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Abstract 
 
Many assemblers carry out heuristic based overlap detection to avoid string comparisons. But 
heuristics skips many true overlaps. Also, the order of the number of read pairs compared for 
overlaps is higher than the order of n. In the raw approach it would be n

2
 where every read is 

compared to every other read. Some assemblers have used a hybrid approach to bring the order 
down from n

2
. Here is an algorithm which works with 100% accuracy. As there is no heuristics 

involved, it is able to report all the overlaps in a given set of reads without actual string 
comparisons. It achieves this purely by querying the k-mer position data. Moreover, the number 
of read pairs compared is proportional to the number of reads present i.e. of the order of n. 
 
Keywords: Overlap Detection, De Novo Assembly, Overlap-layout-consensus, OLC Assemblers, 
DNA Sequencing, Whole Genome Shotgun Assembly. 

 
 
1. INTRODUCTION 

As the sequencing techniques advance, the assemblers need to adapt to the trend. The EULER 
assembler introduced the use of de Bruijn graphs in assembly [1]. These assemblers suffer from 
heavy memory consumption [2]. The other approach conventionally taken by some de novo 
assemblers is the overlap-layout-consensus (OLC) approach [3]. The primary difference between 
the two approaches is that de Bruijn graph is a graph with k-mers as nodes and an edge 
corresponds to k-1 characters of overlap. Whereas the read overlap graph has reads as nodes 
and edges correspond to the overlap between reads. Velvet and SOAPdenovo are examples of 
de Bruijn based assemblers [2], [4]. De Bruijn graph based assemblers suffer from the problem of 
huge memory consumption. Several solutions have been devised by assemblers to tackle the 
memory consumption issue. ABySS takes a distributed approach towards building the de Bruijn 
graph [5], [6]. Some others try representing the de Bruijn graph as a sparse graph [7], [8]. Celera, 
ARACHNE are examples of OLC assemblers [9]. 
 
The OLC assemblers typically have overlap detection among one of the initial phases. The very 
basic approach would compare every read with every other read for overlap. Thus it will require 
N

2
 comparisons. This has been optimized by assemblers. During the overlap detection phase, 

ARACHNE generates k-mers and stores along with the source read information [9]. It then sorts 
the k-mer table so that reads sharing k-mers are adjacent. Only the reads sharing some k-mers 
are considered for overlap detection. This is great improvement over the raw N

2
 comparison 

approach.  
 
This paper makes two significant advances over this approach to further improve performance. 
The only overlaps of interest are the ones that occur at the ends i.e. end of one read overlaps 
with the beginning of another read. Two reads having overlap which does not span till the end are 
of no use in read alignment. Such overlap is due to repeats in the original sequence. Bliss, the 
new algorithm proposed in this paper, segregates the k-mers in two different data structures. 
Assuming the k-mer positions in a read starting at zero, the zero

th
 k-mers of all reads i.e. the ones 

occurring in the beginning of reads, are stored separately along with the source read. There is no 
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need to store the position separately because it is zero for all of them. The other k-mers at non-
zero locations are stored in another data structure along with the source read and the position 
information. During overlap detection, the data structure of non-beginning k-mers is searched for 
reads sharing any of the k-mers at zero

th
 position. For n reads, at the most, there will be n 

beginning k-mers. A read is compared with only those reads that share its zero
th
 k-mer. Thus the 

number of read pairs compared is of the order of n. 
 
Bliss detects overlap purely by searching the k-mer position data. The other advancement made 
by Bliss is by a factor of K. Although k-mers are generated by sliding a window of size K over the 
reads, during overlap detection there is no need to slide by a position of one. Since one shared k-
mer means an overlap of K, the overlap detection can continue by advancing by K positions at 
each step. Thus it further improves the speed of overlap detection. 
 
At this point of time, error correction is beyond the scope of this algorithm. It operates post error 
correction. In future when the quality of the sequencing data becomes near accurate, algorithm 
like Bliss will certainly a play key role in further enhancing the quality of assembly as it is able to 
trap all the real overlaps unlike the heuristics based approaches. 

 
2. OVERLAP DETECTION ALGORITHM 

Bliss takes a three phase approach towards overlap detection.  
 
