
Sayali Davalibhakta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (8) : Issue (1) : 2014 1

Bliss: A New Read Overlap Detection Algorithm

Sayali Davalbhakta sayalid@gmail.com
Department of Computer Engineering and IT
College of Engineering, Pune
Shivaji Nagar, 411005, India

Abstract

Many assemblers carry out heuristic based overlap detection to avoid string comparisons. But
heuristics skips many true overlaps. Also, the order of the number of read pairs compared for
overlaps is higher than the order of n. In the raw approach it would be n

2
 where every read is

compared to every other read. Some assemblers have used a hybrid approach to bring the order
down from n

2
. Here is an algorithm which works with 100% accuracy. As there is no heuristics

involved, it is able to report all the overlaps in a given set of reads without actual string
comparisons. It achieves this purely by querying the k-mer position data. Moreover, the number
of read pairs compared is proportional to the number of reads present i.e. of the order of n.

Keywords: Overlap Detection, De Novo Assembly, Overlap-layout-consensus, OLC Assemblers,
DNA Sequencing, Whole Genome Shotgun Assembly.

1. INTRODUCTION

As the sequencing techniques advance, the assemblers need to adapt to the trend. The EULER
assembler introduced the use of de Bruijn graphs in assembly [1]. These assemblers suffer from
heavy memory consumption [2]. The other approach conventionally taken by some de novo
assemblers is the overlap-layout-consensus (OLC) approach [3]. The primary difference between
the two approaches is that de Bruijn graph is a graph with k-mers as nodes and an edge
corresponds to k-1 characters of overlap. Whereas the read overlap graph has reads as nodes
and edges correspond to the overlap between reads. Velvet and SOAPdenovo are examples of
de Bruijn based assemblers [2], [4]. De Bruijn graph based assemblers suffer from the problem of
huge memory consumption. Several solutions have been devised by assemblers to tackle the
memory consumption issue. ABySS takes a distributed approach towards building the de Bruijn
graph [5], [6]. Some others try representing the de Bruijn graph as a sparse graph [7], [8]. Celera,
ARACHNE are examples of OLC assemblers [9].

The OLC assemblers typically have overlap detection among one of the initial phases. The very
basic approach would compare every read with every other read for overlap. Thus it will require
N

2
 comparisons. This has been optimized by assemblers. During the overlap detection phase,

ARACHNE generates k-mers and stores along with the source read information [9]. It then sorts
the k-mer table so that reads sharing k-mers are adjacent. Only the reads sharing some k-mers
are considered for overlap detection. This is great improvement over the raw N

2
 comparison

approach.

This paper makes two significant advances over this approach to further improve performance.
The only overlaps of interest are the ones that occur at the ends i.e. end of one read overlaps
with the beginning of another read. Two reads having overlap which does not span till the end are
of no use in read alignment. Such overlap is due to repeats in the original sequence. Bliss, the
new algorithm proposed in this paper, segregates the k-mers in two different data structures.
Assuming the k-mer positions in a read starting at zero, the zero

th
 k-mers of all reads i.e. the ones

occurring in the beginning of reads, are stored separately along with the source read. There is no

Sayali Davalibhakta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (8) : Issue (1) : 2014 2

need to store the position separately because it is zero for all of them. The other k-mers at non-
zero locations are stored in another data structure along with the source read and the position
information. During overlap detection, the data structure of non-beginning k-mers is searched for
reads sharing any of the k-mers at zero

th
 position. For n reads, at the most, there will be n

beginning k-mers. A read is compared with only those reads that share its zero
th
 k-mer. Thus the

number of read pairs compared is of the order of n.

Bliss detects overlap purely by searching the k-mer position data. The other advancement made
by Bliss is by a factor of K. Although k-mers are generated by sliding a window of size K over the
reads, during overlap detection there is no need to slide by a position of one. Since one shared k-
mer means an overlap of K, the overlap detection can continue by advancing by K positions at
each step. Thus it further improves the speed of overlap detection.

