
Hassan BADIR, Rachida FISSOUNE & Amjad RATTROUT

International Journals of Biometric and Bioinformatics (IJBB), Volume (5) : Issue (3), 2011 191

A Consistent and Efficient Graphical User Interface Design and
Querying Organelle Genome “GUEDOS”

Hassan BADIR hbadir@gmail.com
Labtic, National School of applied sciences
University Abdelmalek essaadi
90020, Tangier, Morocco

Rachida FISSOUNE fissoune@gmail.com
National School of applied sciences
University Abdelmalek essaadi
Tetouan, Morocco

Amjad RATTROUT ramjad@gmail.com
University Claude Bernard
Lyon, France

Abstract

We propose a software layer called GUEDOS-DB upon Object-Relational Database Management
System ORDMS. In this work we apply it in Molecular Biology, more precisely Organelle complete
genome. We aim to offer biologists the possibility to access in a unified way information spread
among heterogeneous genome databanks. In this paper, the goal is firstly, to provide a visual
schema graph through a number of illustrative examples. The adopted, human-computer
interaction technique in this visual designing and querying makes very easy for biologists to
formulate database queries compared with linear textual query representation.

Keywords: Graphical User Interface, Complex Object, Bioinformatics, Gene, Genome, UML-BD

1. INTRODUCTION
Many biologists use freely and extensively a large number of databanks collecting considerable
amount of information. Data from sequence databanks are daily submitted worldwide, usually by
electronic mail, then manually checked and stored – generally-under a RDBMS. They are then
broad casted to the main servers of the community – daily by Internet or quarterly by CDROM-
under a flat file format (ASCII files).
There is no agreement on the format and, for the same data; many formats may b available,
depending on the databank manager (Europe, US, Japan…). The number and the size of
databanks are grouping rapidly (the size of major sequence databanks doubles each year).
Why Organelle Genome? Organelles (mitochondria and chloroplasts) are of interest for several
reasons, including their:

• Possible bacterial origins,
• Relationship to the evolution of the nuclear genome,

• Central role in eukaryotic cell energy production

• Utility as population markers.
The most important advantage to genomics offered by organelles is the number of completely
sequenced genomes already available and currently being sequenced (e.g. by OGMP: Organelle
Genome Mega-sequencing Program). No larger collection of completely sequenced exists.
Sequenced organelle genomes are information-rich datasets: firstly most of them belong to a
highly analysed set including protein-coding, transfer RNA (tRNA) and ribosomal RNA (rRNA)
genes, secondly the relationships between and among genomes can be determined (at both
gene and genome levels), making them ideal for comparative genomic studies.

Hassan BADIR, Rachida FISSOUNE & Amjad RATTROUT

International Journals of Biometric and Bioinformatics (IJBB), Volume (5) : Issue (3), 2011 192

For many years, computer scientists have provided help to biologists for managing these data. As
a result, a lot of retrieval systems, like SRS [11] or ACNUC, have been created which are based
on indexing flat files. These simple tools obtain a wide success in the biologist community.
Web interfaces have also become very familiar and make the data very easy to access for any
biologist. The ability to retrieve data from anywhere on the network has progressively leaded to a
new problem: how to interconnect heterogeneous databanks? At present it is difficult for
researchers to access all the relevant information associated with an sequence genome. Data are
dispersed among a number of sources. In this present disorganized state, organelle genomic
data constitute a major underexploited source of information. A wide discussion on this topic has
started within the molecular biology community. To integrate such data warehouse is considered
as one of the main problems to face up in bioinformatics.
Directly manipulating visual conceptual schemes of complex objects provide users with a clear
and powerful mean of interaction. An end user of GUEDOS-DB is able to graphically build a
database schema or modify an existing one, to load all the information initially provided by a data
bank as GENBANK, to browse through the schema of the database in order to construct the
queries about the data and to save them for later use. All of these activities are accomplished by
using a unique graphical iconic representation.
As a consequence, different types of users, especially novices, can learn and use the query
facilities in a more intuitive way, without necessity to remember the database scheme or the
grammar of the query language.
In this paper we describe the visual query interface GUEDOS-DB (DBioMics) developed in the in
object-oriented [2] environment for software engineering workshop development. A database
schema based on an object-relational [1] data model using SQL3.
The user interface proposed in this paper:
� In descriptive: it provides a concise and complete visualization of the data scheme called