2.1 Phase I – k-mer Generation 
In the first phase, k-mers are generated from each read by sliding a window of size K over the 
read. The zero

th
 k-mers, that is the ones occurring at the beginning of the reads, are put in a data 

structure Z along with the source read number. The other k-mers are added to another data 
structure T along with the source read number and the position in the read. K-mers are stored by 
their unique radix-4 number and the k-mer strings are discarded [10].  This brings in space saving 
and also substitutes string comparisons by number comparisons.  
 
2.2 Phase II – Gather Read Pairs 
In the second phase, read pairs which may possibly overlap are gathered in another data 
structure P. P holds the id of first read, the index at which overlap begins in the first read and the 
id of the second read. The overlap, if it is there, always begins at position zero for the second 
read hence the index is not stored separately for the second read. 
 
Read pairs are gathered by iterating through the set Z. For each k-mer in the set Z, the set T is 
searched to extract reads that have this k-mer at some position in them. An entry is made in the 
set P of the id of the read corresponding to this shared k-mer in T, the corresponding position 
from T and the id of the read corresponding to this k-mer in Z. 
 
If multiple entries of the same read pair are present in P, then they are processed in the 
ascending order of the position so that the largest overlap is tested for first. 

 
2.3 Phase III – Filter out Read Pairs with Discontinuity in Overlap 
For each entry in P, let r1 be the id of the first read i.e. the one that came from the set T, let p be 
the corresponding position and let r2 be the id of the second read i.e. from Z.  Since the k-mer at 
index p in the first read, matches the zero

th
 k-mer in the second read, there is already an overlap 

of K characters between these reads. This overlap starts at position zero for the second read. We 
need to check if it continues till the last position in the first read.  If not, this read pair is discarded. 
To check the continuity till the last character, we start at the last k-mer in the first read and the 
corresponding k-mer in the second read. If these k-mers match, we move backward by K 
positions in both the reads at each step until there are K or less characters left at the beginning of 
the second read. These characters are covered by the zero

th
 k-mer, hence there is no need to 

again match them here. So we just report overlap and break. Checking for continuity backwards 
starting from the end of the first read has a clear advantage of eliminating false overlaps quickly 
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without requiring any additional k-mer comparisons. This is another speed improvement in the 
process of overlap detection. The maximum number of k-mers compared i.e. before reporting 
overlap in this phase is (ceil(((l – p)/K)) – 1) where l is the length of r1.The last k-mer position is 
computed for the first read by subtracting K from the read length. If k-mers in both the reads are 
not identical at any step, there is discontinuity in overlap so we break and move to the next read 
pair 
 
2.4 Algorithm 
Input:  R: {r} Set of reads 

K: k-mer length. 
Output: P: {(r1, i, r2)}.  r1 and r2 overlap from i to (l – 1) in r1 where l = length(r1)  and from 0 to (l – i 
- 1) in r2. 
Data Structures: 
T: Set of 3-tuples (kmn, rm, n) k-mer kmn occurs in read rm at n

th
 position where n != 0 

Z: Set of 2-tuples (rm, km0) km0 occurs in read rm at 0
th
 position 

P: Set of 3-tuples (r1, i1, r2) Reads r1 and r2 share a k-mer at i
th
 position in r1 and 0

th
 position in r2. 

A possible overlap between r1 and r2 may begin here. 

Phase I - Tokenization/K-mer generation 

For each rm in R,  
{ 

lm = length (rm); 
lastKmerIndex = ( lm – K); 
for (i = 0, i <= lastKmerIndex, i++) 
{ 

/* Get a substring of length K in rm starting at i, Unique number is radix-4 representation of 
this string */ 
kmi = UniqueNumber (substring(rm, i, K)) 
If (i != 0) 
{ 
 Enter (kmi, rm, i) in T; 
} 
Else 
{ 
 Enter (rm, kmi) in Z; 
} 

} 
} 

Phase II – Gather read pairs with possible overlap occurring at the end 

For each rm in (rm, km0) in Z, 
• Fetch from T, (ksv, rs, v) where ksv = km0 and (rs != rm) 
•  Enter in P (rs, v, rm) 

For multiple entries of rs and rm, (rs, x, rm) order by x ascending so that the largest overlap is 
tested for first 

Phase III – Filter read pairs with discontinuity in overlap 

For each (rs, v, rm) in P, 
{ 

ls = length (rs);  
lastKmerIndex = (ls – K); 
i = lastKmerIndex; 
j = (lastKmerIndex – v); 
 
