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Abstract 
 
This paper describes a lightweight, scalable model that predicts whether a Dutch verb ends in -d, 
-t or -dt. The confusion of these three endings is a common Dutch spelling mistake. If the 
predicted ending is different from the ending as written by the author, the system will signal the 
dt-mistake. This paper explores various data sources to use in this classification task, such as the 
Europarl Corpus, the Dutch Parallel Corpus and a Dutch Wikipedia corpus. Different architectures 
are tested for the model training, focused on a transfer learning approach with ULMFiT. The 
trained model can predict the right ending with 99.4% accuracy, and this result is comparable to 
the current state-of-the-art performance. Adjustments to the training data and the use of other 
part-of-speech taggers may further improve this performance. As discussed in this paper, the 
main advantages of the approach are the short training time and the potential to use the same 
technique with other disambiguation tasks in Dutch or in other languages. 
 
Keywords: NLP, Dutch, AI, Spelling Correction, Transfer Learning. 

 
 
1 INTRODUCTION 
1.1 Goal 
This paper describes a machine learning approach to predicting whether a Dutch verb ends in -d, 
-t or -dt. The first section provides background information about this topic. The following sections 
give an overview of the used data sets and the different models that were used during training. 
The last section discusses strong and weak points of this paper's approach.

1
 The methodology is 

deductive, as I started from a theoretic point of view (fast and lightweight neural networks) and 
brought this into practice. Real mistakes from students were used for analysis purposes. 
 
The paper can be linked to other entries in the International Journal of Computational Linguistics, 
regarding spell checkers [1], verb analysis [2] and stemming algorithms [3]. 
 
1.2 Grammatical Error Detection 
Most of the work in the NLP field regarding grammatical error detection focuses on general 
systems and on determining whether or not a sentence is grammatical. Examples include Liu & 
Liu [4] and Li et al. [5]. Rather than designing an all-purpose grammatical error detection system, 
this project aims to address one specific problem. An additional complicating factor is that most of 
the work undertaken is tailored to the specifics of English. The few studies on Dutch do not adopt 
the general approach; instead, they focus on one specific problem, similar to this article. Heyman 

                                                 
1 This project was undertaken against the backdrop of an internship at Reimagine, a Brussels-based AI start-up. 
Because of this, the code used during the project cannot be made available, being property of the company. The 
test data was provided by ILT (Instituut voor Levende Talen), which commissioned the project as future part of a 
writing assistant for secondary school students. . I would like to thank my colleagues at Reimagine, especially 
Ferre Jacobs and Toon Lybaert, who provided useful insights for this article. I would also like to thank Alek 
Keersmaekers, Toon Van Hal and Liesbeth Augustinus for their proofreading and valuable guidance. 
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et al. [6] also worked on dt-mistakes, while Allein et al. [7] provided a model that disambiguates 
die and dat.  Dt-mistakes will be discussed in more detail in the next section. 
 
The first grammatical error detection systems built were rule-based. However, writing such 
manual rules is very time-consuming, does not generalise well and does not capture more 
complex phenomena like long-distance dependencies [8]. Up until recently, a statistical approach 
with n-grams in large corpora was used to solve this issue. Data sparsity forces the n-gram 
approach to work with large data sets such as the Google n-gram corpus [9]. These models need 
to run on expensive high processing computing systems due to their large size. Additionally, the 
n-gram approach still has problems capturing more complex phenomena like long-distance 
dependencies [8]. Heyman et al. [6] referred to an approach in which a word-based classifier is 
trained per word pair that can give way to a dt-mistake (e.g. gebeurd and gebeurt). However, this 
approach does not generalise well, as the system does not learn the actual dt-rule. 
 
Nowadays, neural network models are considered to be better equipped to perform such error 
detection tasks. These models have the capability to model complex sentences containing, for 
example, many long-term dependencies [10]. 
 
1.3 The Dutch dt-rule 
Dutch regular verbs adhere to the following conjugation rules, as illustrated in Table 1. In this 
table, the first six rules are considered dt-rules in a narrow sense. Rules 1-11 can be seen as the 
dt-rules in a broader sense, as they involve endings other than just -d, -t and -dt. 

