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Abstract 

 
Subcellular localization is a key functional characteristic of proteins. As an 
interesting ``bio-image informatics'' application, an automatic, reliable and 
efficient prediction system for protein subcellular localization  can be used for 
establishing knowledge of the spatial distribution of proteins within living cells and 
permits to screen systems for drug discovery or for early diagnosis of a disease. 
In this paper, we propose a  two-stage multiple classifier system to improve 
classification reliability by introducing rejection option. The system is built as a  
cascade of two classifier ensembles. The first ensemble consists of set of binary 
SVMs which generalizes to learn a  general classification rule and the second 
ensemble, which also include three  distinct  classifiers, focus on the exceptions 
rejected by the rule. A new way to induce diversity for the classifier ensembles is 
proposed by  designing classifiers that are based on descriptions of different 
feature patterns. In addition to the Subcellular Location Features (SLF) generally 
adopted in earlier researches, three well-known texture feature descriptions have 
been applied to cell phenotype images, which are the local binary patterns (LBP), 
Gabor filtering and Gray Level Co-occurrence Matrix (GLCM). The different 
texture feature sets  can provide sufficient diversity among base classifiers, 
which is known as a necessary condition for improvement in ensemble 
performance. Using the public benchmark  2D HeLa cell images, a high 
classification accuracy 96% is obtained  with rejection rate 21% from the 
proposed system  by taking advantages of the complementary strengths of 
feature construction and majority-voting based classifiers' decision fusions. 
 
Keywords: subcellular phenotype images classification; hybrid classifier; local 
binary patterns; Gabor filtering; Gray level co-occurrence matrix; support vector 
machine; multiple layer perceptron; random forest 
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1. INTRODUCTION 

Eukaryotic cells have a number of subcompartments termed organelles, each of which contains a 
unique localization of proteins and hence different biochemical properties. Determining a protein's 
location within a cell is critical to understanding its function and to build models that capture and 
simulate cell behaviors. It has been shown that mislocalization of proteins correlates with several 
diseases that range from metabolic disorders to cancer [1], thus knowledge of the location of all 
proteins will be essential for early diagnosis of disease and/or monitoring of therapeutic 
effectiveness of drugs. Given that mammalian cells are believed to express tens of thousands of 
proteins, a comprehensive analysis of protein locations requires the development of an 
automated massive analysis method. If such analyses can be converted into high throughput  
``location proteomics'' assays, the resulting information would help us to understand the functions, 
properties and distribution of proteins in cells, and how a protein changes its characteristics in 
response to drugs, diseases and various stages of the cell cycle. 
 
The most widely used method for determining protein subcellular location is fluorescence 
microscopy, which combines fluorescence detection with high-powered digital microscopy. 
Advances in fluorescent probe chemistry, protein chemistry, and imaging techniques have made 
fluorescence microscopy a valuable method for determining protein subcellular locations [2,3]. 
Over the past decade, there has been much progress in the classification of subcellular protein 
location patterns from fluorescence microscope images. The pioneering contributions to this 
problem should be attributed to Murphy and his colleagues [4-8]. Machine learning methods such 
as artificial neural networks and Support Vector Machine (SVM) have been utilized for the 
predictive task of protein localization in conjunction with various  feature extraction methods from 
fluorescence microscopy images. Most of the proposed approaches employed  feature set which 
consist of different combinations of morphological, edge, texture, geometric, moment and wavelet 
features. For example, [5] used images of ten different subcellular patterns to train a neural 
network classifier, which has been shown to correctly recognize an average of 83% of the 
patterns. 
 
In previous studies of subcellular phenotype images classification, classification accuracy was the 
only pursuit, aiming to produce a classifier with the smallest error rate possible. In many 
applications, however, reject option for classifiers by allowing for an extra decision expressing 
doubt is important.  For instance, in early diagnosis of disease or monitoring of therapeutic 
effectiveness of drugs, it is more important to be able to reject an example of subcellular 
phenotype image when there is no  sufficiently high degree of accuracy, since the consequences 
of misclassification are severe and scientific expertise is required to exert control over the 
accuracy of the classifier  thus making reliable determination. Therefore, we are motivated to 
investigate the option of classification scheme with rejection paradigm to meet the desirable 
functionality of automated  subcellular phenotype images classification whereby the system 
generates decisions with confidence larger than some prescribed threshold and transfers the 
decision on cases with lower confidence to a human expert. For the 2D HeLa images [5,6], 
evidence from many published works and our own extensive experiments confirmed that no 
single method of classification could achieve high classification accuracy for all localizations. It 
has become a consensus in machine learning community that an integrative approach by 
combining  multiple learning systems often offer higher and more robust classification accuracy 
than a  single  learning system [19].  The so-called ensemble system that combines the outputs of 
several diverse classifiers or experts has been broadly applied and  proven an efficient approach 
to improve the performance of recognition systems. The intuition is that the diversity in the 
classifiers allows different decision boundaries to be generated, which can be implemented by 
using different learning algorithms corresponding to  different errors or by using different 
representations of the same input to make different features apparent and provide supplementary 
information. 
 
