
Wouter Mercelis

International Journal of Computational Linguistics (IJCL), Volume (12): Issue (2): 2021 9
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

Developing AI Tools For A Writing Assistant: Automatic
Detection of dt-mistakes In Dutch

Wouter Mercelis wouter.mercelis@kuleuven.be
Faculteit Letteren/Onderzoekseenheid Taalkunde/Onderzoeksgroep
Kwantitatieve Lexicologie en Variatielinguïstiek (QLVL)
KU Leuven, Leuven, 3000, Belgium

Abstract

This paper describes a lightweight, scalable model that predicts whether a Dutch verb ends in -d,
-t or -dt. The confusion of these three endings is a common Dutch spelling mistake. If the
predicted ending is different from the ending as written by the author, the system will signal the
dt-mistake. This paper explores various data sources to use in this classification task, such as the
Europarl Corpus, the Dutch Parallel Corpus and a Dutch Wikipedia corpus. Different architectures
are tested for the model training, focused on a transfer learning approach with ULMFiT. The
trained model can predict the right ending with 99.4% accuracy, and this result is comparable to
the current state-of-the-art performance. Adjustments to the training data and the use of other
part-of-speech taggers may further improve this performance. As discussed in this paper, the
main advantages of the approach are the short training time and the potential to use the same
technique with other disambiguation tasks in Dutch or in other languages.

Keywords: NLP, Dutch, AI, Spelling Correction, Transfer Learning.

1 INTRODUCTION
1.1 Goal
This paper describes a machine learning approach to predicting whether a Dutch verb ends in -d,
-t or -dt. The first section provides background information about this topic. The following sections
give an overview of the used data sets and the different models that were used during training.
The last section discusses strong and weak points of this paper's approach.

1
 The methodology is

deductive, as I started from a theoretic point of view (fast and lightweight neural networks) and
brought this into practice. Real mistakes from students were used for analysis purposes.

The paper can be linked to other entries in the International Journal of Computational Linguistics,
regarding spell checkers [1], verb analysis [2] and stemming algorithms [3].

1.2 Grammatical Error Detection
Most of the work in the NLP field regarding grammatical error detection focuses on general
systems and on determining whether or not a sentence is grammatical. Examples include Liu &
Liu [4] and Li et al. [5]. Rather than designing an all-purpose grammatical error detection system,
this project aims to address one specific problem. An additional complicating factor is that most of
the work undertaken is tailored to the specifics of English. The few studies on Dutch do not adopt
the general approach; instead, they focus on one specific problem, similar to this article. Heyman

1 This project was undertaken against the backdrop of an internship at Reimagine, a Brussels-based AI start-up.
Because of this, the code used during the project cannot be made available, being property of the company. The
test data was provided by ILT (Instituut voor Levende Talen), which commissioned the project as future part of a
writing assistant for secondary school students. . I would like to thank my colleagues at Reimagine, especially
Ferre Jacobs and Toon Lybaert, who provided useful insights for this article. I would also like to thank Alek
Keersmaekers, Toon Van Hal and Liesbeth Augustinus for their proofreading and valuable guidance.

Wouter Mercelis

International Journal of Computational Linguistics (IJCL), Volume (12): Issue (2): 2021 10
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

et al. [6] also worked on dt-mistakes, while Allein et al. [7] provided a model that disambiguates
die and dat. Dt-mistakes will be discussed in more detail in the next section.

The first grammatical error detection systems built were rule-based. However, writing such
manual rules is very time-consuming, does not generalise well and does not capture more
complex phenomena like long-distance dependencies [8]. Up until recently, a statistical approach
with n-grams in large corpora was used to solve this issue. Data sparsity forces the n-gram
approach to work with large data sets such as the Google n-gram corpus [9]. These models need
to run on expensive high processing computing systems due to their large size. Additionally, the
n-gram approach still has problems capturing more complex phenomena like long-distance
dependencies [8]. Heyman et al. [6] referred to an approach in which a word-based classifier is
trained per word pair that can give way to a dt-mistake (e.g. gebeurd and gebeurt). However, this
approach does not generalise well, as the system does not learn the actual dt-rule.

Nowadays, neural network models are considered to be better equipped to perform such error
detection tasks. These models have the capability to model complex sentences containing, for
example, many long-term dependencies [10].

1.3 The Dutch dt-rule
Dutch regular verbs adhere to the following conjugation rules, as illustrated in Table 1. In this
table, the first six rules are considered dt-rules in a narrow sense. Rules 1-11 can be seen as the
dt-rules in a broader sense, as they involve endings other than just -d, -t and -dt.