 

TABLE 1: An overview of the Dutch dt-rules, cited from Heyman et al. [6]. 

 
In Dutch, -d at the end of a word is pronounced as unvoiced -t, which explains why there is no 
audible distinction between words such as rat ('rat') and rad ('wheel'). When the stem of the verb 
ends in -d, confusion arises. The first person singular ends in -d, e.g. ik word ('I become'), but in 
the second and third person singular present, the ending -t is added to the stem, e.g. hij wordt 
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('he becomes')
2
. The -dt at the end of a word, which occurs when a stem ending in -d receives the 

verb ending -t, also has an unvoiced pronunciation. Verhaert & Sandra [11] argued that the root 
cause of dt-mistakes is so-called homophone dominance. This means that the writer will choose 
the most frequent form of a verb, when put under stress or when distracted. 
 
Another cause underlying many dt-mistakes is the inversion rule for second person singular. 
Normally, this point of view has an ending in -t, but when the sentence is inversed (e.g. in a 
question), there is no such ending. This can be illustrated with examples 1 and 2 [12]: 
 

1. Jij beantwoordt haar vraag.   
You answer her question.'      

2. Beantwoord je haar vraag?   
'Do you answer her question?'      

3. Beantwoordt je moeder haar vraag?   
'Does your mother answer her question?'   

 
Furthermore, the second person singular personal pronoun jij also has the phonetically weakened 
form je. However, the second person singular possessive pronoun jouw has the same 
phonetically weakened form je, e.g. jouw/je moeder ('your mother'). In non-inverted sentences, 
this does not cause any problems, as the endings for the second and third person singular are 
the same. However, in inverted sentences such as questions, the ending differs. This is illustrated 
in examples 2 and 3 [12]. 
 
A third cause of dt-mistakes lies in the past participle, which is regularly formed by adding a prefix 
'ge-' to the verb stem and a suffix. The suffix is -t when the verb stem ends in an unvoiced 
consonant, but it is -d when the verb stem ends in a voiced consonant. For example, the verb 
suizen, meaning 'to whiz', does not have the predicted stem 'suiz'; rather, it has the stem 'suis'. 
The underlying stem 'suiz' is used to determine the ending, resulting in the participle gesuisd and 
not 'gesuist' [12].   
 
Another category of participle-based dt-mistakes occurs when the past participle is irregularly 
formed. For example, when a verb stem already starts with 'ge-', the past participle prefix 'ge-' is 
dropped. When the verb stem ends in a voiced consonant, the participle ends in -d, while the 
second and third person singular present forms end in –t [12]. 
 

4. Hij getuigt tegen mij.   
'He testifies against me.'      

5. Hij heeft tegen mij getuigd.   
'He has testified against me.'  

 
Finally, the difference between context-dependent and context-independent mistakes needs to be 
stressed. All previous examples are prone to context-dependent mistakes, as the different forms 
of the verb all exist in Dutch but in different contexts. However, it is also possible to make a 
context-independent mistake and create a non-existent form. An example from the test data is hij 
duwd, a non-existent form, instead of hij duwt ('he pushes').   
 
1.4 Previous Work by Heyman et al. [6] 
Heyman et al. [6] focused on context dependent dt-mistakes, while this paper aims to cover both 
context dependent and context independent errors. While it is theoretically possible to use a 
dictionary lookup for these context independent mistakes, it is convenient that the model is able 
to predict these as well, as this reduces the amount of memory needed. 
 
Another difference is that Heyman et al. created a system to introduce mistakes in a text to later 
correct them. In this paper, for the training data, we have used data without mistakes, as the 

                                                 
2 Phonetically, both forms can be transcribed as follows: /ʋɔrt/ 
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model only trains on predicting the right ending. For the test data, we did not insert mistakes in a 
text with an algorithm. Instead, I searched for texts containing actual mistakes and focused on 
sentences written by students. If the model's prediction was different from a student’s written verb 
ending, a signal was given that the form may be incorrect. 
 