As a typical multi-class  classification issue, subcellular phenotype images classification involves 
two interweaved parts: feature representation and classification. Many of the off-the-shelf 
standard classifiers such as multiple layer perceptron  can be directly applied together with 
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different possible feature sets which are  potentially useful for separating different classes of 
subcellular phenotype [32]. However, a multi-class subcellular phenotype images dataset is often 
featured with large intra-class variations and inter-class similarities, which poses serious 
problems for simultaneous multi-class separation using the standard classifiers. On the other 
hand, it is almost impossible to find a feature set that is universally informative for separating all 
classes simultaneously. A better alternative solution to the problem, therefore, is to train different 
classifiers on distinct feature sets to fit the different characteristics. In our study,  three kind of 
texture feature representations  were considered, together with the Subcellular Location Features 
(SLF) [5,7]. The three texture feature expressions are the local binary patterns (LBP) [12], Gabor 
filtering [17] and Gray Level Co-occurrence Matrix (GLCM) [18] . The LBP operator has been 
proved a powerful means of texture description, which  is relatively invariant with respect to 
changes in illumination and image rotation, and computationally simple [13, 14]. Gabor filter  is 
another widely adopted operator for texture properties description  and has been shown to be 
very efficient in many applications [17]. The Gray Level Co-occurrence Matrix (GLCM) method is 
characterized by its capability of extracting second order statistical texture features when 
considering the spatial relationship of pixels and has been  proved to be a promising method in 
many image analysis tasks. These kinds of texture features alone might, however, have limited 
power in describing the complex features from microscopy images related to the subcellular 
protein location patterns. This again strengthens our avocations  to propose  a two-stage 
classifiers system  which cater for a  design-based method to fuse the features from LBP, Gabor 
filter,  GLCM  and SLF in order to obtain an improved classification performance. 
 
Our work follows  the hybrid classification paradigm,  which combines classifiers to yield more 
accurate recognition rates when different classifiers contributes partially with different features.  
Unlike relative works that combine different base classifiers (trained with same samples) for 
image recognition systems, we use an effective approach to utilize complementary texture 
information and provide sufficient diversity among base classifiers of ensemble. With the 2D 
HeLa images, a sample  can be either classified or rejected.  The objective of reject option is  to 
improve classification reliability  and leave the control of classification accuracy to human expert.  
Comparing with some earlier cascading classifier paradigms,  our proposed system is composed 
of different classifiers each specializes with different set of features. In our implementation,  one-
vs-all SVMs are employed in the first stage to obtain high accuracy for easier inputs and reject a 
subset of class assignments which is harder or ambiguous. A second stage classifier ensemble 
consists of three different kind of multi-class classifiers working in parallel (random forest, neural 
networks and support vector machines) and the final decision is based on the majority voting for 
the final combination. 
 
The paper is organized as follows. In Section 2, we introduce feature descriptions, including three 
texture descriptors LBP, Gabor filter and GLCM, together with the Subcellular Location Features 
(SLF). In Section 3, we elaborate the details of the proposed two-stage hybrid classification 
system. Experiments using the 2D HeLa images are provided in Section 4 and conclusion is 
outlined in Section 5. 
 

2. FEATURE DESCRIPTIONS FOR CELL PHENOTYPE IMAGES  
In order to automated analyse and classify microscopic cellular images, some kind of features 
have to be extracted to express the statistical characteristics  in the image. And given two sets of 
sub-cellular localization images under differing experimental conditions, an efficient image feature  
can be used to evaluate if  there is a statistically significant difference, even to the extent that 
visually indistinguishable images of distinct localizations may be differentiated [4] .The feature 
sets proposed in the literature include, for instance, morphological data of binary image structures, 
Zernike moments and edge information [5,6]. Use of a single technique for the extraction of 
diverse features in an image usually exhibits limited  information description. Features extracted 
using different techniques can be combined in an attempt to enhance their  description capability. 
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2.1 Local Binary Pattern  
Local Binary Pattern (LBP) operator was introduced as a texture descriptor for summarizing local 
gray-level structure [12]. LBP labels pixels of an image by  taking a local neighborhood around 
each pixel into account, thresholding the pixels of the neighborhood at the value of the central 
pixel and then using the resulting binary-valued image patch as a local image descriptor. In 
another word, the operator assigns a binary code of 0 and 1 to each neighbor of the  
neighborhoods. The binary code of each pixel in the case of 3x3 neighborhoods would be a 
binary code of 8 bits and by a single scan through the image for each pixel the LBP codes of the 
entire image can be calculated. Figure 1 shows an example of an LPB operator utilizing 3x3 
neighborhoods. 

