution because of the 
violation of regularity conditions of asymptotic theory under H0. The number and size of intervals 
should be considered in determining the threshold value since multiple tests are performed in 
mapping. The hypothesis are usually tested at every position of an interval and for all intervals of 
the genome to produce a continuous LRT statistic profile. At every position, the position 
parameter p is predetermined and only a, d, µ and σ2 are involved in estimation and testing. If the 
tests are significant in a chromosome region, the position with the largest LRT statistic is inferred 
as the estimate of the QTL position p, and the MLEs at this position are the estimates of a, d, µ 
and σ2 obtained by EM algorithm treating the normal mixture model as an incomplete-data 
problem [8]. Note that EM algorithm has been also used to obtain MLEs in several studies of QTL 
mapping analysis [6, 7]. 
 
 

3.  ROBUSTIFICATION OF SIM APPROACH BY MAXIMIZING β-LIKELIHOOD 
FUNCTION  

 
The β-likelihood function for θ = (µ, p, a, d, σ2) as defined in equation (3) is given by 
 
 
 
 
 
where 
 
 
 
 
Note that maximization of β-likelihood function is equivalent to the minimization of β-divergence 
for estimating θ [10]. The β-likelihood function reduces to the log-likelihood function for β0. In 
this paper, our proposal is to use the β-LOD score for the evidence of a QTL in a marker interval 
from the robustness point of view. It is defined by 
 
 
 
where θ0 and θ are the restricted and unrestricted parameter spaces as before. For β0, the 
LODβ reduces to the likelihood ratio test (LRT) criterion as defined in equation. The threshold 
value to reject the null hypothesis H0 can be computed by permutation test following the work of 
Churchill and Doerge [2]. At every position, the position parameter p is predetermined and only a, 
d, µ and σ2 are involved in estimation and testing as before. If the tests are significant in a 
chromosome region, the position with the largest LODβ is inferred as the estimate of the QTL 
position p, and the β-estimators at this position are the estimates of a, d, µ and σ2 obtained by EM 
algorithm treating the normal mixture model as an incomplete-data problem. 
 
 

3.1   Maximization of β-Likelihood  Function Using EM  Algorithm 
 

The EM algorithm can be used for obtaining the maximum β-likelihood estimators of a, d, µ 
and σ2 treating the normal mixture model as an incomplete-data density. Let 
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be the distribution of QTL genotype specified by xj* and zj*. Let us treat the unobserved QTL 
genotypes (xj* and zj*) as missing data, denoted by yj(mis), and the trait yj as observed data, 
denoted by yj(obs). Then, the combination of yj(mis) and yj(obs) is the complete data, denoted by yj(com). 
The conditional distribution of observed data, given missing data, is considered as an 
independent sample from a population such that  yj|(θ,xj*,zj*)~N(µ+axj*+dzj, σ2) 
 
The complete-data density model in this problem is regarded as a two-stage hierarchical model. 
First the values of random variables (xj*, zj*) are sampled by a trinomial experiment to decide QTL 
genotype, and then a normal variate for that genotype is generated. The values of random 
variables (xj*, zj*) of individual j are (1, -1/2), (0, 1/2) or (-1, -1/2) for QTL genotype QQ, Qq, or qq 
with probability pj1, pj2 or pj3, respectively. Thus the complete-data density function 
is given by 
 
 
 
 
 
 
 
At a given position, p is determined. The EM algorithm is used for obtaining the  maximum β-
likelihood estimators of a, d, µ and σ2 for the complete-data density. The iteration of the (t+1) EM-
step is as follows:   
 
E-step: The conditional expected complete-data β-likelihood with respect to the conditional 
distribution of Ymis given Yobs and the current estimated parameter value θ(t) is given by 
 
 
 
 
 
 
 
where 
 
 
 
and 
 
 
 
 
 
  
which is the posterior probability of j-th individual given the i-th QTL genotype, i=1, 2 and 3 for 
QTL genotypes QQ, Qq and  qq, respectively.  
 