Object Semantic Graph;
� Uses the same medium both for the description of the data scheme and for the

representation of the formulated query on the semantic graph.
� Is interactive: the formulation of a query is made by simply designating the nodes and arcs

of the displayed semantic graph and the syntactic units through the technique of direct
manipulation.

The remainder of this paper is organized as follows. We first review the previously proposed
biological databases in the next section. In section 3, we review the basic concepts of the object
oriented data model. We then describe our proposed graphics user interfaces in section 4.
Section 5 describes some graphical queries with a number of illustrative examples. Finally, we
conclude in section 6.

2. RELATED WORK
In fact biological interfaces are developed upon one or more database management systems or
one or more data file management systems. Database models can be relational, object-Oriented,
object-relational or hierarchical. Some ad-hoc solutions have been proposed:

� The Kabat antibody databank [4] is one of the first realizations in this area. The system
visualizes hierarchical schemes and includes computational tools. It is developed on P/FDM
(Functional Data Model), an in-house OODBMS built at Aberdeen. Data are modelized in
the FDM, and queries are made through DAPLEX language, which is based on PROLOG.
Describing database schemes and querying are quite distinct.

� GOBASE [3] is implemented under SYBASE RDMS on a Sun SPARCstation. Custom
software has been developed for make easy to populate and maintain the database. It uses
the Perl language and Sybase’s Open-Client development tools. The query interface is
supported through WWW forms using the web/General gateway. The user interface allows
the users to navigate in and to retrieve information from GOBASE, and includes the
following entities: gene, intron, RNA, protein, organism, sequence, chromosome and signal.
The interface also contains hypertext links to specific information in other internet-
accessible databases. In future versions, the user interface will be expanded by adding new
entities to the database and by offering analytical tools such as subsequence extraction and
neighboring searches.

Hassan BADIR, Rachida FISSOUNE & Amjad RATTROUT

International Journals of Biometric and Bioinformatics (IJBB), Volume (5) : Issue (3), 2011 193

� AGIS (agricultural Genome Information System) [12] is a World Wide Web product of a
cooperative effort between the department of Plant Biology, University of Maryland and
College Park in USA. This databank consists of genome information for agricultural
organisms. At present, it encompasses mostly crop and livestock or non-commodity animal
species. Also included are a number of databases that have related information, e.g.
germplasm and plant gene nomenclature data.

� Genomic databases can be viewed by ACDB [9] a widely used generic genome interface.
It offers a specific visual interface. It is worth noting that this interface supports describing
and querying schema but possible queries are too coarse.

� Docking-D [3], a prototype for managing ligands (PDB, HPSS…), is implemented with and
OODBMS prototype VODAK [8]. According to its authors, the VODAK data model provides
all standard features of object-oriented data model; the system includes SQL-Like query
language with optimization and multi-user access modules. VODAK was initially created in
response to the lack of a declarative query language in many object-oriented database
systems like ObjectStore. It is still under development.

3. GUEDOS DESCRIBING

3.1 Architecture
3.1.1 Description
GUEDOS prototype is based on a graphical approach used to represent graphically database
schemas. In addition, schema conception is realized by systemic and direct graphs manipulations
by a set of available graphic operators. Also, GUEDOS is characterized by several criteria:
� Flexible: flexibility implies that the used graphical language should be adapted to possible

uses.
� Incremental: practical interest is situated in the fact that, during schema conception phase,

user can construct schema incrementally by defining more constraints.
� Uniform: uniformity imposes identical interaction modes for the different functionalities

enhancing thus the tool ergonomic.
Figure 1 describes GUEDOS general architecture. It's composed mainly by two components: a
graphical interface and an automatic transformation module.
GUEDOS Prototype was developed by java. It represents a semantic suite of LASCI-Complex
toot developed earlier by in a thesis framework. This tool allows an automatic visualization of
database structure, allowing thus an automatic transformation using algorithms developed by our
team.

