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Abstract 

 
In this paper we present a new algorithm using a merger of Independent Component Analysis 
and Translation Invariant Wavelet Transform.  The efficacy of this algorithm is evaluated by 
applying contaminated EEG signals. Its performance was compared to three fixed-point ICA 
algorithms (FastICA, EFICA and Pearson-ICA) using Mean Square Error (MSE), Peak Signal to 
Noise Ratio (PSNR), Signal to Distortion Ratio (SDR), and Amari Performance Index. 
Experiments reveal that our new technique is the most accurate separation method.  
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1. INTRODUCTION 

The use of electroencephalogram (EEG) in the field of Medicine has had a great impact on the 
study of the human brain. The EEG itself represents the brain activity for a subject and gives us 
an objective mode of recording brain stimulation. It also has been suggested by several studies 
that EEGs can be used to detect several diseases such as Creutzfeldt-Jakob diseases (CJD), 
Alzheimer’s, Dementia, Epilepsy, and Schizophrenia. The signals received, however, have 
several origins that lead to the complexity of their identification. This complexity is made of both 
the pure EEG signal and other non-cerebral signals called artifacts or noise. The artifacts have 
resulted in the contamination of the EEG signals; hence the removal of these noises has 
generated a large number of denoising techniques and methods, for example Fourier transform, 
time-frequency analysis, Wavelet Transform (WT), Neural Networks (NN), and Independent 
Component Analysis (ICA). 
 
Independent Component Analysis (ICA) originated from the field of Blind Source Separation 
(BSS) [8]. In the BSS problem, a set of observations is given while the underlying signal 
information is hidden; the mixing weights of the individual signals are unknown. BSS is aimed at 
identifying the source signals and/or the mixing weights so as to separate these information 
sources into signal domain, feature domain or model domain [5]. ICA therefore calls for the 
separation of the EEG into its constituent independent components (ICs) and then eliminating the 
ICs that are believed to contribute to the noise. It is subjective, inconvenient and a time 
consuming process when dealing with large amount of EEG data.  
 
Different types of ICA algorithms were proposed in the last 10 to 12 years. Most of them suppose 
that the sources are stationary and are based explicitly or implicitly on high order statistics 
computation. Therefore, Gaussian sources cannot be separated, as they don’t have higher than 2 
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statistic moments. Other types of algorithms do not make the stationarity hypothesis, and use the 
non stationary structure of the signals (i.e. their time or frequency structure) to separate them. 
These methods use second order statistics (SOS) only, and they are called SOS algorithms. As 
EEG signals are highly non-stationary, these type of algorithms are the most widely used. 
 
Like ICA, Wavelet Transform (WT) has been used to study EEG signals [3][20][32][35-36][41][44] 
successfully because of its good localization properties in time and frequency domain [13].  Here, 
the EEG signals pass through two complementary filters and emerge as two signals, 
approximation and details. This is called decomposition or analysis. The components can be 
assembled back into the original signal without loss of information. This process is called 
reconstruction or synthesis. The mathematical manipulation, which implies analysis and 
synthesis, is called discrete wavelet transform (DWT) and inverse discrete wavelet transform 
(IDWT). There have been many approaches to denoising using WT; those based on shrinkage 
are the most popular [32] where the EEG signals are decomposed into wavelets and noise 
removal done using thresholding and shrinkage.  
 
Akin [1] in his research compared WT with fast Fourier transform and found that WT was better in 
detecting brain diseases. His research was confirmed by Hermann et al [16]. Unser et al [39] 
showed that wavelet is good at denoising EEG signals as well as other biomedical signals. WT 
has therefore emerged as one of the superior technique in analyzing non-stationary signals like 
EEG. Its capability in transforming a time domain signal into time and frequency localization helps 
to understand the behaviour of a signal better. WT however has limitations such as Gibbs 
phenomena [7]. 
 
Each of the above methods presents their own limitations. In our opinion a method that aims to fix 
these limitations should be a more effective denoising method. This is possible as each method is 
used to overcome the limitation of the other. We present in this paper a new method of extracting 
noise from EEG signals which aims to remove the limitations of ICA and WT while improving 
effectiveness – Cycle Spinning Wavelet Transform ICA (CTICA). The performance of CTICA is 
analyzed and compared with three known fixed-point ICA algorithms – FastICA, EFICA and 
Pearson-ICA, by using EEG signals contaminated with noise. Mean Square Error (MSE), Peak 
Signal to Noise Ratio (PSNR), Signal to Distortion Ratio (SDR), and Amari Performance Index 
are used as criteria for testing the quality of denoising. 
 

