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Abstract 
 
Gaussian linear Bayes classifier is one of the most popular approaches for classification. 
However, it is not so popular for cancer classification using gene expression data due to the 
inverse problem of its covariance matrix in presence of large number of gene variables with small 
number of cancer patients/samples in the training dataset. To overcome these problems, we 
propose few top differentially expressed (DE) genes from both upregulated and downregulated 
groups for binary cancer classification using the Gaussian linear Bayes classifier.  Usually top DE 
genes are selected by ranking the p-values of t-test procedure. However, both t-test statistic and 
Gaussian linear Bayes classifier are sensitive to outliers. Therefore, we also propose outlier 
modification for gene expression dataset before applying to the proposed methods, since gene 
expression datasets are often contaminated by outliers due to several steps involves in the data 
generating process from hybridization to image analysis. The performance of the proposed 
method is investigated using both simulated and real gene expression datasets. It is observed 
that the proposed method improves the performance with outlier modifications for binary cancer 
classification. 
 
Keywords: Gene Expression, Outlier Modification, Top DE Genes Selection, Binary 
Classification, Gaussian Bayes Classifier, Misclassification Error Rate (MER). 

 
 
1. INTRODUCTION 

The classification of patient samples into one of the two classes (normal/cancer) using their gene 
expression profile is an important task and has been attracted widespread attention [1-3]. The 
gene expression profiles measured through DNA microarray technology provide accurate, reliable 
and objective cancer classification. It is also possible to uncover cancer subclasses that are 
related with the efficacy of anti-cancer drugs that are hard to be predicted by pathological tests [3-
5]. Previously, cancer classification has always been morphological and clinical based but they 
are reported to have several limitations in diagnostic ability [6-9]. The recent advent of microarray 
technology has allowed the simultaneous monitoring of thousands of genes, which motivated the 
development in cancer classification using gene expression data. For the last few years, 
classification problem using gene expression has been extensively studied by researcher in the 
area of statistics, machine learning and databases [10-15]. In order to gain a better insight into 
the problem of cancer classification, systematic approaches based on global gene expression 
analysis have been proposed [16-18]. A number of methods have been proposed for cancer 
classification with promising results based on gene expression datasets, such as the decision 
tree, support vector machine (SVM), linear discriminant analysis (LDA), Bayesian network [19-
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21]. Though Gaussian Bayes classifier is one of the most powerful statistical approach for 
classification, but it is not so popular for cancer classification based on gene expression data due 
to the inverse problem of its covariance matrix in presence of large number of gene variables with 
small number of cancer patients/samples in the training gene expression dataset. To overcome 
these problems, our proposal is to use few informative genes/features to train the Gaussian 
Bayes Classifier.  
 
A gene expression dataset is very different from any of the other datasets. It has very high 
dimensionality, usually contains hundred thousands of genes with very small sample size. Most 
genes in the dataset are irrelevant to cancer distribution. From these points of views, relevant 
gene selection prior to cancer classification is essential. In fact, relevant gene selection removes 
a large number of irrelevant genes, which improves the classification accuracy. The feature 
selection algorithms are considered to be an important way of identifying crucial/relevant genes 
for classification. There are three types of feature selection algorithms (filtering/wrapper 
/embedded) exist in the literature [22-28]. The disadvantage of wrapper and embedded feature 
selection approaches than the filtering approaches, are computationally intensive, classifier 
dependent selection and higher risk of over fitting. The advantages of filtering techniques [27-28] 
are (i) they are easily scalable to very high-dimensional datasets (ii) they are computationally 
simple and fast, and (iii) they are independent of the classification algorithm. As a result, feature 
selection needs to be performed only once, and then different classifiers can be evaluated. 
Therefore, in this paper we consider filtering approach to select few top differentially expressed 
(DE) genes from both upregulated and downregulated groups for binary cancer classification 
using linear Bayes classifier in this paper, since equally expressed (EE) gene has no significant 
contribution to the minimization of misclassification error rate (MER). There are some filtering 
approaches [27,28] for selection of important features/genes from top ranked genes detected by 
t-test or ANOVA approaches. However, both t-statistic and linear Bayes classifier are sensitive to 
outliers. Therefore, in this paper, we would like to propose outlier modification for gene 
expression dataset before gene selection and cancer classification using t-statistic and linear 
Bayes classifier, respectively, since gene expression datasets are often contaminated by outliers 
due to several steps involves in the data generating process from hybridization to image analysis. 
  