3.1.2 Functions
GUEDOS is a platform for editing and designing object and object relational database schemas.
The systemic aspect in GUEDOS is the key solution for a guided construction of such a schema,
because his objective is to facilitate requirements specifications of skilled designer or not, and to
simplify him the design task. Its functions are to allow:
� To users to express their requirements by the means of one or several models like:

universal relation with inclusion (URI), object attributes forest and UML DB-stereotyped
classes diagram. The tool deals with these models by the means of a logical and syntax
apprehension of those. User describe his requirements, and affine his constraints to obtain
an initial conceptual schema. User can also normalize and transform a representation under
the form of relations related by inclusions dependences into a normalized semantic graph.
This normalization could be partial, leaving unchanged certain complex structures of fixed
objects by user,

� To swap from one model -among those cited above- to another using transformation
algorithms [6] and to generate SQL3 description or an XML schema,

� To personalize the obtained conceptual schema with respect to the foreseen processing, by
introducing access methods, even denormalizing them.

� And to integrate many conceptual schemas into one without losing any information.

Hassan BADIR, Rachida FISSOUNE & Amjad RATTROUT

International Journals of Biometric and Bioinformatics (IJBB), Volume (5) : Issue (3), 2011 194

FIGURE 1: Architecture of GUEDOS

GUEDOS interface could be decomposed into three different screens, according to user need. In
the first case, user looks to edit a set of attributes and functional dependencies to produce
systemically NSG, using normalization algorithm; secondly, user constructs an OAF manually by
specifying its constraints or automatically from the previously obtained NSG relying on a
transformation algorithm developed in [6]. In the third case, user conceives a database
stereotyped UML class diagram from an OAF previously obtained using transformation algorithm
in [7]. GUEDOS has two other forms allowing to display SQL3 description and XML schema
generated from classes diagram. Concretely, GUEDOS avoids waste of time generally noticed in
redoing repetitive tasks, and allows then a more coherent information processing. User beneficing
of supervision and control capacities on global tasks he accomplishes. It allows, more generally,
a better comprehension of user conceptual framework.

3.2 Manipulation and Importing
The first part of this biological application has consisted in defining a data schema in the
Graphical Object Data Model (GODM) [13] [6].
Figure 2 shows mitochondrial sequences graph. This schema respects the ontology and allows
the indexation to the largest quantity of knowledge. The design of a GODM schema is not our
object in this paper [6][14].
GUEDOS includes a schema editor, allowing designers to build such a GODM schema by picking
graphical symbols from palette and positioning them into the workspace provided in an ad-hoc
window. An analyst is able to work simultaneously on several schemas by using graphical
window for each. Standard editing operations are available through pull-down menus.
The mitochondrial schema [10] represents seven fundamental classes corresponding to the types
Genome, Gene, Fragment, NotLeafTaxon, Reference, KeyWord and Author. These are depicted
using rectangle nodes, indicating that they correspond to abstract data types in the world. These
classes are referencing each other using internal identifiers that are not visible to the user. In
contrast with abstract types, attributes may be either atomic or complex.
An atomic attribute is depicted using oval such as GeneType of class Gene in Figure 3.