2. SUPPORTING LITERATURE 

 EEG Signals 
The nervous system sends commands and communicates by trains of electric impulses. When 
the neurons of the human brain process information they do so by changing the flow of electrical 
current across their membranes. These changing current (potential) generate electric fields that 
can be recorded from the scalp. Studies are interested in these electrical potentials but they can 
only be received by direct measurement. This requires a patient to under-go surgery for 
electrodes to be placed inside the head. This is not acceptable because of the risk to the patient. 
Researchers therefore collect recordings from the scalp receiving the global descriptions of the 
brain activity. Because the same potential is recorded from more than one electrode, signals from 
the electrodes are supposed to be highly correlated. These are collected by the use of an 
electroencephalograph and called electroencephalogram (EEG) signals.  
 
Understanding the brain is a huge part of Neuroscience, and the development of EEG was for the 
elucidation of such a phenomenon. The morphology of the EEG signals has been used by 
researches and in clinical practice to: 

• Diagnose epilepsy and see what type of seizures is occurring.  

• Produce the most useful and important test in confirming a diagnosis of epilepsy. 

• Check for problems with loss of consciousness or dementia. 
• Help find out a person's chance of recovery after a change in consciousness. 

• Find out if a person who is in a coma is brain-dead. 
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• Study sleep disorders, such as narcolepsy. 

• Watch brain activity while a person is receiving general anesthesia during brain surgery. 
• Help find out if a person has a physical problem (in the brain, spinal cord, or nervous 

system) or a mental health problem. 
 

The signals must therefore present a true and clear picture about brain activities. Being a physical 
system, recording electrical potentials, present EEG with problems; all neurons, including those 
outside the brain, communicate using electrical impulses. These non-cerebral impulses are 
produced from:  

• Eye movements & blinking - Electrooculogram (EOG) 

• Cardiac Movements - Cardiograph (ECG/ EKG) 

• Muscle Movements - Electromyogram (EMG) 

• Chewing & Sucking Movement – Glossokinetic 
• The machinery used to record signals  

• The power lines.  

EEG recordings are therefore a combination of these signals called artifacts or noise and the pure 
EEG signal defined mathematically as:  

( ) ( ) ( )E t S t N t= +    (1) 

where S is pure EEG signal, N is the noise and E represents the recorded signal. The presence 
of these noises introduces spikes which can be confused with neurological rhythms. They also 
mimic EEG signals, overlaying these signals resulting in signal distortion (Figure 1). Correct 
analysis is therefore impossible, resulting in misdiagnosis in the case of some patients. Noise 
must be eliminated or attenuated.  

 

FIGURE 1:   EEG contaminated with EOG producing spikes 
 

The method of cancellation of the contaminated segments, although practiced, can lead to 
considerable information loss thus other methods such as Principal Components Analysis (PCA) 
[45], the use of a dipole model [18] and more recently ICA and WT have been utilized. 
 
Independent Component Analysis 
Independent Component Analysis (ICA) is an approach for the solution of the BSS problem [8]. It 
can be represented mathematically according to Hyvarinen, Karhunen & Oja [19] as:  
 

 

X A s n= +

  

 (2) 

 



Janett Walters-Williams & Yan Li 

International Journal of Biometrics and Bioinformatics Volume (5) : Issue (2) : 2011 133 

where X is the observed signal, n is the noise, A is the mixing matrix and s the independent 
components (ICs) or sources. (It can be seen that mathematically it is similar to Eq. 1). The 
problem is to determine A and recover s knowing only the measured signal X (equivalent to E(t) 
in Eq. (1)). This leads to finding the linear transformation W of X, i.e. the inverse of the mixing 
matrix A, to determine the independent outputs as:

  

  

u W X W A s= =

 

(3) 

 
where u is the estimated ICs. For this solution to work the assumption is made that the 
components are statistically independent, while the mixture is not.  This is plausible since 
biological areas are spatially distinct and generate a specific activation; they however correlate in 
their flow of information [18].  
 
ICA algorithms are suitable for denoising EEG signals because  

(i) the signals recorded are the combination of temporal ICs arising from spatially fixed 
sources and 

(ii) the signals tend to be transient (localized in time), restricted to certain ranges of temporal 
and spatial frequencies (localized in scale) and prominent over certain scalp regions 
(localized in space) [28]. 

