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Abstract 

Studies of Transcription Start Site (TSS) show that a gene has several TSSs locally distributed in 
promoter region. Analysis of this TSS distribution may decipher the gene regulatory mechanism. 
For that purpose, a numerical representation of TSS distribution is crucial for quantitative analysis 
of TSS data. To characterize the TSS distribution in quantitatively, we have developed a novel 
scoring method by considering several significant features that are contributing to shape a TSS 
distribution. Comparing to other methods, our scoring method describes TSS distribution in a 
meaningful and effective way. Efficiency of this method to distinguish TSS distribution is 
evaluated with both synthetic and real dataset.  
 
Keywords: TSS, Transcription Start Site, CAGE, 5’end SAGE, Gene Regulation, Gene 
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1. INTRODUCTION 
Initiation of transcription is the primary but fundamental step in gene expression process. 
Regulation of gene expression begins largely from initiation step of transcription. During 
eukaryotic gene expression process, the assembly of general transcription factors and RNA 
polymerase enzyme bind around the transcription start site (TSS) to initiate the transcription 
activity. Generally, these binding sites of transcription factors are defined as promoter region of a 
gene [1]. Therefore, study of TSSs and their related promoters in genome is essential to unravel 
transcription regulation riddle. For a global understanding of gene regulation, several novel 
technologies (CAGE, 5’end SAGE and PEAT) have been developed to capture 5’end of mRNA 
transcripts [2-4]. Moreover, adaptation of these technologies to the recent high throughput 
sequencers such as Illumina/Solexa and ABI/SOLiD has given a new momentum in genome-wide 
TSS studies [5-7]. Depending on the restriction endonuclease, these capturing methods collect 
about 20~27bp short sequence starting from TSS of mRNA transcript. This short sequence is 
regarded as 5’end mRNA tag or in short tag in this article. As 5’end of each tag is the starting 
position of the mRNA transcript, mapping of the tag to the genome provides the TSS position of 
the original mRNA transcript and the total number of tags that are starting from a TSS gives the 
expression level of its original mRNA transcript as illustrated in Figure 1. Recent TSS studies 
demonstrated that most of the genes contain locally concentrated multiple TSSs as depicted in 
Figure 2. These TSSs and their expression levels create TSS distribution in the promoter region 
of a gene. TSS distribution in each promoter region implies transcription initiation mechanism of 
its related gene. Therefore, study of TSS distribution has the potentiality to elucidate the gene 
regulation mechanisms in cells.  
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FIGURE 1: 5’end mRNA tags and their expression levels. Aligned 5’end mRNA tags are overlapped in 
genome. The starting position of each aligned tag is regarded as the Transcription Start Site (TSS). The 
frequency of each TSS gives the expression level of its original mRNA. 

FIGURE 2: Expression distribution at promoter region of Drosophila melanogaster mRNA 
geneCG5242. The vertical arrow at the 5’end of gene CG5242 in bottom row is the initiated site of 
coding region. In this image, genomic position from 5’end to 3’end is depicted at x-axis and the 2log
(Expression levels) is illustrated in y-axis. 

 
In TSS studies, it is essential to assign a numerical score to quantitatively classify each promoter 
region with respect to its TSS distribution. Quantitative characterization of TSS distribution 
enables gene expression analysis such as clustering genes with respect to their TSS distributions. 
Quantitative classification of genes also distinguishes differentially expressed genes having 
disparity in their TSS distributions in case-control studies. Moreover, this quantification method 
facilitates genome browser to selectively choose and visualize genes having particular type of 
TSS distributions for further biological studies. To address this problem, Density Percentile (DP) 
within a promoter region has been introduced to categorize TSS distribution [3]. Using DP method, 
promoters having 100 tags or more are categorized into four different classes such as single peak, 
dominant peak, multimodal peak and broad. As DP does not assign score to promoters with 
respect to their TSS distributions and only classifies them in different groups, it is not efficient for 
quantitative TSS studies. Recently, Shape Index (SI) [8] is introduced to assign a numerical score 
to the TSS distribution of a promoter. SI is defined as follows, 
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= 2 + ( ), 