At this point of time, error correction is beyond the scope of this algorithm. It operates post error
correction. In future when the quality of the sequencing data becomes near accurate, algorithm
like Bliss will certainly a play key role in further enhancing the quality of assembly as it is able to
trap all the real overlaps unlike the heuristics based approaches.

2. OVERLAP DETECTION ALGORITHM

Bliss takes a three phase approach towards overlap detection.

2.1 Phase I – k-mer Generation
In the first phase, k-mers are generated from each read by sliding a window of size K over the
read. The zero

th
 k-mers, that is the ones occurring at the beginning of the reads, are put in a data

structure Z along with the source read number. The other k-mers are added to another data
structure T along with the source read number and the position in the read. K-mers are stored by
their unique radix-4 number and the k-mer strings are discarded [10]. This brings in space saving
and also substitutes string comparisons by number comparisons.

2.2 Phase II – Gather Read Pairs
In the second phase, read pairs which may possibly overlap are gathered in another data
structure P. P holds the id of first read, the index at which overlap begins in the first read and the
id of the second read. The overlap, if it is there, always begins at position zero for the second
read hence the index is not stored separately for the second read.

Read pairs are gathered by iterating through the set Z. For each k-mer in the set Z, the set T is
searched to extract reads that have this k-mer at some position in them. An entry is made in the
set P of the id of the read corresponding to this shared k-mer in T, the corresponding position
from T and the id of the read corresponding to this k-mer in Z.

If multiple entries of the same read pair are present in P, then they are processed in the
ascending order of the position so that the largest overlap is tested for first.

2.3 Phase III – Filter out Read Pairs with Discontinuity in Overlap
For each entry in P, let r1 be the id of the first read i.e. the one that came from the set T, let p be
the corresponding position and let r2 be the id of the second read i.e. from Z. Since the k-mer at
index p in the first read, matches the zero

th
 k-mer in the second read, there is already an overlap

of K characters between these reads. This overlap starts at position zero for the second read. We
need to check if it continues till the last position in the first read. If not, this read pair is discarded.
To check the continuity till the last character, we start at the last k-mer in the first read and the
corresponding k-mer in the second read. If these k-mers match, we move backward by K
positions in both the reads at each step until there are K or less characters left at the beginning of
the second read. These characters are covered by the zero

th
 k-mer, hence there is no need to

again match them here. So we just report overlap and break. Checking for continuity backwards
starting from the end of the first read has a clear advantage of eliminating false overlaps quickly

Sayali Davalibhakta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (8) : Issue (1) : 2014 3

without requiring any additional k-mer comparisons. This is another speed improvement in the
process of overlap detection. The maximum number of k-mers compared i.e. before reporting
overlap in this phase is (ceil(((l – p)/K)) – 1) where l is the length of r1.The last k-mer position is
computed for the first read by subtracting K from the read length. If k-mers in both the reads are
not identical at any step, there is discontinuity in overlap so we break and move to the next read
pair

2.4 Algorithm
Input: R: {r} Set of reads

K: k-mer length.
Output: P: {(r1, i, r2)}. r1 and r2 overlap from i to (l – 1) in r1 where l = length(r1) and from 0 to (l – i
- 1) in r2.
Data Structures:
T: Set of 3-tuples (kmn, rm, n) k-mer kmn occurs in read rm at n

th
 position where n != 0

Z: Set of 2-tuples (rm, km0) km0 occurs in read rm at 0
th
 position

P: Set of 3-tuples (r1, i1, r2) Reads r1 and r2 share a k-mer at i
th
 position in r1 and 0

th
 position in r2.

A possible overlap between r1 and r2 may begin here.