While (j > 0) 
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{ 
 Search T for tuples (ksi, rs, i), (kmj, rm, j) where ksi = kmj 

If (found) 
{ 

  i = i – K; 
  j = j – K;   

} 
Else  /* If (!found)  - Discontinuity in overlap */ 
{ 

   Remove (rs, v, rm) from P; 
} 

}  /* While */ 
 
If (j <= 0) /* Overlap detected, remove other entries for this read pair from P */ 
{ 

 For all q > v 
  Remove from P (rs, q, rm); 

} 
 

} /* For Each */ 
 
Output P /* P contains all the overlapping read pairs */ 

 
3. DISCUSSIONS 
Bliss, by segregating zero

th
 k-mers, greatly reduces the number of comparisons. It only considers 

full overlaps for both the reads. Partial overlaps are partly discarded in the first step by this 
segregation. The rest of them are removed in the third phase. The number of k-mers looked up 
for read pair (rs, v, rm) before reporting overlap are (ceil(((l – v)/K)) – 1), where l is the length of the 
first read rs and the overlap begins at index v for the first read.  
 

The data structures need to be indexed to facilitate faster fetch. Suggested indexes are: set T 
{(kmn, rm, n)} has two indexes: one on k and the other on (r, n), set P has index on (r1, r2, i) sorted 
ascending by i for multiple entries of the same read pair. 
 
Bliss uses unique number representation of k-mers and discards k-mer strings. This further 
improves speed. 
 

Consider the values given in Table 1. 
 

K-mers Occurring at position 
zero in reads - Z 

Occurring at non-
zero position in 
reads - T 

k0 r1, r23 r13,8  ,  r12,5 , r13,22 

k1 ….. ….. 

k2 ….. ….. 
 

Table 1: Example of Shared k-mers. 
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k-mer k0 in Table 1 is at zero
th
 position in r1, r23 and non-zero position for r13, 8, r12, 5, r13, 22. For 

each row, we compare each read in set Z with each entry in set T. Thus, the pairs compared for k-
mer k0 are (r1, r13), (r23, r13) starting from 8

th
 position in r13, (r1, r12), (r23, r12) starting from 5

th
 

position in r12 and (r1, r13), (r23, r13) starting from 22
nd

 position in r13. Thus there are 6 comparisons 
done for k0. 

Figure 1 shows the k-mers compared for (rs, v, rm). In phase 3 of the algorithm, Bliss iterates for rs 
through i = v + 2K, v + K and for rm through j = 2K, K. 

 

FIGURE 1. k-mers Compared For Detecting Overlap Between Reads rs and rm. 

 

4. Number of Comparisons 
Let N be the number of reads in the given set, L be average read length and K be k-mer length. 
Thus the total number of k-mers generated in the set is (L – K + 1) * N. The probability that read 
Rx is not compared with read R1 is (1-1/((L – K + 1) * N)) 

(L - K)
. Hence the probability that Rx will be 

compared with R1 is 1 – [(1-1/((L – K + 1) * N)) 
(L - K)

]. Thus Expected number of reads that will be 
compared with R1 is (N -1) * [1 – [(1-1/((L – K + 1) * N)) 

(L - K)
]]. The total expected number of 

comparisons thus becomes N * (N -1) * [1 – [(1-1/((L – K + 1) * N)) 
(L - K)

]]. In this computation, let 
the total expected number of comparisons be N * X. The X above approaches 1 when the real 
data numbers are put in. Thus the number of comparisons approaches N.  
 

The test data had 100 (N) reads of length 30 (L) and K was 6. The expected number of 
comparisons becomes: 95. The E.Coli set had 400000 reads with average length of 230. The K 
was set to 18. Thus N = 400000, L = 230 and K = 18. Thus the expected number of read pairs 
compared becomes: 398121. 
 