The architecture of the models also differs. This paper makes use of the ULMFiT approach with 
an AWD-LSTM network, which is a regular LSTM network with tweaked hyperparameters. 
Heyman et al. used a custom engineered setup, consisting of a context encoder and a verb 
encoder, concatenated in a feed-forward neural network (FFNN). The final probability is 
computed using a softmax function over the FFNN-layer. A visualisation of Heyman et al.'s model 
is shown in Figure 1. Another difference between the two approaches lies in the use of part-of-
speech taggers. Heyman et al. used TreeTagger [13], while I used spaCy's PoS tagger [14]. This 
decision was primarily made because the commissioning institute (ILT) already works with spaCy, 
thus making the final implementation easier. It is possible that spaCy's PoS tagger missed some 
verbs, which are thus not present in the data. In the meantime, the model aimed to accurately 
predict the ending of the detected verbs. In this implementation, a verb was considered correct if 
the written ending was the same as the model’s predicted ending. Otherwise, the verb was 
considered to be incorrect. 
 

 
FIGURE 1: A visualisation of the model used by Heyman et al. [6]. 

 
As mentioned above, there is a difference between dt-mistakes in the narrow sense (confusing -
d, -t and -dt), and dt-mistakes in the broad sense (adding -de, -dde(n), -te, -tte(n) etc.). Heyman 
et al. [6], working on the broad sense, experienced some trouble with the multitude of labels, 
causing them to drop infrequent labels such as the past plural forms (number 9 in Table 1). As 
mistakes in the narrow sense are in absolute numbers much more frequent than mistakes in the 
broad sense, we decided to focus on the core task of discerning -d, -t and -dt. Furthermore, the 
broad sense is harder to grasp completely, as some minimal pairs show the doubling of vowels 
as well (e.g. vergrote, vergrootte ('enlarged')). However, it should be possible to train another, 
separate model that corrects all possible mistakes in the broad sense. We leave that problem for 
further research. 
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2 DATA 
2.1 Training Data 
Three main data sets were used for training: the Europarl corpus, the Dutch Parallel Corpus 
(DPC) and a corpus made from Dutch Wikipedia articles. The development data used during the 
training of the models stemmed from the random selection of 20% of the sentences in the training 
data. A detailed description of the data is included in the appendix in Table 5. 
 
2.1.1 Europarl Corpus 
The Europarl corpus [15] collects the proceedings of the European Parliament and is available in 
several languages, including Dutch. Professionals created this corpus, which means that the 
quality of the text data is assured. However, the domain variation is limited, both in content, as 
only politics are covered, and on a grammatical level, as there are few verbs found in the second 
person. To filter out a first wave of sentences with no verbs ending in -d, -t or -dt at all, I used a 
subset of Heyman et al.’s [6] Europarl corpus in which each sentence contains at least one verb 
ending subject to the Dutch dt-rule in its broad sense. 
 
I altered the data set by evening out the counts of -d, -t and -dt. As -dt occurs less than -d and -t 
(between 5% and 10% of the cases, depending on the data set), it was difficult for the model to 
predict the dt-cases. This data alteration was also performed on the other two corpora, described 
infra. 
 
2.1.2 Dutch Parallel Corpus 
The Dutch Parallel Corpus (DPC) [16] is a multilingual parallel corpus. It consists of parallel texts 
in Dutch, English and French. The main goal of the corpus is to provide material for multilingual 
tasks such as machine translation, but it is also possible to use a corpus containing only one 
language. An advantage of the DPC is that it covers a wide range of domains, although the total 
size of the corpus is significantly smaller than the Europarl corpus. 
 
2.1.3 Dutch Wikipedia Corpus 
As using a complete Dutch Wikipedia dump [17] would result in too much data, I selected articles 
at random to create a subset of the entire corpus. The advantage of the Wikipedia corpus is that 
all texts are written in a (pseudo-)scientific style. As the goal of the study was to improve a tool 
correcting student-written texts in a similar style, this data set closely fit the expectations. A 
disadvantage of the Wikipedia corpus is that all the sentences are written in third person, while 
students use the first person when writing about their personal experiences. 
 