 
Figure  1. Illustration of the basic LBP operator. 

 
Formally, the LBP operator takes the form 

 
where in this case n runs over the 8 neighbors of the central pixel c, ic and in are the gray-level 

values at c and n, and s(u) is 1 if u  ≥0 and 0 otherwise.  

 
An useful extension to the original LBP operator is the so-called uniform patterns [12]. An LBP is 
``uniform'' if it contains at most two bitwise transitions from 0 to 1 or vice versa when the binary 
string is considered circular. For example, 11100001 is a uniform pattern, whereas 11110101 is a 
non-uniform pattern. The uniform LBP describes those structures which contain at most two 
bitwise (0 to 1 or 1 to 0) transitions. Uniformity is an important concept in the LBP methodology, 
representing important structural features such as edges, spots and corners. Ojala et al. [12] 
observed that although only 58 of the 256 8-bit patterns are uniform, nearly 90 percent of all 
observed image neighbourhoods are uniform. We use the notation LBP

u
 P,R for the uniform LBP 

operator.  LBP
u
 P,R  means using the LBP operator in a neighborhood of P sampling points on a 

circle of radius R. The superscript u stands for using uniform patterns and labeling all remaining 
patterns with a single label. The number of labels for a neighbourhood of 8 pixels is 256 for 
standard LBP and 59 for LBP

u
 8,1. 

 
A common practice to apply the LBP coding over an image is by using the histogram of the labels, 
where a 256-bin histogram represents the texture description of the image and each bin can be 
regarded as a micro-pattern. Local primitives which are coded by these bins include different 
types of curved edges, spots, flat areas, etc. The distribution of these patterns represents the 
whole structure of the texture. The number of patterns in an LBP histogram can be reduced by 
only using uniform patterns without losing much information. There are totally 58 different uniform 
patterns at 8-bit LBP representation and the remaining patterns can be assigned in one non-
uniform binary number, thus representing the texture structure with a 59-bin histogram. 
 
LBP scheme has been extensively applied in face recognition, face detection and facial 
expression recognition with excellent success, outperforming the state-of-the-art methods [13]. 
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The methodology can be directly extended to microscopy image representations as outlined in 
the following.  First, a microscopy image is divided into M small no-overlapping rectangular blocks 
R0, R1, …, RM. On each block, the histogram of local binary patterns is calculated. The procedure 
can be illustrated by Figure 2. The LBP histograms extracted from each block are then 
concatenated into a single, spatially enhanced feature histogram defined as: 

 
where L is the number of different labels produced by the LBP operator and I(A) is 1 if A is true 
and 0 otherwise. The extracted feature histogram describes the local texture and global shape of 
microscopy images. 

 
 

FIGURE 2: Feature extraction diagram for image recognition with local binary patterns. 
 
LBP has been proved being a good texture descriptor with high extra-class variance  and low 
intra-class variance.  Recently, a number of variants of LBP have been proposed [15]. In  [16], a 
completed modeling of the local binary pattern  operator is proposed and an associated 
completed LBP (CLBP) scheme is developed for texture classification. In this scheme, a local 
region is represented by its center pixel and a local difference sign-magnitude transform. And the 
center pixels represent the image gray level and they are converted into a binary code by global 
thresholding.  For many  applications like face recognition, CLBP can offer better performance. 
 
2.2 Gabor Based Texture Features   
Gabor filters [17] have been used extensively to extract texture features  for different image 
processing tasks. Image representation using Gabor filter responses minimises the joint space-
frequency uncertainty. The filters are orientation- and scale-tunable edge and line detectors. 
Statistics of these local features in a region relate to the underlying texture information. The 
convolution kernel of Gabor filter is a product of a Gaussian and a cosine function, which can be 
characterized by a preferred orientation and a preferred spatial frequency: 

 
where 

 
The standard deviation σ  determines the effective size of the Gaussian signal. The eccentricity of 

the convolution kernel g is determined by the parameter  λ, called the spatial aspect ratio. λ 

determines the frequency (wavelength) of the cosine.  θ  determines the direction of the cosine 

function and finally, ϕ  is the phase offset. 
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There exists several useful properties with Gabor functions which are important for texture 
analysis. Gabor function optimally concentrate both in space and space-frequency domain by the 
smallest time-bandwidth product of the Gaussian function. Due to the ability to tune a Gabor filter 
to specific spatial frequency and orientation, and achieve both localization in the spatial and the 
spatial-frequency domains, textures can be encoded into multiple channels each having narrow 
spatial frequency and orientation. The local information regarding the texture elements is 
described by the orientations and frequencies of the sinusoidal grating and the global properties 
are captured by the Gaussian envelope of the Gabor function. Hence the local and global 
properties of the texture regions can be simultaneously represented by making use of the Gabor 
filters. 
 