We organized this paper as follows. In section 2, we formulate the linear Bayes classifier and the 
proposed method for binary cancer classification (normal/cancer). In section 3, we described the 
results of the simulated and real gene expressions datasets. Finally, we end this paper with a 
conclusion.  

 
2. FORMULATION OF GAUSSIAN LINEAR BAYES CLASSIFIER FOR 

BINARY CANCER CLASSIFICATION 
Suppose we have a training gene expression dataset  obtained from n1 normal patients and n2 
cancer patients with p genes, where the column vector xjt consist of expressions of p genes (t = 
1, 2,…, nj).  Here the problem is to classify a new patient having the vector x = (x1, x2, ..., xp)

T
 of 

expressions with p genes (known as test vector) into one of m=2 groups (normal/cancer) 
corresponding to two populations Π1 and Π2, respectively. Two solve this problem using Gaussian 
Bayes classifier, let a training data vector xjt follows Gaussian density function fj(xj) =N (xj |μj ,Vj ), 
where μj is the mean vector and Vj is the covariance matrix for this population (t = 1, 2, ..,nj,  j = 1, 
2). If the test vector x originates randomly from one of this m=2 populations, then it follows the 
mixture of m=2 multivariate normal distributions as follows 
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To formulate the Bayesian classifiers, the space of all observations is divided into m mutually 
exclusive regions Rj , (j = 1, . . .,m). The classification region Rj with the cost of misclassifying an 
observation from Πj  as from Πi  is defined for classifying x to the population Πj as follows: 
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Where C(i | j) is the cost of misclassifying an observation from Πj  as from Πi  and 
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which is known as quadratic Gaussian Bayes classifier. If the parent populations have the same 
covariance matrix (i.e., V1 = V2 = V), the quadratic classifier reduces to the Gaussian linear Bayes 

classifier as follows  
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This is also simply known as linear discriminant analyzers (LDA). It is also coinciding with Fisher's 

linear discriminant analyzers (FLDA). If x originate from Πi, then ijU  is distributed 
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The classification regions Rj, (j=1, 

2,…,m) as defined in (Eq. 3) minimize the expected cost of misclassification (ECM) defined by  
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When C(j|i) = 1 for i ≠ j , the ECM reduces to the total probability of misclassification (TPM) and 
classification results can be obtained based on posterior probabilities (Eq. 2) only. If the mixing 
proportions qj's and the cost of misclassifications C(j|i) for i ≠ j are unknown, we can roughly 
assume qj=1/m for all j and  C(j|i) = 1 which implies λij = 0 for j≠ i in (Eq. 3). Also the value of the 
threshold λij can be determined to sufficient accuracy by a trial-and-error method using the 
asymptotic distribution of Uij(x). For detail discussion, please see [26]. The maximum likelihood 
estimators (MLEs) for the Gaussian parameters μj and Vj for all j are as follows 
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If we assume that the parent populations have the same covariance matrices (i.e., V1 = V2 = V), 

then the estimated covariance matrices jV̂  are combined (pooled) to derive a single estimate of 

V that is used in (Eq. 5) as follows. 
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We observe that quadratic (Eq.4) and linear (Eq.5) Bayes classifiers need to compute the inverse 
of group covariance matrices and pooled covariance matrix, respectively.  So number of 
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genes/variables ‘p’ should be smaller than min(n1,n2)  and max(n1,n2) for quadratic and linear 
Bayes classifier, respectively to solve the problem of matrix inversion. However, in the gene 
expression dataset the number of genes ‘p’ usually very much larger than both sample size n1 

and n2. So binary cancer classification is difficult by the linear Bayes classifier using all genes as 
feature variables, though it is one of the most popular statistical classifier. To overcome this 
problem, we consider only the important features/genes to train the Bayes classifier, since  
classification does not depends on all feature variables. There are some discussions of feature 
variable selection for classification in the literature [11, 14, 22-28]. However, they did not consider 
the problems of outliers in the dataset. So the existing approaches sometimes produce 
misleading results. Therefore, in this paper we consider outlier modification and relevant gene 
selection for cancer classification with maximum accuracy using linear Bayes classifier as 
discussed in the next subsection 2.1. 