 M-step: Find θ(t+1)  to maximize the conditional expected β-likelihood by taking the derivatives of 
Qβ(θ| θ(t) ) with respect to each parameter. The solutions of parameters in closed form are as 
follows.  
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and 
 
 
 
 
 
where 
 
 
 
 
 
which is a symmetric matrix. Here # denotes Hadamards product, which is the element-by-
element product of corresponding elements of two same-order matrices and  
 
 
 
 
 
which is called the matrix of β-weighted posterior probabilities. For β=0, the matrix Πβ  reduces to 
the matrix of standard posterior probabilities. It should be noted here that each element of n-
vector 1n is 1. The E and M steps are iterated until a convergent criterion is satisfied. The 
converged values of a, d, µ and σ2 are the values of minimum β-divergence estimators. Note that 
minimum β-divergence estimators (10-13) with β=0 reduce to maximum likelihood estimators 
(MLE) of SIM for QTL analysis.   
 
Under null hypothesis Ho: a=0,  d=0, the minimum β-divergence estimators for the parameters µ 
and σ2 are obtained iteratively as follows 
 
 
 
and 
 
 
 
where 
 
 
 
 
 
 
which is called the β-weight vector. 
 
 

4.  SIMULATION RESULTS 
 
To illustrate the performance of the proposed method in a comparison of SIM approach [8] for 
QTL analysis, we consider F2 intercross population for simulation study. In this study, we assume 
only one QTL on a chromosome with 10 equally spaced markers, where any two successive 
marker interval size is  5 cM . Marker positions and their genotypes are generated using R/qtl 
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software [1], homepage: http://www.rqtl.org/). The successive marker interval size 5 is considered. 
The QTL position is located by the 5th marker of chromosome-10. The true values for the 
parameters in the SIM model are assumed as a=0.4, d=0.8, µ=0.05 and σ2=1. We randomly 
generated 250 trait values with heritability h2=0.2 using the SIM model (2). A trait with heritability 
h2=0.2 means that 20% of the trait variation is controlled by QTL and the remaining 80% is 
subject to the environmental effects (random error).  
 
 

Outliers Not Exist Outliers Exist 

 

 

 
Figure-2: Simulation results based on two successive marker interval size 5 cM. (a-b) 
Simulated phenotypic observations in absence and presence of outliers, respectively.    
(c-d) LOD scores by the SIM approach in absence and presence of 15% outliers, 
respectively. (e-f) LOD scores by the proposed robustified SIM approach in absence and 
presence of 15% outliers, respectively. 

 
Figure 2(a) represent the scatter plot of a sample of 250 trait values and a covariate. To 
investigate the robustness of the proposed method in a comparison of the SIM method for QTL 
mapping, we replaced 15% trait values randomly in each replication of the previous example by 
outliers (+) so that data contamination rate is 15% in each replication. Figures 2(b) represent the 
scatter plot of a sample of 250 trait values in presence of outliers.  
 
To determine the QTL position, we compute LOD scores by both the SIM and the proposed 
robust SIM method. It should be noted here that the name 'LOD scores' is used for convenience 
of presentation instead of both LRT scores of SIM method and the β-LOD scores of the proposed 
method. According to the theoretical settings, the largest LOD score should be occurred with the 
true QTL positions in the entire genome. We computed LOD scores by both SIM and robust SIM 
approaches. Figures 2(c) and 2(e) represents the LOD scores at every 2 cM position in the 
chromosomes in absence of outliers by SIM and the  proposed method, respectively. Similarly, 
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figures 2(d) and 2(f) represents the LOD scores at every 2 cM position in the chromosomes in 
presence of outliers by SIM and the proposed method, respectively. It is seen that the highest 
and significant LOD score peak occurs with the true QTL position in the chromosome 10 by both 
methods in absence of outliers, while in presence of phenotypic outliers, highest and significant 
LOD score peak occurs with the true QTL position by the proposed method only. Therefore, 
performance of both methods is almost same and good in absence of outliers, while the 
performance of the proposed method is better than the SIM approach in presence of outliers. 
 

5. CONCLUSION  
 

This paper proposes the robustification of the SIM algorithm for QTL mapping by 
maximizing β-likelihood function using EM like algorithm. The β-likelihood function 
reduces to the log-likelihood function for β0. The proposed robust SIM algorithm with 
the tuning parameter β=0 reduces to the traditional SIM algorithm. The value of the 
tuning parameter β has a key role on the performance of the proposed method for QTL 
mapping. An appropriate value for the tuning parameter can be selected by cross- 
validation [10]. However, one can choose  β Є (0.1, 0.5), heuristically. Simulation results 
show that the robustified SIM algorithm with β>0 significantly improves the performance 
over the  SIM approach in presence of phenotypic outliers. It keeps equal performance 
otherwise. 
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