 
Wavelet Transform 
Wavelet Transform (WT) is a form of time-frequency analysis been used successfully in denoising 
biomedical signals by decomposing signals in the time-scale space instead of time-frequency 
space. It is so because it uses a method called wavelet shrinkage proposed by Donoho & 
Johnstone [9].  Each decomposed signal is called a wavelet (Fig 2).  

 

 
FIGURE 2 : Demonstration of (a)   a signal and   (b) a wavelet 

 
There are two basic types of WT. One type is designed to be easily reversible (invertible); that 
means the original signal can be easily recovered after it has been transformed. This kind of WT 
is used for image compression and cleaning (noise and blur reduction). Typically, the WT of the 
image is first computed, the wavelet representation is then modified appropriately, and then the 
WT is reversed (inverted) to obtain a new image.The second type is designed for signal analysis 
for study of EEG or other biomedical signals. In these cases, a modified form of the original signal 
is not needed and the WT need not be inverted. 
 
WT decomposes a signal into a set of coefficients called the discrete wavelet transform (DWT) 
according to: 

  

  
, ,

( ) ( )
j k j k

t Z

C E t g t
∈

= ∑  (4) 

 
where Cj,k is the wavelet coefficient and gj,k is the scaling function defined as:

  

  

22 ( 2 )

j

j
g t k

−

−
− (5) 
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The wavelet and scaling functions depend on the chosen wavelet family, such as Haar, 
Daubechies and Coiflet. Compressed versions of the wavelet function match the high-frequency 
components, while stretched versions match the low-frequency components. By correlating the 
original signal with wavelet functions of different sizes, the details of the signal can be obtained at 
several scales or moments. These correlations with the different wavelet functions can be 
arranged in a hierarchical scheme called multi-resolution decomposition. The multi-resolution 
decomposition algorithm separates the signal into “details” at different moments and wavelet 
coefficients [35-36]. As the moments increase the amplitude of the discrete details become 
smaller, however the coefficients of the useful signals increase [44-45].  
 
Considering Eq. (1) the wavelet transform of E(t) produces wavelet coefficients of the noiseless 
signal S(t) and the coefficients of the noise N(t). Researchers found that wavelet denoising is 
performed by taking the wavelet transform of the noise-corrupted E(t) and passing the detail 
coefficients, of the wavelet transform, through a threshold filter where the details, if small enough, 
might be omitted without substantially affecting the main signals. There are two main threshold 
filters – soft and hard. Research has shown that soft-thresholding has better mathematical 
characteristics [44-45] and provides smoother results [15].  Once discarded these coefficients are 
replaced with zeroes during reconstruction using an inverse wavelet transform to yield an 
estimate for the true signal, defined as: 
 

( ) ( )( )( )
^

1
( ) ( )] ( )thS t D E t W W E t

−
= = Λ  (6) 

 

where
th

Λ is the diagonal thresholding operator that zeroes out wavelet coefficients less than the 

threshold, th. It has been shown that this algorithm offers the advantages of smoothness and 
adaptation. However, as Coifman and Donoho [7] pointed out, this algorithm exhibits visual 
artifacts such Gibbs phenomena in the neighbourhoodof discontinuities. 
 
Unscented Kalman Filter 
Unscented Kalman Filter (UKF) is a Bayesian filter which uses minimum mean-squared error 
(MMSE) as the criterion to measure optimality [4][34]. For highly nonlinear systems, the linear 
estimate of the nonlinear model does not provide a good approximation of the model, and the 
Extended Kalman Filter (EKF) will not track signals around sharp turning points. Another problem 
with the EKF is that the estimated covariance matrix tends to underestimate the true covariance 
matrix and therefore risks becoming inconsistent in the statistical sense without the addition of 
"stabilising noise". UKF was found to address these flaws. It involves the Unscented 
Transformation (UT), a method used to calculate the first and second order statistics of the 
outputs of nonlinear systems with Gaussian. The nonlinear stochastic system used for the 
algorithm is:  
 

  

1k k k k

k k k

x A x B u v

y H x w

+
= + +

= +

 (7) 

 
where A and H are the known and constant matrices respectively, xk is the unobserved state of 
the system, uk  is a known exogenous input, yk  is the observed measurement signal, vk is the 
process noise and wk is the measurement noise. 
 