 
2.1 Outlier Modification and Gene Selection for Binary Cancer classification using 
Gaussian Linear Bayes Classifier (Proposed) 
Microarray gene expression datasets are often contaminated by outliers due to several steps 
involve in the data generating process from hybridization to image analysis. There are two types 
of statistical approaches for data analysis in presence outliers [29,30]. Type-I is the application of 
robust algorithms on the contaminated datasets and Type-II is the application of classical 
algorithms on the modified/reduced datasets obtained by removing outliers from the original 
contaminated datasets or replacing outlying components with the appropriate values. In this 
paper, we propose Type-II approaches by replacing outlying components with the appropriate 
values and application of classical t-test to select top DE genes for the linear Bayes classifier as 
follows:   
 
(i)  Select one of several approaches for detection of univariate outliers [31,32]. In our current 
problem, we consider inter-quartile range (IQR) rule for identification of outliers. If Q1 and Q3 are 
the lower and upper quartiles respectively, then IQR is defined by IQR= Q3 – Q1 . Then an 
observation is said to be an outlier if it does not belongs to the interval  [Q1 – β × IQR,  Q3 + β × 
IQR]  for some non-negative constant  β, where we usually use β =1.5.   
  
 (ii) Check the existence outliers for each gene from both patients groups (normal/cancer) 
separately from the training dataset using IQR rule. If outlier exist, replace outliers by their 
respective group medians.  
  
(iii) Apply t-test in the modified training dataset to identify differentially expressed (DE) genes. 
Then arrange the genes from top DE genes by ranking the p-values of t-test.   
 
(iv) Select top k < max(n1, n2) genes out of p genes from both patterns of DE genes 
(upregulated/downregulated) and estimate the linear Bayes classifier using the expressions of 
these top k genes.    
 
(v) To check the existence of outlying component in the test data vector ‘x’ with respect to the top 

k genes using IQR rule, compute .2,1),ˆ( == jabsj jμμμμxxxxdddd -
 

If there is no any outlying 

component in dj, then the test data vector ‘x’ is said to be usual/uncontaminated. Otherwise, it is 
said to be unusual/contaminated.  
 
(vi) If the test data vector ‘x’ is not contaminated by outliers, we compute Gaussian Bayes 
classifier as defined in (Eq. 5) using  the MLEs       based on the modified 
training dataset, since the training dataset also might be contaminated by outliers. If the test data 
vector x is detected as a contaminated/outlying vector, our proposal is to classify it as follows. 
Arrange the values of dj from (iv) in ascending order such that dj(1)  ≤  dj(2) ≤ … dj(k) for both j=1,2. 
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Also classification result of x can be obtained using the posterior probability (Eq. 2) by replacing 
k-r outlying values of x corresponding to the largest k-r values of dj by the corresponding 
estimated mean values from the mean vector μj. This approach can tolerate up to (k-r) outlying 
values of the data vector x. For example, if we choose r = k/2, then this approach can tolerate up 
to k-r = k/2 outlying values in the data vector x.  

3.   SIMULATED AND REAL GENE EXPRESSION DATA ANALYSIS 
To investigate the performance of outlier modification for gene selection and cancer  classification  
by the t-test and the Gaussian linear Bayes classifier respectively, we analyzed both simulated 
and real gene expression datasets in both absence and presence of outliers .  
 
3.1   Simulated Gene Expression Data Analysis 
We generated three types artificial gene expression datasets using the data generating model as 
described in figure 1 with µ =  0.5, 1.0 and 2.0 and common variance σ

2 
= 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 1: Schematic drawing of artificially generated gene expression data. The generated dataset will 
consist of three patterns of gene expressions. Pattern 1 contains p1 genes. For each gene, n1 expressions 
are generated for normal patients with Gaussian density N (+µ, σ

2
) and n2 expressions for cancer patients 

with density N (-µ, σ
2
). Pattern 2 contains p2 genes, where n1 expressions are generated for normal patients 

with density N (-µ, σ
2
) and n2 expression for cancer patients with density N (+µ, σ

2
), for each gene. Pattern 3 

consists of p3 genes, where expressions of each gene are generated for both normal and cancer patients 
with density N (0, σ

2
). 