Phase I - Tokenization/K-mer generation

For each rm in R,
{

lm = length (rm);
lastKmerIndex = (lm – K);
for (i = 0, i <= lastKmerIndex, i++)
{

/* Get a substring of length K in rm starting at i, Unique number is radix-4 representation of
this string */
kmi = UniqueNumber (substring(rm, i, K))
If (i != 0)
{
 Enter (kmi, rm, i) in T;
}
Else
{
 Enter (rm, kmi) in Z;
}

}
}

Phase II – Gather read pairs with possible overlap occurring at the end

For each rm in (rm, km0) in Z,
• Fetch from T, (ksv, rs, v) where ksv = km0 and (rs != rm)
• Enter in P (rs, v, rm)

For multiple entries of rs and rm, (rs, x, rm) order by x ascending so that the largest overlap is
tested for first

Phase III – Filter read pairs with discontinuity in overlap

For each (rs, v, rm) in P,
{

ls = length (rs);
lastKmerIndex = (ls – K);
i = lastKmerIndex;
j = (lastKmerIndex – v);

While (j > 0)

Sayali Davalibhakta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (8) : Issue (1) : 2014 4

{
 Search T for tuples (ksi, rs, i), (kmj, rm, j) where ksi = kmj

If (found)
{

 i = i – K;
 j = j – K;

}
Else /* If (!found) - Discontinuity in overlap */
{

 Remove (rs, v, rm) from P;
}

} /* While */

If (j <= 0) /* Overlap detected, remove other entries for this read pair from P */
{

 For all q > v
 Remove from P (rs, q, rm);

}

} /* For Each */

Output P /* P contains all the overlapping read pairs */

3. DISCUSSIONS
Bliss, by segregating zero

th
 k-mers, greatly reduces the number of comparisons. It only considers

full overlaps for both the reads. Partial overlaps are partly discarded in the first step by this
segregation. The rest of them are removed in the third phase. The number of k-mers looked up
for read pair (rs, v, rm) before reporting overlap are (ceil(((l – v)/K)) – 1), where l is the length of the
first read rs and the overlap begins at index v for the first read.

The data structures need to be indexed to facilitate faster fetch. Suggested indexes are: set T
{(kmn, rm, n)} has two indexes: one on k and the other on (r, n), set P has index on (r1, r2, i) sorted
ascending by i for multiple entries of the same read pair.

Bliss uses unique number representation of k-mers and discards k-mer strings. This further
improves speed.

Consider the values given in Table 1.

K-mers Occurring at position
zero in reads - Z

Occurring at non-
zero position in
reads - T

k0 r1, r23 r13,8 , r12,5 , r13,22

k1 ….. …..

k2 ….. …..

Table 1: Example of Shared k-mers.

Sayali Davalibhakta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (8) : Issue (1) : 2014 5

k-mer k0 in Table 1 is at zero
th
 position in r1, r23 and non-zero position for r13, 8, r12, 5, r13, 22. For

each row, we compare each read in set Z with each entry in set T. Thus, the pairs compared for k-
mer k0 are (r1, r13), (r23, r13) starting from 8

th
 position in r13, (r1, r12), (r23, r12) starting from 5

th

position in r12 and (r1, r13), (r23, r13) starting from 22
nd

 position in r13. Thus there are 6 comparisons
done for k0.

Figure 1 shows the k-mers compared for (rs, v, rm). In phase 3 of the algorithm, Bliss iterates for rs
through i = v + 2K, v + K and for rm through j = 2K, K.

FIGURE 1. k-mers Compared For Detecting Overlap Between Reads rs and rm.

4. Number of Comparisons
Let N be the number of reads in the given set, L be average read length and K be k-mer length.
Thus the total number of k-mers generated in the set is (L – K + 1) * N. The probability that read
Rx is not compared with read R1 is (1-1/((L – K + 1) * N))

(L - K)
. Hence the probability that Rx will be

compared with R1 is 1 – [(1-1/((L – K + 1) * N))
(L - K)

]. Thus Expected number of reads that will be
compared with R1 is (N -1) * [1 – [(1-1/((L – K + 1) * N))

(L - K)
]]. The total expected number of

comparisons thus becomes N * (N -1) * [1 – [(1-1/((L – K + 1) * N))
(L - K)

]]. In this computation, let
the total expected number of comparisons be N * X. The X above approaches 1 when the real
data numbers are put in. Thus the number of comparisons approaches N.