Typically, an image is filtered with a set of Gabor filters of different preferred orientations and 
spatial frequencies that cover appropriately the spatial frequency domain, and the features 
obtained form a feature vector  that is further used for classification. Given an image I(x,y), its 
Gabor wavelet transform is defined as 

 
where * indicates the complex conjugate. With assumption of spatially homogeneous  local 

texture regions, the mean µmn and standard deviation σmn of the magnitude of transform 
coefficients can be used to represent the regions [17]. A feature vector f (texture representation) 

is  thus created using µmn and σmn as the feature components. 
 
2.3 Gray Level Co-occurrence Matrices   
Gray level co-occurrence matrix (GLCM) proposed by Haralick [18] is another common texture 
analysis method which estimates image properties related to second-order statistics. GLCM  
matrix  is defined over an image to be the distribution of co-occurring values at a given offset. 
Mathematically, a co-occurrence matrix C is defined over an  nxm image I, parameterized by an 
offset 

 

Note that the (△x, △y) parameterization makes the co-occurrence matrix sensitive to rotation. An 

offset vector can be chosen such that a rotation of the image not equal to 180 degrees will result 
in a different co-occurrence distribution for the same (rotated) image. 
 
In order to estimate the similarity between different GLCM matrices, Haralick  proposed 14 
statistical features extracted from them  [18]. To reduce the computational complexity, only some 
of these features will be selected. The 4 most relevant features that are widely used in literature 
include: (1)Energy, which is a measure of textural uniformity of an image and reaches its highest 
value when gray level distribution has either a constant or a periodic form; (2) Entropy, which  
measures the disorder of an image and  achieves its largest value when all elements in C matrix 
are equal; (3) Contrast, which is a difference moment of the C and  measures the amount of local 
variations in an image; (4) Inverse difference moment (IDM) that measures image homogeneity. 
 
2.4 Subcellular Location Features (SLF)   
Murphy group has developed and published  several sets of informative features, termed 
Subcellular Location Features (SLFs), that describe protein subcellular location patterns in 2D 
fluorescence microscope images [5-7]. There are three major subsets of features. The first set is 
49 Zernike moment features  through order 12, which  are calculated from the moments of each 
image relative to the Zernike polynomials, an orthogonal basis set defined on the unit circle. The 
second set is 13 Haralick texture features [18], which is related to intuitive descriptions of image 
texture, such as coarseness, complexity and isotropy. The third set of 22 features was derived 
from morphological and geometric analysis that correspond better to the terms used by biologists, 
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including the number of objects, the ratio of the size of the largest object to the smallest object, 
the average distance of an object from the center of fluorescence, and the fraction of above-
threshold pixels along an edge et al. Each cell in the dataset is thus represented by a SLF feature 
vector x of length d = 84. Though SLF includes a much simplified Haralick texture features, we 
still applied GLCM analysis in a general scenario   by specifying the different distance between 
the pixel of interest and its neighbor and including more statistical measurements as introduced in 
last subsection. 
 

3. TWO-STAGE HYBRID CLASSIFICATION ENSEMBLES  
After feature extraction, a statistical model needs to be learned from data that accurately 
associates image features with predefined phenotype classes.  Some supervised learning 
algorithms such neural networks,  k-nearest neighbor algorithm and SVM [5-8] have been applied 
to solve this problem.  In pattern recognition systems, it has been proven that ensemble of 
classifiers have the potential to improve classification performance.  How to combine multiple 
classifiers has been studied for decades, with a number of successful methods  proposed in the 
literature [19]. The most popular method for creating an ensemble classifier  is to build multiple 
parallel classifiers, and then to combine their outputs according certain decision fusion strategy. 
Alternatively, serial architecture can be adopted with different classifiers arranged in cascade and 
the output of each classifier is the input to the classifier of the next stage of the cascade.  
 
Our approach is based on  a hybrid topology that combine parallel and serial schemes. The idea 
is motivated by a human category learning theory rule-plus-exception model (RULEX) proposed 
in [20].  According to RULEX, people learn to classify objects by forming simple logical rules and 
remembering occasional exceptions to those rules.  In machine learning, many off-the-shelf 
methods like support vector machine (SVM) and multi-layer perceptron (MLP) are able to  
approximate the Bayes optimal discriminant function, which is equivalent to discover the 
knowledge or patterns hidden in the dataset. Such a knowledge can be represented in terms of a 
set of rules underlying most of the training examples [22]. A rule consists of an antecedent (a set 
of attribute values) and a consequent (class): 

 
It is not realistic to expect such a rule to explain all of the data.  The examples which are failed to 
be explained should be considered as exceptions and processed with a rejection option  
separately.  For many real-world applications,  such a rejection option is important to satisfy the 
classification constraints and  many multi-stage classifier architectures have been  proposed to 
automatically treating the rejects [23, 25 , 26] .  
  