UKF uses the intuition that it is easier to approximate a probability distribution function rather than 
to approximate an arbitrary nonlinear function or transformation. Following this intuition, a set of 
sample points, called sigma points, are generated around the mean, which are thenpropagated 
through the nonlinear map to get a more accurate estimation of the mean and covariance of the 
mapping results. In this way, it avoids the need to calculate the Jacobian, which for complex 
functions can be a difficult task in itself (i.e., requiring complicated derivatives if done analytically 
or being computationally costly if done numerically). 
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3. METHODOLOGY 
 

Reasons for Algorithm 
Although ICA is popular and for the most part does not result in much data loss; its performance 
depends on the size of the data set i.e. the number of signals. The larger the set, the higher the 
probability that the effective number of sources will overcome the number of channels (fixed over 
time), resulting in an over complete ICA. This algorithm might not be able to separate noise from 
the signals. Another problem with ICA algorithms has to do with the signals in frequency domain. 
Although noise has different distinguishing features, once they overlap the EEG signals ICA 
cannot filter them without discarding the true signals as well. This results in data loss. 
 
WT utilizes the distinguishing features of the noise however. Once wavelet coefficients are 
created, noise can be identified. Decomposition is done at different levels (L); DWT produces 
different scale effects (Fig 3). Mallat [2] proved that as scales increase the WT of EEG and noise 
present different inclination. Noise concentrates on scale 21, decreasing significantly when the 
scale increases, while EEG concentrates on the 22-25 scales. Elimination of the smaller scales 
denoise the EEG signals. WT therefore removes any overlapping of noise and EEG signals that 
ICA cannot filter out. 
 
Recently there has been research comparing the denoising techniques of both ICA and WT. It 
was found that 
(i) if noise and signals are nearly the same or higher amplitude, wavelets had difficultly 

distinguishing them. ICA, on the other hand, looks at the underlying distributions thus 
distinguishing each [46] and 

(ii) ICA gives high performance when datasets are large. It suffers however from the trade off 
between a small data set and high performance [20]. 

Research therefore shows that ICA and wavelets complement each other, removing the 
limitations of each [35]. Since then research has been done applying a combination of both with 
ICA as a per- or post- denoising tool. Inuso et al. [20] used them where ICA and wavelets are 
joint. They found that their method outperformed the pre- and post- ICA models. 
 
With or without ICA, conventional wavelet coefficients of 2 signals maybe quite different in many 
properties as WT is not time invariant, consequently, if the noisy signal is shifted in time, 
denoised, and then shifted back, the result will, in general, be different from the estimate obtained 
from denoising without shifting. This result in serious problems such as pseudo-Gibbs 
phenomenaalternating undershoot and overshoot of a special target level near singularity points 
of signals [42]. 
 

 
 

FIGURE 3:   Noisy EEG and its Wavelet Transform at different scales 
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Cycle Spinning (CS) was proposed by Coifman & Donoho [7] as a simple yet efficient method that 
utilizes the periodic time-invariance of WT in fixing the noise found in wavelet coefficients and 
defined as: 

 

  
( )( )( )

1 2^
1

, ,

1, 11 2

1
( )

k k

i j i j

i j

s S T T S x
k k

θ
−

− −

= =

 =  ∑   (8) 

 
where (k1,k2) are maximum number of shifts, T the shift variant transform, Si,j is the circulant shift, 
and θ the threshold operator. CS calls for the suppression of these noises by shifting the signals 
in time and computing the estimate. Using different shifts produce different estimates which are 
not completely independent; consequently averaging these estimates results in a reduction in the 
noise generated in each shift. This results in the denoising of all possible unique circularly shifted 
version of the signal and the creation of the Translation Invariant Wavelet Transform (TIWT) 
method. 
 
Apart from the use of ICA improvements of WT have been investigated. The idea of Wiener 
filtering of individual wavelet coefficient arose from the fact that wavelet transforms tend to 
decorrelate data. An improved wavelet domain denoising technique was therefore proposed that 
utilizes the Wiener filtering of wavelet coefficients [13]. Research shows that this technique has 
superior performance over other denoising algorithms using thresholding or shrinkage of wavelet 
coefficients and has motivated the analysis of many denoising algorithms in terms of optimal 
filtering of noisy wavelet coefficients. In 2006 the combination of WT and the Kalman Filter (KF) 
was a novel idea. In the experiments, researchers found that the combination effectively correct 
overlapped spectra and reduce noise [38]. Mastriani et al. [29] created the KalmanShrink for the 
WT; simulations showed that the threshold had better performance than the most commonly used 
filters [29]. The use of KF and WT combination therefore improved denoising techniques. 
Research has also shown that the KF outperforms the Wiener Filter when applied to WT [31]. 
UKF is advancement on KF. 
 