The test data had 100 (N) reads of length 30 (L) and K was 6. The expected number of
comparisons becomes: 95. The E.Coli set had 400000 reads with average length of 230. The K
was set to 18. Thus N = 400000, L = 230 and K = 18. Thus the expected number of read pairs
compared becomes: 398121.

In reality, all k-mers are not distinct or else there will be no overlap among reads. Thus the
number of distinct k-mers under consideration is less than ((L – K + 1) * N) which slightly
increases the number of comparisons and makes it approach closer to N from the lower side. E.g.
consider an ideal case where each read has its last k-mer overlapping with the zero

th
 k-mer of

exactly one read. The larger is the number of k-mers overlapping, the less is the number of
distinct k-mers present. Similarly the more is the number of reads sharing the last k-mer, the less
is the number of k-mers. As an example let’s take up a case where only the last k-mer overlaps
and that too with only one read. This will reduce the number of distinct k-mers by N making it (L –
K) * N. With these many k-mers in the set, the number of pairs compared for test data and E.Coli
above become 99 and 399999 respectively i.e. the numbers are truly linear. This case we
considered is the maximum number of k-mers present in the set with overlap present. In reality
multiple k-mers will overlap for many read pairs and many k-mers will be present in more than
two reads. Thus the number of distinct k-mers will further reduce.

The raw approach would involve N * (N-1) comparisons which becomes 9900 and 159999600000
for test data and E.Coli respectively. The approach taken by some assemblers where two reads
sharing any k-mers are compared will involve N * (N -1) * [1 – [(1-1/((L – K + 1) * N))

(L – K + 1)
]

(L – K +

1)
)] comparisons. For test data and E.Coli, these numbers become 2190 and 85177107

respectively. Clearly Bliss involves the least number of comparisons among these three
approaches and yet reports all true overlaps.

Sayali Davalibhakta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (8) : Issue (1) : 2014 6

5. IMPLEMENTATION AND RESULTS
Bliss can be implemented with the data structures T, Z, P as in-memory data structures or
persistent data structures. The indexing and data retrieval infrastructure can be implemented from
scratch for fine tuning and better optimization or some existing infrastructure can be utilized. I
chose persistent data structures. Also, instead of reinventing the wheel, I decided to exploit the
indexing and data retrieval facilities provided by a relational data engine to implement the data
access layer. To utilize the overlaps detected for contig generation, I supplied it with a basic
contig generation algorithm. The contig generation algorithm halts when it cannot extend the
contig further or if there are more than one paths avilable for extension.

I implemented Bliss using MySQL database. The first phase of k-mer generation involves
importing the reads from .fa file into the database and then generating k-mers from the reads.
The second phase computation is saved by defining a view on the sets T and Z. The third phase
iterates over the view to check for continuity of overlap in both the reads. The read pairs for which
continuity exists are inserted in the read pairs’ table. The contig generation algorithm operates on
this read pairs’ table to form contigs.

Implementing indexing and data retrieval from scratch to fine-tune to the problem at hand may
boost performance compared to relying on a relational data engine. However it trades
performance with complexity and hence the development effort.

Bliss was tested on experimental data and on single-end E. Coli data. For E. Coli, on a 2 GB,
quad-core machine with 32 bit OS, Bliss took approximately 6 hours to output contigs.

Some of the database level optimizations done are as mentioned here. These MySQL
parameters were optimized: innodb_buffer_pool_size was set to 1024M, key_buffer_size to 64M,
table_open_cache to 4000, table_definition_cache to 4000. To improve performance, minimal
required indexes were defined. Inserts, updates, deletes were done in bulk wherever possible.
Foreign key constraints were removed. Large tables were partitioned.