2.1.4 Combinations of Data Sets 
To circumvent problems such as the absence of first person pronouns in the Wikipedia corpus, I 
decided to combine data sets. The Wikipedia corpus was used as the base corpus, with the 
addition of either the DPC or the Europarl corpus. Using the equalised version ensured that the 
resulting corpus was small enough to be computationally efficient. Moreover, it guaranteed that 
there were enough dt-cases, while still maintaining the difference in usage between -d, -t and -dt. 
 
In theory, combining all three data sets would also be possible. As the training time would further 
increase, and the current results turned out to be satisfactory, I did not train a model combining all 
three data sets. 
 
2.2 Test Data 
Over the course of the study, I added several sets of test data, taken from various sources. Some 
data sets were added to compare results with other research, while others were added to 
approximate real world data. The data sets are summarised in Table 2. 
 
2.2.1 Test Corpus from Heyman et al. [6] 
The test set containing online dt-quizzes was made publicly available [18]. For this paper, 
sentences not relating to dt-mistakes in the narrow sense were removed. This makes an accurate 
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comparison with Heyman et al. difficult, as I do not have access to their results on this particular 
subset. 
 
2.2.2 Scholieren.com 
Scholieren.com is a website where students (mainly from secondary school) can upload their 
writings (book reports, essays etc.). Other users can rate the uploaded writings, but the writings 
are not checked for spelling mistakes or factual errors. The writings uploaded to this website are 
thus highly approximate to the target group of secondary school students. Four texts were 
chosen, written by Flemish students of various ages, viz. papers written by a first year secondary 
school student [19], a second year secondary school student [20], a third year secondary school 
student [21] and a sixth year secondary school student [22], respectively. 
 
From these texts, 100 cases were randomly selected. This is data set Schol_1 in Table 2. 
Afterwards, I searched for a text with a high number of mistakes. This was done to check whether 
spaCy's part-of-speech tagger was still able to identify verbs when they were spelled incorrectly. 
A book review, written by a sixth year secondary school student, meets this criterion [23]. This is 
data set Schol_2 in Table 2. 
 
2.2.3 Test Set ILT 
ILT provided me with their own test set containing actual errors made by students. From this list 
of 100 sentences, 69 sentences were suitable for d/t/dt-classification. This data set diverges from 
the pattern seen in the training data, where the ending -dt occurred between 5% and 10% of the 
cases. In this data set, it is the most frequent ending. A possible explanation is the focus in this 
data set on the auxiliary verb worden, which occurs 28 times. This verb ends in the first person on 
-d and in the more frequent third person on -dt. 
 

Name 
Verb Endings 

Total 
d t dt 

Heyman 21 16 9 46 

Schol_1 45 49 6 100 

Schol_2 8 21 4 33 

ILT 17 25 27 69 

Total 91 111 46 248 
 

TABLE 2: Overview of the used test data sets. 

 
3 MODELS 
This section first discusses the preprocessing steps and the main architecture used for the 
language model. This is followed by an overview of the trained models, after which attention is 
given to metrics other than accuracy. 
 
3.1 Preprocessing Steps 
After downloading the data, the first step consisted of filtering the actual sentences and removing 
other unnecessary information. For the Wikipedia corpus, this meant deleting titles and subtitles. 
The DPC, on the other hand, is XML-based. Therefore, the tags allowed me to extract the text 
and write it to one large text file. For the Europarl corpus, I used the sentence-by-sentence text 
file from Heyman et al. [6]. As a second step, spaCy's part-of-speech tagger was used for each 
set of sentences, enabling me to identify the verbs in each sentence. For each verb, the ending (-
d, -t or -dt) was cut off and replaced with the dummy symbol #. The actual verb endings were kept 
to serve as a ground truth for the classifier and to determine whether a mistake was made in the 
test data. If the verb did not end in -d, -t or -dt, the dummy symbol was still added, and the ending 
was filled with a slash sign, such as 'is/'. 
 
As there is often more than one verb in a sentence, I decided to repeat sentences in the data set. 
For each repetition, only one verb was assigned a dummy symbol. The sentence Ik word 
opgehaald door mijn moeder, meaning 'I get picked up by my mother', appears in the data set as:  
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    • Ik wor# opgehaald door mijn moeder.  
    • Ik word opgehaal# door mijn moeder.  
 