Hassan BADIR, Rachida FISSOUNE & Amjad RATTROUT

International Journals of Biometric and Bioinformatics (IJBB), Volume (5) : Issue (3), 2011 195

FIGURE 2: schema graph for mitochondrial sequences

A complex attribute is depicted using also oval, but decomposed into a tuple of attributes, which
may be also either atomic or complex. Figure 2 also illustrates attribute-domain relationships. For
example the Genome class has an attribute NotLeafTaxon referencing the NotLeafTaxon class.
Then,
� The NotLeafTaxon class is the domain of attribute NotLeafTaxon of class Genome;
� An object instance of Genome has an object instance of NotLeafTaxon as the value of

NotLeafTaxon attribute (single-valued attribute).
Figure 2 shows mitochondrial sequences schema graph. This schema respects the ontology and
allows the indexation to the largest quantity of knowledge. In an Object Attributes Forest [7], each
attributes forest has a color chosen randomly by GUEDOS or indicated by user. This color will be
inherited by UML classes diagram during transformation. A complex class or an attributes tree
could have one more keys. For example in figure 2, Genome has as keys IdGenome and Locus
TaxonNotLeaf . Figure 3 represents DB-stereotyped classes diagram with derived keys from an
OAF (figure 2) using UML-DB profile [6].

4. GUEDOS MANIPULATION AND QUERIES
There are two ways to extract data from a database. One way is extensional, by navigating
through the database at the occurrence level. The other way is intentional, by formulating a query
asserting which types in the database schema are relevant to given query and which attribute
values and links among objects in order to define which subsets of those populations are
relevant. A query also defines which data from the relevant subsets have to be put into the result
(typically a projection operation) and how these data have to be structured for the end result
(unless the result is by definition a flat or first normal form from a relation). In a classical query
language as OQL/SQL, we can find these different specifications expressed as Select-From-
Where blocks: the FROM clause restricts these classes to the relevant subsets, finally the Select
clause specifies the projected data.

In a visual environment, the definition of the relevant object classes (the FROM clause) is
performed by visualizing the database schema on the screen and by clicking on the desired
class-nodes to lift them out from the schema into the query sub-schema (alternatively, by clicking
on undesired types to reduce them from the schema, which gradually reorients it to the target
query sub-schema). The query sub-schema is a sub-graph of the original schema graph.
The definition of the relevant subsets of the classes in the query (the WHERE clause) is
expressed as conditions (predicates) upon desired attributes. Only these objects that match the

Hassan BADIR, Rachida FISSOUNE & Amjad RATTROUT

International Journals of Biometric and Bioinformatics (IJBB), Volume (5) : Issue (3), 2011 196

conditions will contribute to the result. Conditions in a query are divided in two categories: simple
conditions which apply to object sets in a single class and composite conditions which apply to
object sets in multiple classes.

FIGURE 3: schema UML-DB for mitochondrial sequences

The definition of data to be presented to the user and the way by which they have to be
presented (the SELECT clause) can be seen as the definition of a new, virtual object type. In the
query sub-schema the projected attributes are represented by the symbol “?”.

4.1 Complexes Queries in Object-relational Model
Object Relational Queries are the queries, which exploit the basic object relational model thus
allowing the user to retrieve data from the new data structures that have been introduced in the
model. Object Relational Queries can be broadly classified into: Queries having REF, Queries for
Nested Table Structure (Aggregate Queries), Queries using index cluster, and Queries for
Inheritance Relationship [16].

REF Queries
REF is incorporated in database by defining one attribute in the table, which holds the REF
information of the attribute, which belongs to the other table. REF is used when there is an
association relationship between two objects. REF queries are the type of queries, which involve
REF either in projection or join or selection. REF is a logical pointer, which creates a link between
two tables so that integrity in data can be maintained between the two tables. The attribute which
holds the REF value is called as ref attribute (e.g. Loginstaff_id in Login_t table) and the attribute
to which ref attribute points is called as referred attribute (e.g. staffid in person_t table). Ref
attributes stores the pointer value of referred attribute as its real data value. Most important thing
to keep in mind is that whenever we refer to REF we always give the alias of the table, which
holds the referred attribute and not the table name. REF takes as its argument a correlation
variable (table alias) for an object table. Generally, REF query consists of Projection, Joins and
Selection.