Another in-memory optimization done in the third phase was to fetch all the k-mers for the given
pair of reads at the given indexes in one shot. The k-mers from one read were bitwise XORed
with their counterparts in the other read. The results were then bitwise ORed to get a single
number. If this number is zero, it means all the k-mers match and there is true overlap between
the read pair else there is no overlap.

6. CONCLUSION AND FUTURE SCOPE
Bliss is a simple overlap detection algorithm. It uses a hybrid approach of k-mer generation
followed by read overlap detection. It significantly reduces the number of comparisons for overlap
detection by segregating zero

th
 k-mers from the others. It detects the overlap by searching the k-

mer position data. While detecting overlap, it advances in steps of K in backward direction to
speed up the process.

Since there is no heuristics involved Bliss offers 100% accuracy. All the overlaps in a given set of
reads are correctly reported by Bliss.

The data structures can be in-memory or persistent and may use custom indexing and data
retrieval infrastructure. If implemented on a relational data engine, several database level
optimizations may be done for performance.

Bliss can be extended to include single bit error correction and multiple bit error trapping by
analyzing the sequence of differing k-mers between two reads.

When run post error correction, bliss reports all the overlaps present in the given set of reads.

Sayali Davalibhakta

International Journal of Biometrics and Bioinformatics (IJBB), Volume (8) : Issue (1) : 2014 7

7. ACKNOWLEDGEMENTS
My sincere thanks to Dr. S.D. Bhide and Prof. S. P. Gosavi for their support and valuable
feedback.

8. REFERENCES
[1] D. R. Zerbino and E. Birney. “Velvet: Algorithms for de novo short read assembly using de

Bruijn graphs.” (2008) Genome Research, 18:821–829

[2] Jeffrey J. Cook, Craig Zilles. “Characterizing and Optimizing the Memory Footprint of De
Novo Short Read DNA Sequence Assembly” April, 2009.

[3] Flicek P, Birney E. “Sense from sequence reads: methods for alignment and assembly.”
Nat Methods. 2009 Nov;6(11 Suppl):S6-S12.

[4] Ruiqiang Li, Hongmei Zhu, Jue Ruan, et al. (2009, December). “De novo assembly of
human genomes with massively parallel short read sequencing”, Genome Research,
[Online].Available:
http://genome.cshlp.org/content/early/2009/12/16/gr.097261.109.full.pdf+html

[5] Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD, Zhao Y, Hirst M,
Schein JE, Horsman DE, Connors JM, Gascoyne RD, Marra MA, Jones SJ. “De novo
Transcriptome Assembly with ABySS” Bioinformatics (2009) 25 (21): 2872-2877.

[6] Jared T. Simpson, Kim Wong, Shaun D. Jackman, Jacqueline E. Schein, Steven J.M.
Jones, Inanc Birol. “ABySS: A parallel assembler for short read sequence data”, (2009)
19(6):1117-23.

[7] Chengxi Ye, Zhanshan (Sam) Ma, Charles H. Cannon, Mihai Pop, Douglas W. Yu.
SparseAssembler: de novo Assembly with the Sparse de Bruijn Graph

[Online].Available:

http://arxiv.org/ftp/arxiv/papers/1106/1106.2603.pdf

[8] Chengxi Ye, Charles H. Cannon, Zhanshan (Sam) Ma, Douglas W. Yu, Mihai Pop.
SparseAssembler2: Sparse k-mer Graph for Memory Efficient Genome Assembly.
[Online].Available:

http://arxiv.org/ftp/arxiv/papers/1108/1108.3556.pdf

[9] Serafim Batzoglou, David B. Jaffe, Ken Stanley, et al. “ARACHNE: A Whole-Genome
Shotgun Assembler” (2002) Genome Research, 12:177–189.

[10] Sayali Davalbhakta. “Throwing Away k-mer Strings” Submitted for publication.