 

 

where  is the probability of observing a TSS at base position  within the promoter. is the 
number of base positions that have expression levels more than zero. Promoter regions with SI 
score 1 are classified as peaked and remaining promoters are classified as broad. The 
principal drawback of SI method is that the scoring system considers only expression levels of 
TSSs, but their spatial orientation is not incorporated in scoring method. From Figure 1 and 
Figure 2, we can understand that TSS distribution in a promoter region is determined by not only 
the expression levels of TSSs but also how the expression levels (illustrated as vertical line in 
Figure1) of TSSs are spatially oriented in the promoter region. As a result, SI assigns same score 
to some TSS distributions, while considerable discrepancy is noticeable among the TSS 
distributions. In this regard, a numerical representation is essential to precisely quantify the 
pattern of TSS distribution. The proposed method will benefit if we can consider the significant 
features such as expression levels of TSSs and spatial orientation of TSSs in a promoter region 
that are contributing to create the shape of a TSS distribution. By incorporating aforementioned 
features of a TSS distribution, a scoring method named Aggregated Index (AI) is proposed here. 
 
In the following sections, we firstly present the scoring method. Secondly, we experiment the 
method on both synthetic dataset and real TSS dataset. Finally, we discuss the effectiveness of 
this scoring method in discussion. 
 
 
2. METHOD 
We define a promoter { , = 1,2,3, , } of -mer length where y is the expression level at 
position  starting from 5’end of the promoter. Total expression in a promoter region is 
summed up as Y = y . The total expression Y is distributed among individual bases in that 
promoter. We discuss how the expression levels and spatial orientation of bases in a promoter 
are utilized in our scoring method. In the following sub-sections, our proposed method is 
explained in three steps. Firstly, divergence of TSSs’ expression levels is quantified using Gini 
Coefficient (GC). Secondly, spatial orientation of TSSs is quantified in Average Neighbourhood 
Distance (AND). Finally, both GC and AND are used to define the Aggregated Index (AI). 
 
2.1 Divergence of Expression Levels 
Observation of Figure 1 and Figure 2 implies that expression level of bases in a promoter region 
is one of the significant features of a TSS distribution. Therefore, incorporation of expression 
levels in our scoring method is important to properly quantify a TSS distribution. Our main 
objective is to consider how disparity of expression levels among the bases in a promoter works 
to make a TSS distribution highly aggregated or not. To quantify the variability of the expression 
level in a TSS distribution, we use Gini Coefficient [9, 10] in our scoring method. Although, this 
coefficient is used by economists to illustrate the concentration of wealth distribution in a 
population, it can be used in all kinds of contexts where size plays a role like gene expression 
among all bases in a promoter region. The expression levels of a promoter region { , =
1,2,3, , } is ranked in ascending order as, y y y y . Kendall and Stuart defined 
Gini Coefficient (GC) as follows [11] : 

=
1

2K y y          (2),  
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 is the average levels of expression, i=1,2,3, ,K and j=1,2,3 ,K. If there is only one base that 
has non-zero expression level in a 200bp length promoter region, then GC value of that TSS 
distribution is 1. This implies that the TSS distribution of that promoter is highly concentrated to a 
single TSS. On the other hand, if the expression levels are equally distributed to all the 200 bases 
in that promoter, then the GC value of that promoter is 0. Therefore, GC always takes value 
between zero and one. 
 
2.2 Spatial Orientation of TSS 
Spatial orientation of bases that have non-zero expression level is another important feature of 
TSS distribution of a promoter. Despite having equal expression levels in the bases of two 
promoters, orientation of those bases can create different TSS distributions pattern in those 
promoters. Therefore, the spatial feature of TSSs is incorporated in AI scoring method using 
Average Neighbourhood Distance (AND). The AND is defined as below: 
 

=
1

[1 + ( )] (3). 