Extending from the previous works, we proposed a two-stage hybrid  classifier ensemble in which 
a second classifier ensemble is concatenated to the first ensemble. At all stages, a pattern can be 
either classified or rejected. Rejected patterns are fed into the next stage.  The overall system 
can be illustrated in Figure 3, which shows that second stage need only operate on the surviving 
inputs from the previous stage. 
 

 
 

FIGURE 3: Illustration of the overall system which is a cascade of classifier ensembles. Samples 
rejected at first stage are passed on to second stage during classification.  
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The major issue for designing the above hybrid classification system is to decide when a pattern 
is covered by the rule and should be learned by  the first classifier ensemble and when it is an 
exception and should be learned by the second classifier ensemble. The reject option has been 
formalized in the context of statistical pattern recognition, under the minimum risk theory [31, 23]. 
It consists in withholding the automatic classification of a pattern, if the decision is considered not 
sufficiently reliable. Intuitively, objects should be rejected when the confidence in their 
classification is too low. The standard approach to rejection in classification is to estimate the 
class posteriors, and to reject the most unreliable objects, that is, the objects that have the lowest 
class posterior probabilities [24, 23] .  As the posteriors sum to 1, there will be complete  
ambiguity if all posteriors are equal to 1/d with d classes and complete certainty when  one 
posterior is equal to 1 and all others equal to 0. 
 
To simplify the design of the first stage ensemble with appropriate posteriors estimation, we can 
decompose the multi-label classification problems with k classes  into k independent two-class 
problems, each one consisting in deciding whether an object should be assigned or not to the 
corresponding class. This is the idea of the one-versus-all approach to divide the classes into two 
groups each time, with one group consisting of a single class and the other group consisting of 
samples in all the other classes. In other words, a set of k independent binary classifiers are 
constructed  for k classes where the i

th
 classifier is trained to separate samples belonging to class 

i from all others. Then the multiclass classification is carried out according to the maximal output 
of the binary classifiers. Though there are many candidates to implement such a scheme, we 
choose to apply SVMs due to their ability to map features into arbitrarily complex spatial 
dimensions to find the optimal margin of separation.  To  estimate class posteriors from SVM's 
outputs,  a mapping can be implemented  using  the following  sigmoid function [28]: 

 
where the class labels are denoted as y = +1, -1, while a and b are constant terms to be defined 
on the basis of sample data. Such a method provides estimates of the posterior probabilities that 

are monotonic functions of the output ρ(x) of a SVM. This implies that Chow's rule applied to such 

estimates is equivalent to the rejection rule obtained by directly applying a reject threshold on the 

absolute value of the outputρ(x) [27]. 

 
In our scheme,  M  binary SVM  classifiers are constructed for M different image features. The ith 
SVM output function Pi is trained taking the examples from i

th
 class as positive and the examples 

from all other classes as negative. In another word, each binary SVM classifier in the ensemble 
was trained to act as a class label detector, outputting a positive response if its label is present 
and a negative response otherwise [21]. So, for example, a binary SVM trained as a ``Nuclei 
detector''  would classify between cell phenotypes which are Nuclei and not Nuclei.  For a new 
example x, the corresponding SVM  assigns it to the class with the largest value of Pi following 

 
where Pi is the signed confidence measure of the ith SVM classifier. The maximum confidence 
rule with  P(Yi = 1) is used as the confidence measure. 
 
We assume that k classifier ensemble or experts are deployed in the first stage, and that for each 
input sample, each expert produces a unique decision regarding the identity of the sample. This 
identity could be one of the allowable classes, or a rejection when no such identity is considered 
possible. In the event that the decision can contain multiple choices, the top choice would be 
selected [29]. In combining the decisions of the k  experts, the sample is assigned the class for 
which there is a consensus or when at least t of the experts are agreed on the identity, where 
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Otherwise, the sample is rejected. Since there can be more than two classes, the combined 
decision is correct when a majority of the experts are correct, but wrong when a majority of the 
decisions are wrong and they agree. A rejection is considered neither correct nor wrong, so it is 
equivalent to a neutral position or an abstention. Figure 2 further explains the process chart of the 
stage 1 classifier ensemble. 
 