 
Each dataset contains p =100 genes of which p1=10 DE genes of pattern 1, p2=10 DE genes of 
pattern 2 and p3 = 80 EE genes of pattern 3. Each gene is generated with N =408 sample 
expressions of which N1=204 expressions are generated from normal patients and N2=204 
expressions are generated from cancer patients. Then we construct training and test datasets 
from each dataset by choosing n1 =N1/2=102 random samples from N1 =204 normal patients and 
n2 =N2/2=102 random samples from N2 =204 cancer patients for the test dataset. The rest of the 
patients belong to the training dataset. Then we contaminated 5%-10% patients with 30% genes 
in both training and test datasets by outliers.  Then we computed both training and test MER for 
both the classical and proposed methods with respect to the increasing number of top DE genes 
as feature variables.  We repeated this procedure 200 times and calculate the average of training 
and test MER. Figures 2 (a1, b1, c1 and d1) represent the average training and test MER against 
the number of top DE genes with µ =0.5, 1.0 and 2.0 respectively for the classical method. 
Figures 2 (a2, b2, c2 and d2) represent the average training and test MER against the number of 
top DE genes with µ= 0.5, 1.0 and 2.0 respectively for the proposed method. It is observed that 
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the proposed method produces much smaller MER than the classical method with top DE genes 
for each case of µ= 0.5, 1.0 and 2.0. It is also observed that the proposed method produces 
smallest test MER (almost close to 0%) with the numbers 20, 10 and 2 of top DE gens for the 
case of µ= 0.5, 1.0 and 2.0, respectively. So we can consider only top two DE genes for binary 
cancer classification using Gaussian linear Bayes classifier when sample size is small (for 
example, n1=n2=3) when µ grater than 2. Therefore, this result suggest to use  k < max(n1, n2) 
top DE genes to overcome the inverse problem of Gaussian linear Bayes classifier.  

  
FIGURE 2:  Plots of average MER against the number of top DE genes in presence of 5%-10% 
contaminated patient samples with 30% genes in each of training and test 200 datasets. Datasets are 
generated using the data generating model described in figure 1. (a1-a2) Average MER for classical (without 
outlier modification)  and proposed (with outlier modification)  methods respectively, with µ=0.5 and σ

2
=1. 

(b1-b2) Average MER for classical and proposed methods respectively, with µ=1.0 and σ
2
=1.  (c1-c2) 

Average MER for classical and proposed methods respectively, with µ=2.0 and σ
2
=1. 
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Again we generated 3 types of artificial gene expression datasets using µ = 0.5, 1.0 and 2.0 and 
common variance σ

2 
= 1 as before in the data generating model. Each dataset contains p =1000 

genes of which p1=50 DE genes of pattern 1, p2=50 DE genes of pattern 2 and p3 = 900 EE 
genes of pattern 3. Each gene is generated with N =12, 20, 40, 60 and 80  sample expressions of 
which N1=6, 10, 20, 30, 40  expressions are generated from normal patients and N2=6, 10, 20, 
30, 40 expressions are generated from cancer patients respectively for each cases of µ =0.5, 1.0 
and 2.0. Then we construct training and test datasets from each dataset by choosing  n1 =N1/2=3, 
5, 10, 15, 20 random samples from N1 normal patients and n2 =N2/2=3, 5, 10, 15, 20 random 
samples from N2 cancer patients for the test dataset, respectively. The rest of the patients for 
each case belong to the respective training dataset. Then we contaminated 5%-10% patients with 
30% genes in both training and test datasets by outliers for each case.  Then we computed both 
training and test MER for both the classical and proposed methods for each case. We repeated 
this procedure 200 times and calculate the average of training and test MER for each case. Table 
1 represent the average values of training and test MER with sample sizes (n1, n2): (3, 3), (5, 5), 
(10,10), (15, 15) and (20, 20) for each value of µ = 0.5, 1.0 and 2.0, respectively. It is obviously 
seen that both training and test MER becomes smaller with k< max(n1, n2) top DE genes for the 
proposed method than the classical method using the Gaussian linear Bayes classifier. 
 

 
TABLE 1: Training and test average MER for k= top DE genes such that k < max (n1, n2) with    each case 
of µ =0.5, 1.0 and 2.0, respectively for both classical (without outlier modification) and proposed (with outlier 
modification) methods. 