This way, the classifier does not have to predict multiple verbs at the same time, which would be 
impossible. 
 
Using these steps, the text file was converted to a comma-separated values file (CSV file), with 
the following columns: sentence ID number, unaltered sentence, sentence with a dummy symbol, 
verb without an ending and verb ending. The verb without ending column was added to improve 
the readability of the CSV file. The preprocessing is visualised in Figure 2. 
 

 
 

FIGURE 2: A schema highlighting the preprocessing steps. 

 
3.2 Transfer Learning with ULMFiT 
3.2.1 ULMFiT 
ULMFiT (universal language model fine-tuning for text classification) is a method to introduce 
inductive transfer learning to various natural language processing tasks. Originally, the technique 
has found success in Computer Vision, but up until recently this was not the case in NLP due to a 
lack of knowledge [24]. The model makes use of a three-layer LSTM architecture called AWD-
LSTM. This architecture is the same as a regular LSTM (long short-term memory), but uses 
different dropout hyperparameters. Using an LSTM makes sure that long-term dependencies are 
covered, as an LSTM is able to filter out important information that spans an entire sentence. 
 
The process behind an ULMFiT model can be divided into three steps. The first step is the 
acquisition of a general language model. This model can be trained, or an existing model can be 
used. For this paper, an existing model was used [25], although we briefly considered training our 
own model. However, the existing model formed a good starting point because it was trained on a 
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large Wikipedia corpus. Nevertheless, fine-tuning these data with our own, smaller Wikipedia 
corpus increased the performance of the model. 
 
The second step is fine-tuning the general language model on the target task. This takes into 
account that the training data often have a different distribution than the data used in the general 
model [24]. It is possible to use discriminative fine-tuning while training the fine-tuned model. This 
means that different layers of the model are trained with different learning rates, which improves 
the performance of the model. The vocabulary size of the language model is 60,000 words. The 
loss function is a standard cross-entropy loss function, which is used for the classifier training as 
well. This function can be described as follows [26]: 
 

                    
             

            
                              

 
The input of this function is a vector with three elements during the training of the classifier, one 
for each possible class. The predicted class is positive, while the other two are negative. The 
displayed result of the loss function is the average loss per epoch. A lower loss means that there 
is less distance between the predicted classes and the ground truth.  
  
The third and final step involves fine-tuning the classifier. For this task, two linear layers are 
added to the language model, with a ReLU activation for the first layer and a softmax activation 
for the second layer. This way, the classifier gives a probability distribution over the classes as 
output. To fine-tune the classifier, it is possible to use gradual unfreezing. This means that the 
layers of the model are fine-tuned one by one instead of all layers being fine-tuned at the same 
time. This process starts at the last layer, as this layer contains the most specific knowledge. By 
using this technique, the risk of catastrophic forgetting is reduced [24]. A visualisation of the 
ULMFiT architecture is shown in Figure 3. 
 

 
 

FIGURE 3: A visualisation of the ULMFiT architecture [27]. 

 
3.2.2 Fast.ai 
Fast.ai is an AI library for Python, built on PyTorch, that aims to make AI more accessible to the 
general public [28]. As fast.ai v2 [29] was still in development during this study, I used fast.ai v1. 
The library is built in such a way that both people with limited coding skills and experts are able to 
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work with it. As the developers of fast.ai also developed ULMFiT, the platform is best suited to 
use this architecture. However, other techniques can be used as well, such as BERT-based 
models

3
.   

 
3.3 Overview of the Trained Models 
For this paper, I experimented with various models, whose results will be explained in more detail 
here, with special attention given to the final model. 
 
The experiments showed that using fast.ai's gradual unfreezing technique provides good results. 
It predicted the right learning rate per epoch, as shown in the below graph (Figure 4). 
 

 
FIGURE 4: The learning rate predictor during model training. The red dot is the suggested learning rate. 

 
Equalising the verbs, as described in section 2.1, resulted in a negative impact. Few training data 
remained, resulting in a performance hit, especially in the test data. 
 