TABLE 1: An overview of the Dutch dt-rules, cited from Heyman et al. [6].

In Dutch, -d at the end of a word is pronounced as unvoiced -t, which explains why there is no
audible distinction between words such as rat ('rat') and rad ('wheel'). When the stem of the verb
ends in -d, confusion arises. The first person singular ends in -d, e.g. ik word ('I become'), but in
the second and third person singular present, the ending -t is added to the stem, e.g. hij wordt

Wouter Mercelis

International Journal of Computational Linguistics (IJCL), Volume (12): Issue (2): 2021 11
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

('he becomes')
2
. The -dt at the end of a word, which occurs when a stem ending in -d receives the

verb ending -t, also has an unvoiced pronunciation. Verhaert & Sandra [11] argued that the root
cause of dt-mistakes is so-called homophone dominance. This means that the writer will choose
the most frequent form of a verb, when put under stress or when distracted.

Another cause underlying many dt-mistakes is the inversion rule for second person singular.
Normally, this point of view has an ending in -t, but when the sentence is inversed (e.g. in a
question), there is no such ending. This can be illustrated with examples 1 and 2 [12]:

1. Jij beantwoordt haar vraag.
You answer her question.'

2. Beantwoord je haar vraag?
'Do you answer her question?'

3. Beantwoordt je moeder haar vraag?
'Does your mother answer her question?'

Furthermore, the second person singular personal pronoun jij also has the phonetically weakened
form je. However, the second person singular possessive pronoun jouw has the same
phonetically weakened form je, e.g. jouw/je moeder ('your mother'). In non-inverted sentences,
this does not cause any problems, as the endings for the second and third person singular are
the same. However, in inverted sentences such as questions, the ending differs. This is illustrated
in examples 2 and 3 [12].

A third cause of dt-mistakes lies in the past participle, which is regularly formed by adding a prefix
'ge-' to the verb stem and a suffix. The suffix is -t when the verb stem ends in an unvoiced
consonant, but it is -d when the verb stem ends in a voiced consonant. For example, the verb
suizen, meaning 'to whiz', does not have the predicted stem 'suiz'; rather, it has the stem 'suis'.
The underlying stem 'suiz' is used to determine the ending, resulting in the participle gesuisd and
not 'gesuist' [12].

Another category of participle-based dt-mistakes occurs when the past participle is irregularly
formed. For example, when a verb stem already starts with 'ge-', the past participle prefix 'ge-' is
dropped. When the verb stem ends in a voiced consonant, the participle ends in -d, while the
second and third person singular present forms end in –t [12].

4. Hij getuigt tegen mij.
'He testifies against me.'

5. Hij heeft tegen mij getuigd.
'He has testified against me.'

Finally, the difference between context-dependent and context-independent mistakes needs to be
stressed. All previous examples are prone to context-dependent mistakes, as the different forms
of the verb all exist in Dutch but in different contexts. However, it is also possible to make a
context-independent mistake and create a non-existent form. An example from the test data is hij
duwd, a non-existent form, instead of hij duwt ('he pushes').

1.4 Previous Work by Heyman et al. [6]
Heyman et al. [6] focused on context dependent dt-mistakes, while this paper aims to cover both
context dependent and context independent errors. While it is theoretically possible to use a
dictionary lookup for these context independent mistakes, it is convenient that the model is able
to predict these as well, as this reduces the amount of memory needed.

Another difference is that Heyman et al. created a system to introduce mistakes in a text to later
correct them. In this paper, for the training data, we have used data without mistakes, as the

2 Phonetically, both forms can be transcribed as follows: /ʋɔrt/

Wouter Mercelis

International Journal of Computational Linguistics (IJCL), Volume (12): Issue (2): 2021 12
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

model only trains on predicting the right ending. For the test data, we did not insert mistakes in a
text with an algorithm. Instead, I searched for texts containing actual mistakes and focused on
sentences written by students. If the model's prediction was different from a student’s written verb
ending, a signal was given that the form may be incorrect.

The architecture of the models also differs. This paper makes use of the ULMFiT approach with
an AWD-LSTM network, which is a regular LSTM network with tweaked hyperparameters.
Heyman et al. used a custom engineered setup, consisting of a context encoder and a verb
encoder, concatenated in a feed-forward neural network (FFNN). The final probability is
computed using a softmax function over the FFNN-layer. A visualisation of Heyman et al.'s model
is shown in Figure 1. Another difference between the two approaches lies in the use of part-of-
speech taggers. Heyman et al. used TreeTagger [13], while I used spaCy's PoS tagger [14]. This
decision was primarily made because the commissioning institute (ILT) already works with spaCy,
thus making the final implementation easier. It is possible that spaCy's PoS tagger missed some
verbs, which are thus not present in the data. In the meantime, the model aimed to accurately
predict the ending of the detected verbs. In this implementation, a verb was considered correct if
the written ending was the same as the model’s predicted ending. Otherwise, the verb was
considered to be incorrect.