 

 
In equation 3,  is the first base position that has non-zero expression level, and is the last 
base position that has non-zero expression level starting from 5’end of a promoter. Here, is the 
total number of bases in the promoter having non-zero expression level. For example, a promoter 
of length 9 has expression levels of 5,4,0,1,0,2,0,1,3 in the bases position 1, ,9, starting from 
5’end of the promoter. In this example, the number of bases having non-zero expression level is 6. 
According to the equation 3, = 1, = 9 and = 6. Therefore, the value of AND is 1.5. On the 
other hand, in an extreme case, if all the bases in a promoter have non-zero expression levels, 
the value of AND will be 1. Except this extreme case, the value of AND will be always above one. 
As a result, the value of AND is always one or more than one.  
 
2.3  Aggregated Index 
To quantify the TSS distribution, we have targeted at two significant features such as divergence 
of expression levels and spatial orientation of bases in a promoter of a gene. Firstly, the 
divergence of expression levels is explained by GC of equation 2 that takes score within the 
range of zero and one. Secondly, spatial orientation of TSSs is quantified in AND of equation 3 
that takes score one and above. Finally, using GC and AND, the aggregated index (AI) is defined 
as below: 
 
         Aggregated Index (AI) =GC/AND          (4).
 
 
AI assigns one single value between zero and one to a TSS distribution in a promoter. For 
example, if there is only one base having expression level more than zero in a promoter of 200bp 
length, the total expression level in that promoter is distributed to that single base. In this case, 
the proposed AI assigns value of one that implies the TSS distribution in the promoter is 
deterministic to a single base position of genome. Moreover, this promoter can be categorized as 
highly aggregated in its TSS distribution. On the other hand, when all the 200 bases of the 
promoter have same non-zero expression levels of TSS distribution, AI assigns value of zero to 
the TSS distribution of that promoter. Therefore, the TSS distribution having value of zero or near 
to zero is categorized as random or nondeterministic TSS distribution. 
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3. RESULT 
To further reinforce the effectiveness of the proposed AI scoring method, we tested and verified 
the AI scoring method to distinguish TSS distribution in a promoter region with both synthetic and 
real TSS dataset. 
 
3.1 Synthetic Dataset 

FIGURE 3: Four synthetic examples of TSS distribution with various patterns are showed in this figure, 
where x-axis is promoter region of a genome and y-axis is expression levels of mRNA transcript. 

 
 

Example Promoter GC AND AI SI 
Case1 5,4,0,1,0,2,0,1,3 0.54 1.5 0.36 -0.35 

Case2 0,0,0,1,2,5,4,3,1 0.54 1 0.54 -0.35 

Case3 10,0,0,0,0,0,0,6 0.78 4 0.195 1.04 

Case4 0,0,0,0,0,0,6,10 0.78 1 0.78 1.04 

TABLE 1: AI values for synthetic promoter examples 

 
Four synthetic examples of promoters that have various TSS distributions are illustrated in Figure  
3 & Table1.These examples are presented to examine AI’s ability to distinguish TSS distribution 
by assigning a numerical score. We categorised the four examples in two groups. Firstly, group1 
consists of Case1 and Case2. In this group, total expression level of each of the cases is equal; 
however, the spatial orientation of bases with non-zero expression levels in each promoter is 
different. Figure 3 shows that TSS distribution in Case1 is random, while in Case2 the distribution 
is aggregated to make a bell shape pattern. Secondly, group2 is comprised of Case3 and Case4 
promoters. All the promoters in group2 also have equally total expression levels; however, two 
distinct bases with non-zero expression levels are positioned far away from each of the bases in 
case3 that creates different TSS distribution comparing to Case4 promoter in the same group that 
have two bases with non-zero expression levels which are located at 3’end of the promoter. In 
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group1, GC scores of Case1 and Case2 promoters are 0.54; on the other hand, GC scores in 
group2 for both Case3 and Case4 are 0.78 (Table1). Figure 3 shows that without the orientation 
of bases that have non-zero expression levels, the total expression levels in both cases of group1 
are same; similarly, both Case3 and Case4 of group2 have equivalent total expression levels. 
Although the TSS distributions of these promoters are different, their GC’s scores are similar in 
each group. It is because, in the process of GC calculation using equation 2, we ranked the 
expression levels of each base that ignored the spatial information of bases and made the GC 
score similar in both cases of each group. Therefore, in order to have a better scoring method to 
describe properly the TSS distribution in a promoter, it is necessary to consider the spatial 
orientation of the bases having expression level more than zero. As a result, spatial orientations 
are considered through AND to properly distinguish each cases of promoters in group1 and 
group2. In group1, AND scores for Case1 and Case2 are 1.5 and 1 respectively; in group2, 
Case3 and Case4 are 4 and 1 respectively (Figure 3 & Table 1). Finally, GC and AND are 
combined at AI in equation 4. AI scores for all promoter examples are Case1=0.36, Case2=0.54, 
Case3=0.195 and Case4=0.78 (Table1). By considering significant features of TSS distribution, 
AI successfully assigned scores to each promoter. Especially, AI distinguished Case1, Case2, 
Case3 and Case4 of each properly. In contrast to AI score, Shape Index (SI) assimilated Case1, 
Case2 and Case3, Case4 by scoring same values in each pair (Table1); because, it does not 
incorporate information of spatial orientation of bases in a promoter in the scoring method defined 
in equation 1.  
 