It is worthy to emphasize that  different representations of same set of images were considered 
for different ``expert'', which allow a single expert to take decision about class memberships and 
thus have different probable decisions.  This presents a way to use fusion to have more 
authenticated decisions by considering many representations of set of patterns. 
 

 
FIGURE 4:  Process chart of  the stage 1 classifier ensemble, which consist of a set of binary 

SVMs with high rejection rate. 
 
The set of rejected patterns  found by the first stage classifier  ensemble will be handled by next 
stage  ensemble, which is a multiple classifier combination with the aim of overcoming the 
limitations of individual classifiers. In our design,  diversity is achieved by choosing classifiers 
differing in feature representation, architecture and learning algorithm in order to bring 
complementary classification behavior. In stage 2, the multi-class classification is handled directly 
by three individual classifiers, including neural network (NN), support vector machine (SVM), and  
Random Forest classifier [34],  which are simultaneously trained with stage 1 ensemble.  The 
three  classifiers are of different types: NN classifier is weight-based, SVM classifier is distance or 
margin based, and  Random Forest is rule based. Using different types of classifiers as the 
constituent classifiers in classifier fusion is one of our design strategies in obtaining necessary 
diversity, thus achieving improved performance. 
 



Bailing Zhang & Tuan D. Pham 

International Journal of Biometrics and Bioinformatics, (IJBB), Volume (4): Issue (5) 185 

The neural network classifier is a 2-layer feed-forward network. It has one hidden layer with a few 
hidden neurons and has 10 output nodes, each representing a class label. The activation 
functions for hidden and output nodes are logistic sigmoid function and linear function, 
respectively.  Support Vector Machines (SVM) is a  developed learning system originated from 
the statistical learning theory  [30]. One distinction between SVM and many other learning 
systems is that its decision surface is an optimal hyperplane in a high dimensional feature space. 
The optimal hyperplane is defined as the one with the maximal margin of separation between 
positive and negative examples. Designing SVM classifiers includes selecting the proper kernel 
function and the corresponding kernel parameters and choosing proper C value.  
 

The histogram intersection,  is often used as a 
measurement of similarity between histograms ha and hb, and because it is positive definite, it can 
be used as a kernel for discriminative classification using SVMs. Recently, intersection kernel 
SVMs  have been shown to be successful for detection and recognition [33]. 
 
Traditional decision tree classifiers are  presented in a binary tree structure constructed by 
repeatedly splitting the data subsets into two descendant subsets. Each terminal subset is 
assigned a class label and the resulting partition of  the dataset corresponds to the classifier. A 
random forest (RF) classifier [34]  consists of many decision trees and outputs the class that is 
the mode of the classes output by individual trees. The RF algorithm combines  ``bagging'' idea to 
construct a collection of decision trees with controlled variations. There are a number of  
advantages  of RF classifiers, including: (1). it can efficiently handle high dimensional data; (2) it 
can simultaneously estimates the importance of variables in determining classification; (3). It 
maintains accuracy when a large proportion of the data are missing. 
 
The last step of the second ensemble  is to combine the above base models  to give final 
decision. There are different types of voting systems, the frequently used ones are  simple voting 
and  weighted voting  [29]. Simple voting, also called majority voting and select all majority 
(SAM) , considers each component classifier as an equally weighted vote. The classifier that has 
the largest amount of votes is chosen as the final classification scheme.  In weighted voting 
schemes, each vote receives a weight, which is usually proportional to the estimated 
generalization performance of the corresponding component classifier. Weighted voting schemes 
usually give better performance than simple voting. In our study, however, we only experimented 
with the simple voting. 
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FIGURE 5: Illustration of the stage 2 classifier ensemble which consist of a set of binary SVMs 
with high rejection rate. 

 

4. EXPERIMENTS  
The dataset used for evaluating the system is the 2D HeLa dataset, a collections of HeLa cell 
immunofluorescence images containing 10 distinct subcellular location patterns [5,6].  The 
subcellular location patterns in these collections include endoplasmic reticulum (ER), the Golgi 
complex, lysosomes, mitochondria, nucleoli, actin microfilaments, endosomes, microtubules, and 
nuclear DNA. The 2D HeLa image dataset is composed of 862 single-cell images, each with size  
382x512. Sample images for each class are illustrated in Figure 6. The 2D HeLa  image datasets 
have been used as benchmark for  automatically  identifying  sub-cellular organelles [9-11]. A 
good verifiable performance for 2D HeLa image classification is currently 91.5% [8],  by including 
a set of multi-resolution features. The best published  accuracy 97.5% was recently reported in [9], 
for which we could not confirm from our own experiments. 
 