Each method aims at improving the other in that 

(i) WT removes overlapping of noise signals that ICA cannot filter out. 

(ii) ICA can distinguish between noise and signals that are nearly the same or higher 

amplitude which WT has difficultly with. 

(iii) WT exhibits serious problems such as pseudo-Gibbs phenomena which CS eliminates 

and 

(iv) Combination of filters and WT effectively correct overlapped spectra 

This paper proposes a merger of all four methodologies. 
  
 

  

 

 

 
FIGURE 4:   Proposed CTICA - Artifacts Removal System 

Design 
In this paper we are presenting another method to denoising EEG signals using WT and ICA 
along with smaller methods to improve their performance. Some of the ideas appear in earlier 
algorithms; however the main differences of CTICA are: 

 (i) the use of CS, and 
 (ii) the merger of WT, UKF and ICA into one ( this has never been done before).  
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A block diagram representation of the proposed work is shown in Figure 4. The algorithm can be 
divided into the following: 

 
1. Signal Collection  

This algorithm is designed to denoise both natural and artificially noised EEG signals. They 
should therefore be mathematically defined based on Eq. (1). 
 

2. Apply CS to signal 
The number of time shifts is determined; in so doing signals are forcibly shifted so that their 
features change positions removing the undesirable oscillations which result in pseudo-Gibbs 
phenomena. The circulant shift by h is defined as:  
 

  

( ) ( )( ) ( ) m o dhS f n f n h N= + (9) 

 
where f(n) is the signal, S is time shift operator and N is the number of signals. The time-shift 
operator S is unitary and therefore invertible i.e. (Sh)

-1
 = S-h  

 
 

3. Decomposition of Signal 
The signals are decomposed into 5 levels of DWT using the Symmlet family, separating noise 
and true signals. Symmlets are orthogonal and its regularity increases with the increase in the 
number of moments [11]. After experiments the number of vanishing moments chosen is 8 
(Sym8).   
 

4. Filter Coefficients 
Perform UKF on the coefficients to filter out some noise reducing the shrinkage threshold. 
 

5. Choose and Apply Threshold Value 
Denoise using the soft-thresholding method discarding all coefficients below the threshold value 
using VisuShrink based on the universal threshold defined by Donoho & Johnstone [9] given as: 
 

 

2
2 l o gT Nσ=  (10) 

 
where N is the number of samples and σ

2
 is the noise power. 

 
6. Apply ICA algorithm 

Signals and noise may have nearly the same frequency characteristics and overlap in time thus 
producing noisy coefficients such as beta activity and muscle noise, that WT has not been able to 
distinguish and remove. ICA is able to look at the underlying distributions thus distinguish noise 
and remove them. Research has shown that ICA is a robust denoising method where its 
performance is not affected by the severity of the mixing signals [10]. We implemented a 
symmetrical fixed-point ICA algorithm based on the Hyvarinen model [19] where the gradient 
function is: 

( ) t a n h ( , )g y a y=           (11) 

 
A fixed-point algorithm has a cubic or at least a quadratic convergence, is not linear and no 
parameters have to be chosen for usage which makes it a better choice than other ICA models. 

 
7. Reconstruction of Signals 

EEG signals are reconstructed using inverse DWT. 
 

8. Apply CS 
Revert signals to their original time shift and average the results obtained to produce the 
denoised EEG signals.  
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The proposed algorithm can be expressed as Avg [Shift – Denoise -Unshift] i.e. using Eq. (9) it is 
defined as: 
 

   ( )( )h H h ha v g S T S f∈ −
                                       (12) 

 
where H is the range of shifts, T is the wavelet shrinkage denoising operator, h the circular shift 
and the maximum of His the length of the signalN from Eq. (9).  
 