3.2 Real TSS Dataset 

FIGURE 4: AI scores of Drosophila melanogaster genes. TSS distributions of promoter of nine genes 
are illustrated in Figure 4. Left column is for genes CG1101, CG18578 and CG3315 having AI scores 
between . Middle column is for genes CG7188, CG5242 and CG1728 with AI scores 
range . In right column, genes CG7424, CG11368 and CG1967 are depicted 
with AI score between . SI scores for each of the promoter’s expression distribution are 
also presented with AI scores. 
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Evaluation of AI  method was performed with TSS data collected from publicly available database 
called Machibase [12]. Machibase is a TSS database for Drosophila melanogaster that consists 
of  six development stages such as embryo, larva, young male, young female, old male, old 
female and one culture cell line (S2). All the TSS data from seven libraries were merged and 
assigned AI score to the promoters of Drosophila melanogaster genes with respect of their TSS 
distributions. Promoter information is collected from Flybase 5.2 [13] annotated mRNA genes. 
Promoter region of each mRNA gene is defined as 200bp upstream of coding initiation site (ATG 
codon). Each bases of promoter region that has more than five expression levels is assigned TSS 
expression levels from Machibase data. Finally, AI score of TSS distribution is calculated for all 
the promoters of genes according to equation 2, 3 and 4.  With respect to AI scores (
0.1, 0.45 0.55, 0.9 1) nine genes were illustrated in Figure 4. Among these 
genes CG1101, CG18578 and CG3315 (illustrated in left column of Figure 4) have AI scores 
between 0.1. The TSS distributions of this group are similar to the example Case3 in 
synthetic dataset (Figure 3 & Table 1). Genes CG7188, CG5242 and CG1728 (illustrated in mid 
column of Figure 4) have AI scores between 0.45 0.55.  The TSS distributions of this 
group can be categorized to the example Case2 in the synthetic dataset (Figure 3 & Table1). 
Finally, TSS distributions of genes CG7424, CG11368 and CG1967 (illustrated in right column of 
Figure 4) having AI score between 0.9 1 can be categorized to Case4 of the synthetic 
dataset (Figure 3 & Table1). Examples from real dataset in Figure 4 show how efficiently AI score 
can categorize genes according to their TSS distributions in promoters. On the other hand, 
Shaped Index (SI) method categorizes all genes in left and right columns as peaked TSS 
distribution, where clear disparity exists in their TSS distributions. This result also confirms that AI 
scoring system works well to classify genes by providing numerical score to each gene with 
respect to its TSS distribution. By assigning well defined scores to TSS distribution of Drosophila 
melanogaster genes, AI method obviously outperformed SI scoring method in distinguishing TSS 
distribution pattern of promoter region. 
 