FIGURE 1: A visualisation of the model used by Heyman et al. [6].

As mentioned above, there is a difference between dt-mistakes in the narrow sense (confusing -
d, -t and -dt), and dt-mistakes in the broad sense (adding -de, -dde(n), -te, -tte(n) etc.). Heyman
et al. [6], working on the broad sense, experienced some trouble with the multitude of labels,
causing them to drop infrequent labels such as the past plural forms (number 9 in Table 1). As
mistakes in the narrow sense are in absolute numbers much more frequent than mistakes in the
broad sense, we decided to focus on the core task of discerning -d, -t and -dt. Furthermore, the
broad sense is harder to grasp completely, as some minimal pairs show the doubling of vowels
as well (e.g. vergrote, vergrootte ('enlarged')). However, it should be possible to train another,
separate model that corrects all possible mistakes in the broad sense. We leave that problem for
further research.

Wouter Mercelis

International Journal of Computational Linguistics (IJCL), Volume (12): Issue (2): 2021 13
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

2 DATA
2.1 Training Data
Three main data sets were used for training: the Europarl corpus, the Dutch Parallel Corpus
(DPC) and a corpus made from Dutch Wikipedia articles. The development data used during the
training of the models stemmed from the random selection of 20% of the sentences in the training
data. A detailed description of the data is included in the appendix in Table 5.

2.1.1 Europarl Corpus
The Europarl corpus [15] collects the proceedings of the European Parliament and is available in
several languages, including Dutch. Professionals created this corpus, which means that the
quality of the text data is assured. However, the domain variation is limited, both in content, as
only politics are covered, and on a grammatical level, as there are few verbs found in the second
person. To filter out a first wave of sentences with no verbs ending in -d, -t or -dt at all, I used a
subset of Heyman et al.’s [6] Europarl corpus in which each sentence contains at least one verb
ending subject to the Dutch dt-rule in its broad sense.

I altered the data set by evening out the counts of -d, -t and -dt. As -dt occurs less than -d and -t
(between 5% and 10% of the cases, depending on the data set), it was difficult for the model to
predict the dt-cases. This data alteration was also performed on the other two corpora, described
infra.

2.1.2 Dutch Parallel Corpus
The Dutch Parallel Corpus (DPC) [16] is a multilingual parallel corpus. It consists of parallel texts
in Dutch, English and French. The main goal of the corpus is to provide material for multilingual
tasks such as machine translation, but it is also possible to use a corpus containing only one
language. An advantage of the DPC is that it covers a wide range of domains, although the total
size of the corpus is significantly smaller than the Europarl corpus.

2.1.3 Dutch Wikipedia Corpus
As using a complete Dutch Wikipedia dump [17] would result in too much data, I selected articles
at random to create a subset of the entire corpus. The advantage of the Wikipedia corpus is that
all texts are written in a (pseudo-)scientific style. As the goal of the study was to improve a tool
correcting student-written texts in a similar style, this data set closely fit the expectations. A
disadvantage of the Wikipedia corpus is that all the sentences are written in third person, while
students use the first person when writing about their personal experiences.

2.1.4 Combinations of Data Sets
To circumvent problems such as the absence of first person pronouns in the Wikipedia corpus, I
decided to combine data sets. The Wikipedia corpus was used as the base corpus, with the
addition of either the DPC or the Europarl corpus. Using the equalised version ensured that the
resulting corpus was small enough to be computationally efficient. Moreover, it guaranteed that
there were enough dt-cases, while still maintaining the difference in usage between -d, -t and -dt.

In theory, combining all three data sets would also be possible. As the training time would further
increase, and the current results turned out to be satisfactory, I did not train a model combining all
three data sets.

2.2 Test Data
Over the course of the study, I added several sets of test data, taken from various sources. Some
data sets were added to compare results with other research, while others were added to
approximate real world data. The data sets are summarised in Table 2.