 
FIGURE 6:  Sample 2D HeLa images  
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As elaborated in Section 2, we are interested in those numerical features that are generally 
applied in computer vision to  describe the pattern in the images. Regarding the LBP feature, a 
59-label LBP

u
8,1 operator was used as most of the texture information is contained in the uniform 

patterns. Specifically,   LBP
u
8,1  operator is applied to non-overlapping image subregions to form a 

concatenated histogram. The performance of LBP representation is not sensitive to the subregion 
divisions, which do not need to be of the same size or cover the whole image.  It is also quite 
robust with respect to the selection of parameters when looking for the optimal window size. 
Changes in the parameters may cause big differences in the length of the feature vector, but the 
overall performance is not necessarily affected significantly. Therefore, in all the experiments we 
fixed a subregion (window) size 95x102 for the HeLa images, yielding LBP feature vector with 
length 4x5x59 =1180 . As a comparison, we also applied a newly published variant of LBP 
operator, called Complete LBP (CLBP for short) [16]. A problem of CLBP is its much higher 
dimension, which is 2400 with a much larger subregion (size 125 x128) and parameters radius=3 
and  neighborhood =8. 
 
The Gabor feature vector contains  pairs for all the scales and orientations of the wavelets. From 
a number of experiments we found that a filter bank with  six orientations and four scales gave 
the best classification performance for the classifiers used, which means 24x2 component 
features will be extracted for a given image patch. Therefore, the  figuration is applied to 6x8 non-
overlapping image subregions each with the size 60x64, yielding overall feature vector with length 
4x5x48=960 for each image.  For GLCM feature case, 16  gray co-occurrence  matrices were 

created for each image  with an offset that specifies four orientations 0, π/4, π/2  and 3π/4 and 4 

distances (1,2,3 and 4 pixels) for each direction. Then for each normalized co-occurrence matrix 
P(i,j), 12 different type of statistic measurements were estimated, including correlation, variance, 
contrast, energy, difference variance, entropy, and homogeneity, as described in Section 2. Thus 
the dimension of  GLCM feature is 16x12 = 192. To normalize for the differences in range, each 
of the LBP, CLBP, Gabor and GLCM feature components is scaled to have a mean of zero and a 
standard deviation of one across the dataset. 
 
As first set of experiment, we compared the classification performance from the three base 
classifiers,  i.e., random forest, SVM and three-layer perceptron (MLP) neural network, for each of 
the features (LBP, CLBP, Gabor, GLCM and SLF). The experiment settings for all the classifiers 
are summarized as follows.  For MLP, we experimented with a three-layer network. Specifically, 
the number of inputs is the same as the number of features, one hidden layer with 20 units and a 
single linear unit representing the class label.  The network is trained using the Conjugate 
Gradient learning algorithm for 500 epochs. To prevent saturation, the target values are scaled to 
0.9 for positive cases and to 0.1 for negative cases. 
 
The popular library for support vector machines LIBSVM (www.csie.ntu.edu.tw/~cjlin/libsvm) was 
sued in the experiment.  The parameter γthat defines the spread of the radial function was set to 
be 5.0 and parameter C that defines the trade-off between the classifier accuracy and the margin 
(the generation) to be 3.0. We use the radial based function kernel for the SVM classifier when 
Gabor, GLCM and SLF features were applied and the histogram intersection  kernel for 
LBP/CLBP histograms.  With the  random forest classifier, the number of trees was chosen as 
300 and  the number of variables  to be randomly selected from the available set of variables was 
selected as 20. For the 2D HeLa data set, we  randomly split it into training and testing sets,  
each time with  20% of each class's images reserved for testing while the rest for training.  The 
classification accuracy results reported  in Table 1 are the average accuracies from 100 runs, 
such that each run used a random split of the data to training and testing sets. 
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TABLE 1: Performances of three classifiers using different features.  

 
Then we proceeded the experiment with the proposed two-stage hybrid classifier system. The 
first stage consists of five SVM ensembles which use different sets of features (Gabor, LBP, 
CLBP, GLCM and SLF). Each base SVM classifier ensemble is trained using the entire training 
set of the corresponding feature, for example, an LBP feature is used to train 10 binary SVMs. 
Each binary SVM classifier in a feature specific ensemble was trained to act as a subcellular 
location detector, outputting a high posterior probability if its corresponding feature is present and 
a low posterior probability otherwise. During classification, a test instance feature is sent to the 10 
base SVM classifiers that estimate the posterior probabilities, with the largest one among the 
base SVMs indicating the class label. Then 3-out-of-5 majority voting is applied to the output 
labels from the five SVM ensemble to decide a class label if there is a consensus  or reject 
otherwise. Here the ``consensus'' criterion  k=3 acts like a threshold to split the instances into two 
partitions. In another words, the SVM classifier ensemble collectively labels the multiple feature 
instances for a give testing HeLa image as belonging or not to any  of the 10 categories, while it 
rejects them from the remaining categories, i.e. no decision is taken about these latter categories. 
Using a holdout experiment with 80% of data were used for training while the remaining for 
testing, the first stage accuracy approximates 98% with rejection rate 48%.  
 