Sample 
Size      

(n1, n2 ) 

Number of 
Top DE 

genes (k) 

µ=0.5 and σ
2 
=1 

Classical Method Proposed Method  
MER.Tr MER.Test MER.Tr MER.Test 

(3, 3)           2 8.3333 18.3333 0.83333 5.0000 

(5, 5) 4  4.0000 18.5000 0.0000 4.5000 

(10, 10) 9 0.7500 7.7500 0.0000 4.2500 

 (15, 15) 14 0.5000 5.3333 0.0000 3.6666 

(20, 20) 19 1.6250 10.1250 0.0000 2.0000 

Sample 
Size      

(n1, n2 ) 

Number of 
Top DE 

genes (k) 

µ=1.0 and σ
2 
=1 

Classical Method Proposed Method 

MER.Tr MER.Test MER.Tr MER.Test 

(3, 3) 2 4.6666 12.0000 0.0000 1.8333 

(5, 5) 4 2.0000 8.4000  0.0000 1.5000 

(10, 10) 9 0.8000 2.8000 0.0000 0.2500 

(15, 15) 14 0.2666 3.6000 0.0000 0.1666 

(20, 20) 19 2.0000 6.5000 0.0000 0.0000 

Sample 
Size      

(n1, n2 ) 

Number of 
Top DE 

genes (k) 

µ=2.0 and σ
2 
=1 

Classical Method Proposed Method 

MER.Tr MER.Test MER.Tr MER.Test 

(3, 3) 2 5.0000 10.8333 0.0000 0.2500 

(5, 5) 4 2.5000 9.0000 0.0000 0.0500 

(10, 10) 9 0.0000 3.0000 0.0000 0.0000 

(15, 15) 14 0.1666 3.1666 0.0000 0.0000 

(20, 20) 19 1.6250 7.1250 0.0000 0.0000 
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Classical Method Proposed Method 

 
 

  

  

FIGURE 3: Simulated gene expression data analysis for a comparison between classical and proposed 
methods. Dataset is generated using the data generating model described in figure 1 with parameters µ=0.5 
and σ

2
=1. (a) Unobservable original structure of gene expressions with normal and cancer patients, where 

normal and  cancer patients are labeled with Ni and Cj  respectively for  i=1, 2,,…, n1  and  j=1,2,…,n2.  (b) 
Test data obtained from (a) with outliers.  (c) Training data obtained from (a) with outliers. (d) Modified 
training data obtained from (c) by replacing outlying observation for each gene by their respective group 
(normal/cancer) median values. (e) Ordered training DE genes obtained by ranking the p-values of t-test for 
each gene in the training dataset. (f) Ordered training DE genes obtained by ranking the p-values of t-test for 
each gene in the modified training dataset. (g) Classification of test patients using 6 top DE genes obtained 
from (e) with outlier (classical method). (h) Classification of test patients using 6 top DE genes obtained from 
(f) by outlier modification (proposed method). 
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For motivation of the proposed approach, we have generated a simple artificial gene expression 
dataset with µ = 2.0 and variance σ

2 
= 1 as before. This dataset contains p =20 genes of which 

p1=3 DE genes of pattern 1, p2=3 DE genes of pattern 2 and p3 = 14 EE genes of pattern 3. Each 
gene is generated with N =18 sample expressions of which N1=9 expressions are generated from 
normal patients and N2=9 expressions are generated from cancer patients. This dataset is 
visualized using Figure 3(a). Then we constructed training and test datasets from that dataset by 
choosing n1=3 normal patients randomly from N1=9 normal patients and n2 = 3 cancer patients 
randomly from N2=9 cancer patients for the test dataset. The rest of the patients belong to the 
training dataset. Then we contaminated 10% patients with 30% genes in both training and test 
datasets by outliers. Both test and training datasets are visualized using Figures 3(b) and 3(c) 
respectively. Then we detect outlying components for each gene in each group using IQR rule in 
the training dataset and replace outlying observations for each gene by their respective group 
(normal/cancer) median values. Then we call this dataset as the modified training dataset (Figure 
3(b)). Then, we apply t-test on both the training datasets to obtain the ordered top DE genes 
using p-values. Figures 3(e-f) visualize the ordered genes for both the training datasets, 
respectively. Then we select k = 6 < max (n1, n2) top DE genes from each of the ordered training 
dataset to construct the Gaussian Bayes classifier. Then we select those k=6 top DE genes from 
the test dataset also for the classification of test patients. Figures 3 (g-h) show the patient 
classification results by the classical and proposed method respectively. We observe that the 
patient C1 is not correctly classified based on the 6 top DE genes selected by the classical 
method, while all test patients are correctly classified based on the 6 top DE genes selected by 
the proposed method. So, we may conclude that the Bayes classifier is controlled by only the top 
DE genes. From this point of view, we can overcome the inverse problem of variance-covariance 
matrix for the Gaussian Bayes classifier by using the small number k = 5 < max (n1, n2) of top DE 
genes.  
 