Evaluation 
There are different means to access the separation quality performed by ICA methods; however 
the performance measures used throughout this section will be: 

(i) the Mean Square Error (MSE),  
(ii) the Peak Signal to Noise Ratio (PSNR), 
(iii) the Signal to Distortion Ratio (SDR),  and 
(iv) the Amari Performance Index 

We employed fixed point benchmark ICAs with the linearity g(u) = tanh and the symmetric 
orthogonalization for comparison, namely:fixed-point - FastICA[19], EFICA[28] and Pearson-ICA 
[26] 
 

 
FIGURE 5 : Sample EEG signals from a male subject 

 

4. EXPERIMENTAL DATA 
In order to do the study effectively data was collected for analysis from two sites. 

(i) http://www.filewatcher.com/b/ftp/ftp.ieee.org/uploads/press/rangayyan.0.0.html [48]. Data 
was collected at a sampling rate of 100Hz but noise free. These signals were artificially 
contaminated. 

(ii) http://sccn.ucsd.edu/~arno/fam2data/publicly_available_EEG_data.html [47]. All data are 
real comprised of EEG signals from both human and animals. Data were of different 
types. 
(a) Data set acquired is a collection of 32-channel data from one male subject who 

performed a visual task. Fig. 5 shows 10 signals from this dataset. 
(b) Human data based on five disabled and four healthy subjects. The disabled subjects 

(1-5) were all wheelchair-bound but had varying communication and limb muscle 
control abilities. The four healthy subjects (6-9) were all male PhD students, ages 30 
who had no known neurological deficits. Signals were recorded at 2048 Hz sampling 
rate from 32 electrodes placed at the standard positions of the 10-20 international 
system.  
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(c) Data set is a collection of 32-channel data from 14 subjects (7 males, 7 females) who 
performed a go-nogo categorization task and a go-no recognition task on natural 
photographs presented very briefly (20 ms). Each subject responded to a total of 
2500 trials. The data is CZ referenced and is sampled at 1000 Hz. 

(d) Five data sets containing quasi-stationary, noise-free EEG signals both in normal and 
epileptic subjects. Each data set contains 100 single channel EEG segments of 23.6 
sec duration. 

These two sites produce real signals of different sizes as well as 1D and 2D signals.  A total of 

1,383 signals were tested. 

  
2000 4000 6000 8000 10000 12000 14000 16000

1

 
(a) 

2000 4000 6000 8000 10000 12000 14000 16000

1

 
(b) 

FIGURE 6 :  (a) EEG Signal with EOG        (b) Denoised EEG Signal 

 

5. RESULTS & DISCUSSION 
We conducted experiments, using the above mentioned signals, in Matlab 7.8.0 (R2009) on a 
laptop with AMD Athlon 64x2 Dual-core Processor 1.80GHz. Noisy signals were generated by 
adding noise to the original noise-free signals and the length of all signals, N, were truncated to 
lengths of power of twos i.e. 2

x
. 

 
 

 
 

FIGURE 7:  (a) Wave Coefficient before denoising 
(b) Wave Coefficient after denoising 
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Figure 6 shows the results of the above algorithm on one EEG signal contaminated with EOG.  
Investigations on the wavelet coefficients (Figure 7) also show that there are major changes in 
the wavelets - some wavelets have been zeroed because of their identification to noise. 
 
 

CTICA FASTICA EFICA PEARSON 
1411.00 1489.70 1412.40 1337.20 
950.09 1014.80 951.75 890.67 
714.51 769.91 715.31 662.73 
693.71 749.04 694.70 642.40 
757.94 815.16 758.81 704.47 
858.63 920.96 859.34 799.85 
849.22 923.80 849.61 778.53 
788.22 850.93 788.77 728.96 
875.44 941.76 876.23 813.07 
369.86 410.65 370.30 332.04 
297.61 333.63 298.10 264.57 
526.54 574.16 527.08 482.01 
636.14 696.30 636.44 579.28 
1031.70 1116.70 1032.00 950.71 
236.44 269.07 236.93 206.84 
383.87 424.57 384.31 346.05 
650.56 598.48 651.06 598.48 
694.03 752.93 694.55 638.52 
577.78 646.60 577.90 513.06 
449.89 504.49 450.01 398.64 

 

 
TABLE 1:   MSE for 15 EEG signals with EOG noise 

 
Noise/Signal Measures 
The MSE measures the average of the square of the “error” which is the amount by which the 
estimator differs from the quantity to be estimated. Mathematically it is defined as: 
 

  2

1 1

1
[ ( , ) '( , )]

M N

y x

MSE I x y I x y
MN = =

= −∑∑  (13) 

 
The error is the amount by which the estimator differs from the quantity to be estimated. The 
difference occurs because of randomness or because the estimator doesn't account for 
information that could produce a more accurate estimate. . For a perfect fit, I(x,y) = I’(x,y) and 
MSE = 0; so, the MSE index ranges from 0 to infinity, with 0 corresponding to the ideal. The 
smaller the  
MSE therefore the closer the estimator is to the actual data and the less the error on the signal;  
CTICA was compared in both Table 1 and Table 2. Examination shows that on average our 
method had the second lowest MSE next to Pearson-ICA. 
 