SELECT <Projection List>

FROM <table1> <alias1>, <table2> <alias2>, … … …

WHERE <alias2>.<ref attribute> = REF(<alias1>) ;

Hassan BADIR, Rachida FISSOUNE & Amjad RATTROUT

International Journals of Biometric and Bioinformatics (IJBB), Volume (5) : Issue (3), 2011 197

FIGURE 4: General Classification of the ORDBMS Queries

Projection refers to what we to get as a result of the execution of the query. Joins are the links,
which are responsible for maintaining integrity in data, which is common to two tables. Selection
is the condition based on which we do projection.

Aggregate Queries
Collection types give the flexibility of storing a series of data entries that are jointly associated to a
corresponding row in the database. They can be further classified into two: VARRAYS, Nested
Tables. We will not be discussing VARRAYS in this section, since at the moment we cannot write
SQL statements to access the elements of the VARRAYS. The elements of the VARRAYS can
only be accessed through PL/SQL block; hence it is out of the scope of this section.
Nested table is one of the ways for implementing aggregation. Nested table data is stored in a
single table, which is then associated with the enclosing table or object type. In nesting technique,
the relationship between “part” and “whole” is existence dependent type. If the data for the whole
object is removed all of its part objects are removed as well. Nested Table is a user-defined
datatype, which is linked to the main table in which it is nested. Generally nesting technique is of
two types: Homogeneous and Heterogeneous, depending upon the number of the parts that the
main table has.

Aggregation is an abstraction concept for the building composite objects from their component
objects. Participating entities have “Whole-Part” type of relationship and the part is tightly coupled
with whole. Aggregation can be done in the following two ways: Nesting Technique and
Clustering Technique. Both the techniques store aggregate data efficiently but the degree of
cohesiveness between whole and part data is more in nesting technique than in clustering
technique. Nesting and Clustering technique can further be classified into Homogeneous and
Heterogeneous Aggregation depending upon the number of parts they have,

SELECT <Nested table attribute1>,

 <Nested table attribute2>, … … …

FROM THE (SELECT <nested attribute>

 FROM <whole table> <alias1>

 WHERE <primary key condition>);

Clustering Technique Aggregation Queries
Clustering gives the flexibility of storing the “whole-part” type of information in one table. This
technique is used when there is aggregation (i.e. the whole is composed of parts). This enforces

Hassan BADIR, Rachida FISSOUNE & Amjad RATTROUT

International Journals of Biometric and Bioinformatics (IJBB), Volume (5) : Issue (3), 2011 198

dependent type of relationship and each (i.e. either whole or part) has unique ID [17]. Clustering
can be further classified into homogeneous and heterogeneous clustering aggregation.
Clustering technique implements the participating tables in “Whole–Part” type of relationship. The
part information is tightly coupled with the corresponding whole record. For each whole info, we
have many corresponding parts and this is achieved by creating cluster on the whole key. Index
creation improves the performance of the whole clustering structure. Clustering can also be
divided into two types depending upon the number of participating subtypes: Homogeneous
Clustering and Heterogeneous Clustering.

SELECT CURSOR (SELECT <Projection List>

 FROM <main table name>

 WHERE Join AND[<condition>]),

 CURSOR (SELECT <Projection List>

 FROM <part table name>

 WHERE Join AND [<condition>])

FROM <whole table name> <alias1>,

 <part table name> <alias2>

WHERE <alias1>.<attribute name> = <alias2>.< attribute name >

AND [<condition>];

Inheritance Queries
Inheritance is a relationship between entities, which gives the flexibility to have the definition and
implementation of one entity to be based on other existing entities. The entities are typically
organized into hierarchy consisting of parent and child [17]. Child inherits all the characteristics of
its parent and can also add new characteristic of its own. A parent can have many children but
each child will have only one parent. There can be multilevel of inheritance (i.e. a parent child can
have many other child’s as well). Basically in Object Relational Database System, inheritance can
be of three types: Union Inheritance, Mutual Exclusion Inheritance and Partition Inheritance. The
basic difference between three types of inheritance is in implementation but for querying
purposes they are basically the same. In this paper we have only taken Union Inheritance into
consideration for writing SQL statements as the only difference between different types of
inheritance is the way they are implemented in the database and not in terms of writing SQL. The
general syntax for implementing inheritance relationship is as follows.
Generally inheritance queries consist of projection and selection. SQL for inheritance queries is
same irrespective of type of inheritance or number of levels in the tree hierarchy unless
mentioned specifically. The general syntax for inheritance queries is as follows.