3.2 Example of Real Gene Expression Data Analysis 
To investigate the performance of the proposed method with the real gene expression datasets, 
we consider two publicly available microarray gene expression datasets (i) head and neck cancer 
dataset which is previously analyzed in [26, 27] and (ii) Colon cancer dataset which is previously 
analyzed in [28, 29]. These datasets can be downloaded from the web links 
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6631 and in the R-package 
‘plsgenomics’, respectively.  The head and neck cancer dataset consists of p=12625 genes with 
N=44 samples having N1=22 normal and N2=22 cancer individuals/patients. We constructed 200 
bootstrap training and test datasets from this dataset by choosing n1=10 random samples from N1 

=22 normal patients and n2 = 10 random samples from N2 =22 cancer patients with replacement 
for each training dataset and the rest of the patients belong to the respective each test dataset. 
Then we computed both training and test average MER using both classical and proposed 
methods with respect to top 2, 4, 6, 9 genes respectively. It is seen that both method produces 
smaller test average MER with top 6 genes, where the proposed method produces smallest test 
MER (see Table 2).  Then we analyzed the colon cancer dataset. This dataset contains p=2000 
genes with N=62 samples having N1=22 normal and N2=40 cancer individuals/patients. We 
constructed 200 bootstrap training and test datasets as before from this colon cancer dataset by 
choosing n1=10 random samples from N1 =22 normal patients and n2 = 10 random samples from 
N2 =40 cancer patients with replacement for each of the training dataset. The rest of the patients 
belong to the respective each test dataset. Then we computed both training and test average 
MER using both classical and proposed methods with respect to top 2, 4, 6, 9 genes respectively 
as before. It is seen that both method produces smaller test MER with top 4 genes, where the 
proposed method produces smallest test MER (see Table 2) in this case also.   
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TABLE 2: Bootstrap training and test average MER for the classical (without outlier modification) and the 
proposed (with outlier modification) methods  with respect to top k=2, 4, 6 and 9 DE genes for the real (i) 
head and neck cancer (ii) colon cancer gene expression datasets. The MER results with first bracket (.) 
indicate the results of the proposed method.  

 
4.   CONCLUSION 
Cancer classification using gene expression data is one of the major research areas in the 
medical field. Accurate cancer classification has great value to cancer treatment and drug 
discovery. There exist some computational algorithms for cancer classification. However, most of 
them are sensitive to outlying gene expression data. To overcome this problem, we proposed 
outlier modification based linear Bayes classifier which is one of the most popular approaches for 
classification. Our proposed method has shown that it is a simple efficient yet accurate approach 
for binary cancer classification problems. The precision of proposed approach is comparable to 
others such as SVM, however, the time consumption of this approach is much less than other 
approaches. Support vector machines (Vapnik, 1998) cannot be easily extended to multiclass 
cancer classification problem because the elegant theory behind the use of large margin 
hyperplanes, whereas, our proposed approach can be easily used for multiclass classification 
that we will show in our next paper. However, it has another problem for cancer classification 
using the modified gene expression data due to the inverse problem of its covariance matrix in 
presence of large number of gene variables with small number of cancer patients/samples in the 
training dataset. To overcome these problems, we propose few top differentially expressed (DE) 
genes from both upregulated and downregulated groups for binary cancer classification using 
linear Bayes classifier. Top DE genes are selected by ranking the p-values of t-test procedure. 
The performance of the proposed method is investigated using both simulated and real gene 
expression datasets. It is observed that the proposed method improves the performance with 
outlier modifications for binary cancer classification. However, there are several future research 
directions with this work. In our next project, we would like to extend the proposed method for 
multiclass cancer/disease classification and compare with other existing methods.   
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