 
4. DISCUSSION 
TSS study has the potentiality to elucidate gene regulation mechanism. In TSS study, it is 
essential to quantify TSS distribution in a promoter region of a gene. As existing Density 
Percentile (DP) method does not assign any numerical score to TSS distribution, it is not efficient 
for further quantitative analysis of TSS data. On the other hand, Shape Index (SI) method 
considers only expression levels in its scoring system of equation 1, and resulting score cannot 
distinguish significant disparity among TSS distributions. After considering all the features that 
contribute to shape TSS distribution in a promoter region, we proposed Aggregated Index (AI) 
scoring in this study.  
 
AI is a novel scoring method to measure the TSS distribution of a promoter. Evaluation in 
synthetic data shows the proposed method is able to distinguish distinct patters of TSS 
distribution in promoter regions. However, the existing Shape Index (SI) scoring method assigns 
same scores to some TSS distributions in our synthetic data while significant discrepancy exists 
among them (Table 1). Furthermore, AI also successfully distinguished all the TSS distributions in 
real TSS dataset as depicted in Figure 4. In contrast, SI scores of all the examples in right and 
left columns of Figure 4 are above -1. As a result, in SI scoring system, all of these TSS 
distributions in right and left columns in Figure 4 are classified as peaked promoters. Thus, SI 
scoring system cannot distinguish obvious disparity among TSS distributions in real dataset. By 
assigning scores to distinct patterns of TSS distributions, AI method allows us to cope with the 
problem of TSS analysis to a treatable scale. Therefore, using synthetic and real dataset, we 
verified the advantage of this scoring method in TSS data analysis. In other word, the proposed 
AI method has opened up a new direction for future approaches to genome-wide analysis of gene 
regulation using TSS data.  
 
The contribution of the proposed AI is significant mainly in the following two ways. Firstly, the 
score can quantify the TSS distribution of promoter region by providing a unique measurement 
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technique to reduce the ambiguity in TSS analysis. Secondly, the AI score can automatically 
identify the particular pattern of TSS distribution in genome browser, to our knowledge no other 
scoring method can do like this and that is why AI scoring could be an enormous help for 
biologists working in gene expression and regulation process.  
 
 
5. REFERENCE 
 
1. Alberts, B., Molecular biology of the cell. 5th ed. 2008, New York: Garland Science. 
2. Hashimoto, S., et al., 5'-end SAGE for the analysis of transcriptional start sites. Nat Biotechnol, 

2004. 22(9): p. 1146-9. 
3. Carninci, P., et al., Genome-wide analysis of mammalian promoter architecture and evolution. Nat 

Genet, 2006. 38(6): p. 626-35. 
4. Ni, T., et al., A paired-end sequencing strategy to map the complex landscape of transcription 

initiation. Nat Methods. 7(7): p. 521-7. 
5. Fullwood, M.J., et al., Next-generation DNA sequencing of paired-end tags (PET) for transcriptome 

and genome analyses. Genome Res, 2009. 19(4): p. 521-32. 
6. Hashimoto, S., et al., High-resolution analysis of the 5'-end transcriptome using a next generation 

DNA sequencer. PLoS ONE, 2009. 4(1): p. e4108. 
7. Valen, E., et al., Genome-wide detection and analysis of hippocampus core promoters using 

DeepCAGE. Genome Res, 2009. 19(2): p. 255-65. 
8. Hoskins, R.A., et al., Genome-wide analysis of promoter architecture in Drosophila melanogaster. 

Genome Res. 21(2): p. 182-92. 
9. Gini, C., Measurement of Inequality and Incomes. The Economic Journal, 1921(31): p. 3. 
10. Anand, S., Inequality and poverty in Malaysia : measurement and decomposition. A World Bank 

research publication. 1983, New York: Published for the World Bank [by] Oxford University Press. x, 
371 p. 

11. Kendall, M.G. and A. Stuart, The advanced theory of statistics. [3 vol. ed. 1963, New York,: Hafner 
Pub. Co. 

12. Ahsan, B., et al., MachiBase: a Drosophila melanogaster 5'-end mRNA transcription database. 
Nucleic Acids Res, 2009. 37(Database issue): p. D49-53. 

13. Drysdale, R.A. and M.A. Crosby, FlyBase: genes and gene models. Nucleic Acids Res, 2005. 
33(Database issue): p. D390-5. 

 
 