In reality, all k-mers are not distinct or else there will be no overlap among reads. Thus the 
number of distinct k-mers under consideration is less than ((L – K + 1) * N) which slightly 
increases the number of comparisons and makes it approach closer to N from the lower side. E.g. 
consider an ideal case where each read has its last k-mer overlapping with the zero

th
 k-mer of 

exactly one read. The larger is the number of k-mers overlapping, the less is the number of 
distinct k-mers present. Similarly the more is the number of reads sharing the last k-mer, the less 
is the number of k-mers. As an example let’s take up a case where only the last k-mer overlaps 
and that too with only one read. This will reduce the number of distinct k-mers by N making it (L – 
K) * N. With these many k-mers in the set, the number of pairs compared for test data and E.Coli 
above become 99 and 399999 respectively i.e. the numbers are truly linear. This case we 
considered is the maximum number of k-mers present in the set with overlap present. In reality 
multiple k-mers will overlap for many read pairs and many k-mers will be present in more than 
two reads. Thus the number of distinct k-mers will further reduce.  
 
The raw approach would involve N * (N-1) comparisons which becomes 9900 and 159999600000 
for test data and E.Coli respectively. The approach taken by some assemblers where two reads 
sharing any k-mers are compared will involve N * (N -1) * [1 – [(1-1/((L – K + 1) * N)) 

(L – K + 1)
] 

(L – K + 

1)
)] comparisons. For test data and E.Coli, these numbers become 2190 and 85177107 

respectively. Clearly Bliss involves the least number of comparisons among these three 
approaches and yet reports all true overlaps. 
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5. IMPLEMENTATION AND RESULTS 
Bliss can be implemented with the data structures T, Z, P as in-memory data structures or 
persistent data structures. The indexing and data retrieval infrastructure can be implemented from 
scratch for fine tuning and better optimization or some existing infrastructure can be utilized. I 
chose persistent data structures. Also, instead of reinventing the wheel, I decided to  exploit the 
indexing and data retrieval  facilities provided by a relational data engine to implement the data 
access layer. To utilize the overlaps detected for contig generation, I supplied it with a basic 
contig generation algorithm. The contig generation algorithm halts when it cannot extend the 
contig further or if there are more than one paths avilable for extension. 
 
I implemented Bliss using MySQL database. The first phase of k-mer generation involves 
importing the reads from .fa file into the database and then generating k-mers from the reads. 
The second phase computation is saved by defining a view on the sets T and Z. The third phase 
iterates over the view to check for continuity of overlap in both the reads. The read pairs for which 
continuity exists are inserted in the read pairs’ table. The contig generation algorithm operates on 
this read pairs’ table to form contigs.  

 
Implementing indexing and data retrieval from scratch to fine-tune to the problem at hand may 
boost performance compared to relying on a relational data engine. However it trades 
performance with complexity and hence the development effort. 

 
Bliss was tested on experimental data and on single-end E. Coli data. For E. Coli, on a 2 GB, 
quad-core machine with 32 bit OS, Bliss took approximately 6 hours to output contigs. 

 
Some of the database level optimizations done are as mentioned here. These MySQL 
parameters were optimized: innodb_buffer_pool_size was set to 1024M, key_buffer_size to 64M, 
table_open_cache to 4000, table_definition_cache to 4000. To improve performance, minimal 
required indexes were defined. Inserts, updates, deletes were done in bulk wherever possible. 
Foreign key constraints were removed. Large tables were partitioned.  

 
Another in-memory optimization done in the third phase was to fetch all the k-mers for the given 
pair of reads at the given indexes in one shot. The k-mers from one read were bitwise XORed 
with their counterparts in the other read. The results were then bitwise ORed to get a single 
number. If this number is zero, it means all the k-mers match and there is true overlap between 
the read pair else there is no overlap. 

 
6. CONCLUSION AND FUTURE SCOPE 
Bliss is a simple overlap detection algorithm. It uses a hybrid approach of k-mer generation 
followed by read overlap detection. It significantly reduces the number of comparisons for overlap 
detection by segregating zero

th
 k-mers from the others. It detects the overlap by searching the k-

mer position data. While detecting overlap, it advances in steps of K in backward direction to 
speed up the process. 
 
Since there is no heuristics involved Bliss offers 100% accuracy. All the overlaps in a given set of 
reads are correctly reported by Bliss. 
 
The data structures can be in-memory or persistent and may use custom indexing and data 
retrieval infrastructure. If implemented on a relational data engine, several database level 
optimizations may be done for performance. 
 
Bliss can be extended to include single bit error correction and multiple bit error trapping by 
analyzing the sequence of differing k-mers between two reads. 
 
When run post error correction, bliss reports all the overlaps present in the given set of reads. 
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