PSNR is the ratio between the maximum possible power of a signal and the power of corrupting 
noise that affects the fidelity of its representation. Mathematically it is defined as:  
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2

1010 log ( )
MAX

PSNR
MSE

= ×   (14) 

 
 

CTICA FASTICA EFICA PEARSON 
26351.00 26678.00 26352.00 26028.00 
12824.00 13051.00 12823.00 12597.00 

6449.30 6610.00 6447.80 6287.70 
5493.40 5642.20 5492.60 5345.20 
6221.40 6379.90 6220.60 6063.50 
106.51 87.34 107.03 87.35 

2481.90 2583.60 2482.60 2383.80 
6457.50 6618.90 6456.80 6296.90 
6451.60 6612.90 6450.70 6290.70 

12811.00 13038.00 12810.00 12584.00 
5508.10 5657.20 5507.50 5359.80 

16004.00 16265.00 16008.00 15755.00 
3839.70 3968.90 3842.10 3717.90 
1999.40 20921.00 2000.20 1910.70 
451.69 494.80 451.31 409.98 
470.52 517.86 471.58 427.64 

13454.00 13694.00 13458.00 13255.00 
13089.00 13324.00 13092.00 12863.00 

3850.60 3979.80 3853.00 3728.60 

 
TABLE 2:  MSE for 19 EEG signals with artificially added noise 

 
Because many signals have a very wide dynamic range, PSNR is usually expressed in terms of 
the logarithmic decibel scale.In this research MAX takes the value of 255. Unlike MSE which 
represents the cumulative squared error between the denoised and mixed signal, PSNR 
represents a measure of the peak error i.e. when the two signals are identical the MSE will be 
equal to zero, resulting in an infinite PSNR.The higher the PSNR therefore, the better the quality 
of the reconstructed signal i.e. a higher PSNR indicates that the reconstruction is of a higher 
qualityand therefore the algorithm is considered good. Table 3 shows the PSNR for EOG 
contaminated signals and Table 4 shows those with artificially contaminated noise.  
 
Examination of Table 3 and Table 4 show that Pearson-ICA is the algorithm that has the highest 
PSNR with CTICA been second.  It can also be seen in Table 4 that CTICA and EFICA both have 
similar to MSE when signals have artificial noise added for 83%. The other 17% CTICA 
performed better. CTICA however in both cases presents more signal than noise in its denoised 
results than FastICA. CTICA is the second best in performance therefore because it 
outperformed FastICA and it never produces a PSNR lower than EFICA; in fact it sometimes 
performed better than EFICA.  Algorithms therefore follow the same behavior as seen with the 
MSE investigations. 
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CTICA FASTICA EFICA PEARSON 

16.63 16.40 16.63 16.87 

18.35 18.07 18.35 18.63 
19.59 19.27 19.59 19.92 
19.72 19.39 19.71 20.05 
19.33 19.02 19.33 19.65 
18.79 18.49 18.79 19.10 
18.84 18.48 18.84 19.22 
19.16 18.83 19.16 19.50 
18.71 18.39 18.70 19.03 
22.45 22.00 22.45 22.92 
23.39 22.90 23.39 23.91 
20.92 20.54 20.91 21.30 
20.10 19.70 20.09 20.50 
18.00 17.65 17.99 18.35 
24.39 23.83 24.38 24.97 
22.29 21.85 22.28 22.74 
20.00 20.36 19.99 20.36 
19.72 19.36 19.71 20.08 
20.51 20.02 20.51 21.03 
21.60 21.10 21.60 22.12 

 

 
TABLE 3 :  PSNR for 20 EEG signals with EOG noise 

 
Separation Accuracy Measures 
How accurate the separation of an ICA algorithm in terms of the signals can be calculated by the 
total SDR which is defined as: 
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−
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∑
         (15) 