The second stage of classifier ensemble consists of 5x3 = 15 multi-class classifiers, which are 
neural network (NN) classifier,  multi-class support vector machine (SVM), and  Random Forest 
classifier, with the five different  features. All the base classifiers are simultaneously trained with 
stage 1 ensemble. During classification, the rejected instances from stage 1 ensemble is passed 
to the stage 2. Similar to stage 1, k-out-of-15 majority voting is applied to the output labels from 
the 15 classifiers to decide a class label if there is a consensus  or reject otherwise, while k can 
be controlled to yield varying  rejection rate. The overall classification accuracy is defined as  the  
number of correctly classified samples from both stage 1 and stage 2 over the total number of 
samples tested. From the same holdout experiment with 80% of data for training while the 
remaining for testing, the second stage accuracy is above 96% with rejection rate 21%, as shown 
in Figure 7. We also compared different rejection rates between 6% and  42% from stage 2 by 
varying k in the k-out-of-15 majority voting, yielding the classification accuracies as illustrated in 
Figure 8. It seems that rejection rate larger than 35% will  not bring any more improvement for  
the classification performance. The corresponding box plot for the comparison is given in Figure 9. 
 

Classifier Gabor LBP CLBP GLCM SLF 
RF 73% 72% 85.3% 72% 84% 

SVM 82.4% 71.9% 71.6% 78.4% 83.8% 
MLP 80% 65.2% 58.5% 86.5% 85.4% 
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FIGURE 7:  Comparison of the final accuracy from stage 2 with overall rejection rate 21% and  the 
first stage accuracy with rejection rate 48%. resulting from holdout experiment with 80% of data 
were used for training while the remaining for testing. The results were from the average of 100 

tests. 
 

 
FIGURE 8:  Overall accuracies with 10 varying rejection rates in the second stage 
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FIGURE 9:  Boxplots of classification performances from the different classifiers resulting from 

holdout experiment with 80% of data were used for training while the remaining for testing. 

 
The confusion matrices that summarize the details of a special  situation with rejection rate 6\% is 
given the following Table 2. For the total number of 187 testing samples, the 10-by-10 matrix 
displays the number of correct and incorrect predictions made by the hybrid classification system 
compared with the actual classifications in the test data. It is obvious that among the 10 classes, 
Actin Filaments type is the easiest to be correctly classified while the  Endosome and Golgi_gpp 
are the difficult categories. This is consistent with previous observations  regarding the  different 
degree of difficulties to distinguish the 10 type of subcellular locations [6-7] . 

 

 
 

TABLE 2:  Confusion matrix for  test set with overall rejection rate 6%. (1: ActinFilaments, 2: 
Endosome, 3: ER, 4: Golgi_gia,  5: Golgi_gpp, 6: Lysosome, 7: Microtubules, 8: Mitochondria, 9: 

Nucleolus, 10: Nucleus ) 
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5. CONSLUSION & FUTURE WORK 
Automated identification of sub-cellular organelles is important when characterizing newly 
discovered genes or genes with an unknown function. In this paper, a two-stage multiple classifier 
system  was proposed with rejection strategies  for subcellular phenotype images classification.  
Rather than simply pursuing classification accuracy, we emphasized  reject option in order  to 
minimize the cost of misclassifications while secure high classification reliability. The two-stage 
method  used a serial approach where the second classifier ensemble is only responsible for the 
patterns rejected by the first classifier ensemble. The first stage  ensemble consits of binary 
SVMs with  different  features,  including texture features local binary patterns (LBP), Gabor 
filtering and Gray Level Co-occurrence  Matrix (GLCM), together with Subcellular Location 
Features (SLF).  The first stage ensemble  was trained in parallel with the second which is 
composed of  multiple layer perceptron, multi-class support vector machine (SVM), and the  
Random Forest classifier. During classification, the cascade of classifier ensembles receives a 
plurality of samples corresponding to different features. The first stage classifier ensemble 
generates classifications for each of the samples as well as a confidence score associated with 
the classifications. If the confidence score for a received sample is above a threshold associated 
with the  ensemble, then it absorbs the sample. Otherwise,  the classifier ensemble rejects the 
sample, and such sample is directed to a subsequent classifier ensemble within the cascade. A 
high classification accuracy  96% is obtained  with rejection rate 21% for the 2D  HeLa cells from 
the exploitation of the complementary strengths of feature construction and classifiers decision 
fusion. 
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