SELECT VALUE(<alias>).<supertype attribute name1>,

 VALUE(<alias>).<supertype attribute name2>, … … …

FROM <table name> <alias>;

4.2 Query Editor
GUEDOS-ASCK includes an editor for graphical specification of queries, inserts and updates. In
this section we present the main features of the editor. The discussion is limited to query
formulation. The various steps which the process of query formulation comprises are:

a. Selecting the query sub-schema:
This is the initial step for all visual query languages. The portion relevant to the query is extracted
from the database schema is reverse video.

b. Specifying predicates:
Predicates are stated here to be applied to database occurrences, so that only relevant data are
selected. Predicates against complex objects may be rather clumsy. For the simplest ones
(comparison of a mono-valued attributes with a constant) a graphical counter-part may easily be
defined. A simple specification technique is to click on the attributes, select a comparison
operator from a menu, and finally type the value or choose one from a list. For complex
predicates (involving several quantifiers, for instance), there might be no simple way to express it
graphically. Menus are sometimes used for syntactic editing of predicates. In GQL/ER [15], QBE-
Like (Kari, 1990) forms are used to specify conditions on the selected nodes. In GUEDOS, textual

Hassan BADIR, Rachida FISSOUNE & Amjad RATTROUT

International Journals of Biometric and Bioinformatics (IJBB), Volume (5) : Issue (3), 2011 199

specification of Boolean or arithmetic expressions has been preferred to graphical representation:
There are simpler for complex expressions.

c. Formatting the output:
The selection of projection of projected attributes defines the structure of the resulting entity type.

4.3 Query Examples
This section illustrates some examples of graphical queries in GUEDOS-Queries. Let us assume
that the user wants to formulate a query for the schema show in Figure 1.
For each query we show:

• The query window, which displays twos superimposed graphs with different shades:
o The object-relational schema which is bright and fixed in the background to guide

the user,
o The sub-graph under development, which is reverse video.

The window has a selection bar which, in addition File and Edit menus, contains: the
Query menu, used for choosing the type of query to be made on the query graph

• The SQL3 code window for displaying the corresponding SQL3 code of the formulated
visual query.

• The result window for displaying the result of the executed query.

• Consider the simple query, ‘Print the NId and TaxonLeaf of Genome which the Locus is
“ACU12386” ‘in Figure 4.
The user selects the Class boxes to which the projection and condition may be specified
(Genome Class in this example). The user will proceed in this way.

• Designate the projected attributes NId and TaxonLeaf of Genome class by choosing the
PROJECT option in the pull-down menu associated to this attributes.

• Establish the selection condition Locus = “ACU12386” of Genome class. The user
carries out the following actions:

o Double-click on the attribute Locus of GENOME class and the pull-down menu
associated to this attribute is displayed,

o Choose the predicate option in the menu
o (implicit) choose the comparator “=”
o Implicit choose the option “value to be entered”,
o Enter the value “ACU12386” in the open box.
o The answer to the request is a temporarily sub-class of the Genome class and is

composed of appropriate objects. The sub-class name will be either the name of
the query or a specific name given by the user. On the query sub-graph, the user
selects the SHOW RESULT option in pull-down menu in the class node to
visualize the temporarily objects.