The final experiments involved the equalised data sets, adding the DPC equalised set to the well-
performing Wikipedia corpus in one experiment, and adding the Europarl equalised set to the 
Wikipedia corpus in another. The combination Wikipedia-Europarl outperformed Wikipedia-DPC 
by a slight margin, possibly because the Europarl data set was larger. For an unknown reason, 
the Wikipedia-DPC corpus performs badly on the test data, while the Wikipedia-Europarl 
combination notes good results. By combining data sets in this way, I found the perfect balance 
between an unequalised and an equalised data set, combining advantages from both. 
 
The last described model (Wikipedia + equalised Europarl) is my final model, of which the results 
are highlighted in Table 3. The model was trained in one work day (excluding preprocessing time 
as this was already done) and is thus easily extendable to other, similar problems. The process of 
this internship clearly demonstrates that it is important to use data from a domain comparable to 
the target domain. 
 
The accuracy of the model can still be improved by adding more data containing inverted 
sentences in the second person singular present. It is not of great importance for the current task, 
as students are not expected to use this form often in their writings, but it is important if the tool 
should ever be released for general purposes. Future research can provide a part-of-speech 
tagger that achieves an even higher accuracy than spaCy's. 
 
3.4 Other Metrics 
The main task of this study consisted of training an accurate model. However, there are other 
metrics that measure whether a model's corrections are right or not, such as precision, recall and 

                                                 
3 Training BERT-like models did not provide a useful outcome, mainly due to memory issues and the lack of a 
dummy symbol in the pretrained model.  
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the F1-score. These metrics are used in the same way as in Heyman et al. [6]. In this section, I 
will compute these metrics where possible, using the final model on the various test data sets. 
 
As Heyman et al. used different data sets with a classifier that was trained on a slightly different 
task, it is not possible to make an accurate comparison between their approach and the approach 
of this paper. 
 
The predicted labels (the verb endings) are divided into four groups:  

• True positives (tp): the predicted ending corrects the original wrong ending successfully  
• False positives (fp): the original ending was correct; the predicted ending introduces a 

mistake  
• True negatives (tn): both the original and the predicted ending are correct  
• False negatives (fn): both the original and the predicted ending are incorrect  

 
The precision, recall and F1-score are then defined as follows: 
 

     
  

     
 

 

    
  

     
 

 

   
         

        
 

 
I was not able to measure these metrics for the Heyman data set because we only had the data 
set with dummy symbols, without actual answers. A different problem was found in the Schol_1 
data set, where all the verbs were both correctly spelled and predicted. This way, all the labels 
belong to the group with true negatives, resulting in a division by zero when calculating precision 
and recall. 
 
For the Schol_2 data set, calculating these metrics was trivial, as there were mistakes in the 
original labels and the accuracy of the predictions was 100%. This means that my model 
achieves a precision, recall and F1-score of 1. 
 
The ILT data set is more interesting for these metrics. The data contains 64 corrected errors, 2 
untouched originally correct verbs and 3 mistakes that were not corrected. There were no false 
positives. This results in a precision of 1, a recall of 0.9552 and an F1-score of 0.9771. 
 
The results using this metrics are listed in Table 4. One should keep in mind that these metrics 
only consider the verbs in the data set. This means that erroneously written verbs that spaCy's 
part-of-speech tagger did not consider verbs are not included. However, the tagger still 
occasionally considered non-existent forms such as hij duwd instead of hij duwt as verbs. 
Nevertheless, these wrongly spelled verbs may still form an area of potential improvement. 
 

 Schol_1 Schol_2 ILT 
tp 0 3 64 

fp 0 0 0 

tn 100 30 2 

fn 0 0 3 

Precision / 1 1 

Recall / 1 0.9552 

F1 / 1 0.9771 
 

TABLE 4: An overview of the precision, recall and F1-score of the final model, tested on various test data 

sets. Heyman et al. are not included, as their data consisted of sentences in which the ending should be 
predicted. Their data did not include writers’ filled-in endings with mistakes.  
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4 DISCUSSION 
4.1 General 
While the model should be able to generalise well, it has a few disadvantages. For example, the 
model clearly has trouble predicting the second person singular in inversed sentences. This is 
due to a lack of training data. As this type of sentence is rather rare in student writings from 
secondary schools, I chose, due to time constraints, to keep the model as it stands. Needless to 
say, it is possible to search for more inversed sentences and add them to the training data. 
 