 
 

CTICA FASTICA EFICA PEARSON 

3.92 3.87 3.92 3.98 
7.05 6.97 7.05 7.13 
10.04 9.93 10.04 10.15 
10.73 10.62 10.73 10.85 
10.19 10.08 10.19 10.30 
27.86 28.72 27.84 28.72 
14.18 14.01 14.18 14.36 
10.03 9.92 10.03 10.14 
10.03 9.93 10.03 10.14 
10.72 10.60 10.72 10.84 
6.09 6.02 6.09 6.16 
12.29 12.14 12.29 12.43 
15.12 14.93 15.12 15.32 
21.41 20.99 21.40 21.82 
6.84 6.77 6.84 6.92 
6.96 6.88 6.96 7.04 
12.28 12.13 12.27 12.42 
11.81 11.72 11.81 11.99 

 
 

TABLE 4 :  PSNR for 18 EEG signals with artificially added noise 
 

where xi(n) is the original source signal and yi(n) is the reconstructed signal. When the SDR is 
calculated if it is found to be below 8-10dB the algorithm is considered to have failed separation. 
Fig. 8 shows all four algorithms having SDR above 8dB; there is not much differentiation in the 
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graph for the algorithms however. Where there were difference in the SDR calculations CTICA 
had the most consistent. Table 5 showed that CTICA produced the largest SDR on average. This 
shows that on average CTICA had best separation of signal from noise than the other algorithms. 

 

   
FIGURE 8 :  SDR for 32 signals with EOG 

 
The most widely used measure for assessing the accuracy of the estimated mixing matrix is the 
Amari performance index defined as: 
 

, 1

| | | |1
1

2 max | | max | |

m
ij ij

err

i j k ik k kj

p p
P

m p p=

 
= + −  

 
∑

   

(16)

 
 

where pij = (BA)ij.  It assesses the quality of the de-mixing matrix Wfor separating observations 
generated by the mixing matrix A. When the separation is perfect, the Amari index is equal to 
zero. In the worst case, i.e. when the estimated sources contain the same proportion of each 
original source signal, the Amari index is equal to m/2−1. However, the most common situation is 
between both. The lower the Amari index therefore, the more accurate the separation is. The 
Amari indexes obtained for the different algorithms and for different sample sizes are presented in 
Figure 9.   
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CTICA FASTICA EFICA PEARSON 
10089.00 9916.50 9977.60 10039.00 
1900.10 1867.70 1884.20 1901.00 
930.91 911.92 923.32 935.00 
1141.00 1112.70 1127.00 1143.10 
966.00 945.51 957.53 969.86 
600.63 503.94 455.22 503.89 
-663.61 -660.57 -673.86 -687.69 
1266.60 1237.20 1252.60 1268.40 
961.88 942.02 965.84 965.84 
1371.90 1351.60 1363.60 1375.80 
1074.20 1048.20 1062.40 1076.90 
901.30 888.19 895.28 902.46 
371.50 361.34 367.26 373.35 
258.60 249.01 254.67 260.57 

-2441.10 -6579.90 -6889.70 -7228.60 
80.17 74.99 78.58 82.52 
771.02 759.16 765.79 772.50 

848.85 834.97 842.33 849.80 
384.01 373.40 379.50 385.77 
1095.42 849.36 841.53 836.29 

 
TABLE 5:   SDR for 20 with artificially added noise 

  
Observations show that the Amari indexes for our method is lower for sample sizes greater than 
2

7
 i.e. it clearly outperforms the other algorithms with sample size greater than 128. Figure 9 also 

shows that unlike the other algorithms, the Amari index for CTICA is inversely proportional to 
sample size.  
 

6. CONCLUSION & FUTURE WORK 
In recent years researchers have used both ICA algorithms and WT to denoise EEG signals. In 
this paper we propose a new method – Cycle Spinning Wavelet Transform ICA (CTICA). From 
the experiments we can conclude the following for CTICA 
(i) It has outperformed FastICA and EFICA as far as MSE and PSNR were concerned. 
(ii) It has the best SDR and 
(iii) It has the best Amari index for signals greater than 2

7
 in size which decreases as sample size 

increases 
Based on these results it can be concluded that CTICA is the most accurate separation method 
and is the second best at signal/noise measurement. 
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 FIGURE 9: Amari Results for the four algorithms  
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