Hassan BADIR, Rachida FISSOUNE & Amjad RATTROUT

International Journals of Biometric and Bioinformatics (IJBB), Volume (5) : Issue (3), 2011 200

FIGURE 5: Example of query for mitochondrial sequences

5. CONSLUSION & FUTURE WORK
We have proposed a solution consisting on an integrated environment facilitating cohabitation of
several models and techniques to sustain user when designing database schema. GUEDOS is
specific to object-relational database schema design.
We have described the environment at whole, focusing at the same time on data static structure
and dynamic process modeling. As perspectives, we tend to extend GUEDOS to characterize the
obtained conceptual schema with respect to the previous processing, by introducing access
methods, even denormalization, and to integrate several schemas conceptual schemas into on
schema without lost of information. This work direction leads us to take more attention on
optimization and design process using a self-optimization approach based on user preferences
by selecting indexing methods, fragmentation and selection of views to materialize.

6. REFERENCES
[1] M. Stonebraker, P. Brown, 1999. Object-Relational DBMSs – Tracking the Next Great Ware,

2nd ed., Morgan Kaufmann, San Fransisco.

[2] Bertino E. and Martino L., 1993. Object Oriented Database Systems; Concepts and

Architectures. Addison-Wesley Publishing Company Inc, (1993)

[3] Korab-Laskowska M., Pierre Rioux, Nicolas Brossard, Timothy G. Little-john1, Michael W.

Gray2, B. Franz Lang, Gertraud Burger, 2001. The Organelle Genome Database Project
(GOBASE). Nucleic Acids Research, volume 26, Issue 01: January 1 (2998) 138-144.

[4] Marie-Paule Lefranc, Véronique Giudicelli, Chantal Busin, Julia Bodmerl, Werner Müller,

Ronald Bontrop, Marc Lemaitre, Ansar Malik, Denys Chaume, 1998. IMGT. The
international ImMunoGeneTics database, Nucleic Acids Research, Volume 26, Issue 01:
Jaunuary 1, 297-303.

[5] Moore, R., Lopes, J., 1999. Paper templates. In TEMPLATE’06, 1st International Conference

on Template Production. SciTePress.

Hassan BADIR, Rachida FISSOUNE & Amjad RATTROUT

International Journals of Biometric and Bioinformatics (IJBB), Volume (5) : Issue (3), 2011 201

[6] Badir, H. and Pichat, E., 2005. An Interactive Tool for creative data modeling, in Database
Technology and Applications for International Conference on Information Technology
ITCC'05, IEEE, Las Vegas, Nevada

[7] Badir H., Tanacescu A., 2007. An efficient interface to handle complex structure for database

design”, ICEIS ‘07, Madeira, Potugal.

[8] Chang W., I.N. Shindyalov, C. Pu and P.E Bourne, 1994. Design and application of PDBlib,

a C++ macromolecular class library. Computer Application in Biosciences, 10(6).

[9] Tateno Y., Kaoru Fukami-Kobayashi, Satoru Miyazaki Sugawara and Takashi Gojobori,
1999. DNA Data Bank of Japan at work on genome sequence data. Nucleic Acids
Research 6 (19) 16-20.

[10] Lagesen K, et al. RN Ammer, 2007. Consistent and rapid annotation of ribosomal RNA

genes. Nucleic Acids Res. 35:3100–3108.

[11] Etzold T. and P. Argos. SRS, 1993. An indexing and retrieval tool for flat file data libraries.

Computer Applications in the Biosciences. 9(1) 49-57.

[12] Stephen M. Beckstrom-Sternberg and D. Curtis Jamison, 1999. AGIS: Using the Agricultural

Genome Information System, Bioinformatics: Databases and Systems, p 163-174

[13] Kim W., 1989. A model of queries for object-oriented databases. VLDB, pages 423-432.

[14] Kari S. And Rosenthal, A. G-WHIA, 1990. Conceptual Query Language-CQL: a visual user

interface to application databases. IOS Press, pages 608-623.

[15] Lecluse, C. Richard, P. And Velez, F. O2, 1988. An Object-Oriented data model. EDBT,

pages 556-562.

[16] D. Tania, Rahayu and Srivastava, , 2003, A Taxonomy for Object-Relational Queries, by

IRM Press

[17] Loney, K. & Koch, G. (2002). Oracle 9i: The Complete Reference. Oracle Press.