Another possible flaw is the reliance on spaCy's part-of-speech tagger. I observed a case in the 
test data where a name (De Gucht), was incorrectly tagged as a verb, masking the ending -t. This 
can obviously lead to unexpected results. A similar case occurred in the training data, where a 
sentence contained an enumeration of points, explicitly written as point a until point d. The tagger 
identified point d as a verb, replacing the ending (the same d) with a dummy symbol. The rest of 
the verb thus remained empty, causing an unexpected error. Although such mistakes can happen 
during training, the neural model can handle some noise if the size of the data set is sufficiently 
large. However, if these mistakes happen when the model is actually in use, the user may not get 
the expected result. This may occur, for example, if someone uses the name De Gucht and the 
model determines that this is a verb that should end in –dt,  
 
It is possible to visualise which words the model deems the most important in order to produce 
the ending output, thanks to the attention mechanisms. Figure 5 shows the attention the model 
gives to the sentence Vind je het een slim besluit van het kabinet dit soort subsidies af te 
schaffen? meaning 'Do you think it is a smart decision from the cabinet to abolish subsidies of 
this kind?' It is clear in the picture that the model gives most of its attention to the verb (without 
the ending) 'vin' and to the subject 'je'. These are indeed the two important factors that determine 
the verb's ending. In this case, the model correctly predicts the ending -d. 
 

 
 

FIGURE 5: An example of attention: the two important words are highlighted. 

 
The trained model makes use of a dummy symbol to predict verb endings. This means that the 
model is easy to generalise to other cases and that it can be trained for other classification tasks 
as well. For example, the diphthong /ɛɪ/ is written in two different ways in Dutch: ei and ij. While a 
dictionary-based model can solve most of these, as only one of the two possibilities exists, a 
neural network-based model can be trained to solve the cases where both words exist, based on 
context. Examples of minimal pairs for this problem are the verbs leiden ('to lead') and lijden ('to 
suffer') and the nouns peil ('level') and pijl ('arrow'). Instead of replacing the verb endings with a 
dummy symbol, these diphthongs should be replaced in the training data. 
 
Another problem, already studied by Allein et al. [7], is the disambiguation of the Dutch words die 
and dat, which was explained in section 1.2. Further research is needed to determine if the model 
proposed in this report more effectively addresses these specific problems compared to the 
current state-of-the-art models. 
 
Finally, multi-label classification, such as predicting punctuation, should also be possible. Due to 
the higher number of labels, this is a harder task, but the setup used during this study can be 
used here as well. 
 
4.2 Impact and Possible Comparisons with Heyman et al. [6] 
The approach in this article differs from the one used by Heyman et al. [6] at several points. 
Firstly, the structure of the neural network is different, as Heyman et al. [6] used a recurrent 
neural network, whereas I made use of an LSTM-powered feed forward neural network. 
  
Secondly, this article does not cover the same set of spelling mistakes as Heyman et al. [6], as 
they tried to detect dt-mistakes in the broad sense, while this article focuses on dt-mistakes in the 
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narrow sense. Additionally, this paper pays attention to mistakes that result in non-existing verb 
forms, whereas Heyman et al. [6] only detect so-called context-dependent mistakes. 
 
Furthermore, there was no need to automatically introduce mistakes to create an evaluation 
corpus, as this study had access to student-written texts with real mistakes. 
 
Finally, the model presented in this paper is easily scalable, and does not need many 
computational resources, as it was able to be trained in less than a day on a Google Colab 
server. 

 
5 SUMMARY 
This paper focused on creating a model for detecting dt-mistakes in Dutch sentences. Sentences 
were preprocessed in that SpaCy's part-of-speech tagger identified the verbs. One verb per 
sentence received a masked ending (the dummy symbol #). A neural network-based model, 
based on the ULMFiT transfer learning technique, was trained to classify the sentences as -d, -t 
or -dt, providing the verb ending. If the ending did not match the ending written by the author of 
the sentence, the system signaled that a dt-mistake was made. The final model needed one day 
of training on Google Colab's servers, with a training time of around 20 minutes per epoch, which 
is a major benefit. This model achieved high scores on various test data sets, comparable with 
the results of Heyman et al. [6], although it is difficult to accurately compare the two approaches. 
 
In the future, more inverted sentences (mainly questions in the second person singular) could be 
added to the training data to improve performance predicting the second person singular of verbs 
in inverted sentences. Furthermore, the reasons causing the failure of the BERT model for this 
task can be researched. Finally, part-of-speech taggers other than spaCy may further improve the 
current model. 
 
If the preprocessing is adjusted to a certain extent, the model should be usable, as a practical 
implication, for a wide range of other correction tasks as well, such as the die/dat problem 
(mentioned above) or the difference between the homophonous diphthongs ei and ij. 
 
The model is thus of great interest for education purposes, as it can form part of a more extensive 
spellchecker. 

 
6 APPENDIX: DATA OVERVIEW 
 

Data set Verb Endings 

Name Subset d t dt / Total 
EUR_100K train 34,088 61,332 11,809 253,324 360,553 

 valid 8,704 15,394 3,029 63,011 90,138 

 total 42,792 76,726 14,838 316,335 450,691 

EUR_100K_NO_/ train 34,088 61,332 11,809 0 107,229 

 valid 8,704 15,394 3,029 0 27,127 

 total 42,792 76,726 14,838 0 134,356 

EUR_100K_EQUAL train 11,809 11,809 11,809 0 35,427 

 valid 3,029 3,029 3,029 0 9,087 

 total 14,838 14,838 14,838 0 44,514 

EUR_FULL train 512,756 925,976 178,211 3,837,637 5,454,580 

 valid 128,061 231,347 44,442 959,794 1,363,644 

 total 640,817 1,157,323 222,653 4,797,431 6,818,224 

EUR_FULL_NO_/ train 512,756 925,976 178,211 0 1,616,943 

 valid 128,061 231,347 44,442 0 403,850 

 total 640,817 1,157,323 222,653 0 2,020,793 

EUR_FULL_EQUAL train 178,211 178,211 178,211 0 534,633 

 valid 44,442 44,442 44,442 0 133,326 

 total 222,653 222,653 222,653 0 667,959 
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DPC_FULL train 116,069 201,673 37,318 706,500 1,061,560 

 valid 28,519 50,281 9,332 177,257 265,389 

 total 144,588 251,954 46,650 883,757 1,326,949 

DPC_FULL_NO_/ train 116,069 201,673 37,318 0 355,060 

 valid 28,519 50,281 9,332 0 88,132 

 total 144,588 251,954 46,650 0 443,192 

DPC_FULL_EQUAL train 37,232 37,232 37,232 0 111,696 

 valid 9,418 9,418 9,418 0 28,254 

 total 46,650 46,650 46,650 0 139,950 

WIKI train 132,530 113,211 21,581 501,889 769,211 

 valid 32,878 28,537 5,351 125,536 192,302 

 total 165,408 141,748 26,932 627,425 961,513 

WIKI_NO_/ train 132,530 113,211 21,581 0 267,322 

 valid 32,878 28,537 5,351 0 66,766 

 total 165,408 141,748 26,932 0 334,088 

WIKI_EQUAL train 21,581 21,581 21,581 0 64,743 

 valid 5,351 5,351 5,351 0 16,053 

 total 26,932 26,932 26,932 0 80,796 

WIKI_NO_/ train 169,762 150,433 58,813 0 379,018 

+ DPC_FULL_EQ. valid 42,296 37,955 14,769 0 95,020 

 total 212,058 188,398 73,582 0 474,038 

WIKI_NO_/ train 310,741 291,422 199,792 0 801,955 

+ EURO_FULL_EQ. valid 77,320 72,979 49,793 0 200,092 

 total 388,061 364,401 249,585 0 1,002,047 
 

TABLE 5: Overview of the used training data sets. 'EQUAL' denotes that the amounts of -d, -t are -dt are 

made equal, 'NO_/' indicates the removal of irrelevant verb endings, which were displayed with a / sign. 
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