2.2.1 Test Corpus from Heyman et al. [6]
The test set containing online dt-quizzes was made publicly available [18]. For this paper,
sentences not relating to dt-mistakes in the narrow sense were removed. This makes an accurate

Wouter Mercelis

International Journal of Computational Linguistics (IJCL), Volume (12): Issue (2): 2021 14
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

comparison with Heyman et al. difficult, as I do not have access to their results on this particular
subset.

2.2.2 Scholieren.com
Scholieren.com is a website where students (mainly from secondary school) can upload their
writings (book reports, essays etc.). Other users can rate the uploaded writings, but the writings
are not checked for spelling mistakes or factual errors. The writings uploaded to this website are
thus highly approximate to the target group of secondary school students. Four texts were
chosen, written by Flemish students of various ages, viz. papers written by a first year secondary
school student [19], a second year secondary school student [20], a third year secondary school
student [21] and a sixth year secondary school student [22], respectively.

From these texts, 100 cases were randomly selected. This is data set Schol_1 in Table 2.
Afterwards, I searched for a text with a high number of mistakes. This was done to check whether
spaCy's part-of-speech tagger was still able to identify verbs when they were spelled incorrectly.
A book review, written by a sixth year secondary school student, meets this criterion [23]. This is
data set Schol_2 in Table 2.

2.2.3 Test Set ILT
ILT provided me with their own test set containing actual errors made by students. From this list
of 100 sentences, 69 sentences were suitable for d/t/dt-classification. This data set diverges from
the pattern seen in the training data, where the ending -dt occurred between 5% and 10% of the
cases. In this data set, it is the most frequent ending. A possible explanation is the focus in this
data set on the auxiliary verb worden, which occurs 28 times. This verb ends in the first person on
-d and in the more frequent third person on -dt.

Name
Verb Endings

Total
d t dt

Heyman 21 16 9 46

Schol_1 45 49 6 100

Schol_2 8 21 4 33

ILT 17 25 27 69

Total 91 111 46 248

TABLE 2: Overview of the used test data sets.

3 MODELS
This section first discusses the preprocessing steps and the main architecture used for the
language model. This is followed by an overview of the trained models, after which attention is
given to metrics other than accuracy.

3.1 Preprocessing Steps
After downloading the data, the first step consisted of filtering the actual sentences and removing
other unnecessary information. For the Wikipedia corpus, this meant deleting titles and subtitles.
The DPC, on the other hand, is XML-based. Therefore, the tags allowed me to extract the text
and write it to one large text file. For the Europarl corpus, I used the sentence-by-sentence text
file from Heyman et al. [6]. As a second step, spaCy's part-of-speech tagger was used for each
set of sentences, enabling me to identify the verbs in each sentence. For each verb, the ending (-
d, -t or -dt) was cut off and replaced with the dummy symbol #. The actual verb endings were kept
to serve as a ground truth for the classifier and to determine whether a mistake was made in the
test data. If the verb did not end in -d, -t or -dt, the dummy symbol was still added, and the ending
was filled with a slash sign, such as 'is/'.

As there is often more than one verb in a sentence, I decided to repeat sentences in the data set.
For each repetition, only one verb was assigned a dummy symbol. The sentence Ik word
opgehaald door mijn moeder, meaning 'I get picked up by my mother', appears in the data set as:

Wouter Mercelis

International Journal of Computational Linguistics (IJCL), Volume (12): Issue (2): 2021 15
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

 • Ik wor# opgehaald door mijn moeder.
 • Ik word opgehaal# door mijn moeder.

This way, the classifier does not have to predict multiple verbs at the same time, which would be
impossible.

Using these steps, the text file was converted to a comma-separated values file (CSV file), with
the following columns: sentence ID number, unaltered sentence, sentence with a dummy symbol,
verb without an ending and verb ending. The verb without ending column was added to improve
the readability of the CSV file. The preprocessing is visualised in Figure 2.

FIGURE 2: A schema highlighting the preprocessing steps.

3.2 Transfer Learning with ULMFiT
3.2.1 ULMFiT
ULMFiT (universal language model fine-tuning for text classification) is a method to introduce
inductive transfer learning to various natural language processing tasks. Originally, the technique
has found success in Computer Vision, but up until recently this was not the case in NLP due to a
lack of knowledge [24]. The model makes use of a three-layer LSTM architecture called AWD-
LSTM. This architecture is the same as a regular LSTM (long short-term memory), but uses
different dropout hyperparameters. Using an LSTM makes sure that long-term dependencies are
covered, as an LSTM is able to filter out important information that spans an entire sentence.

The process behind an ULMFiT model can be divided into three steps. The first step is the
acquisition of a general language model. This model can be trained, or an existing model can be
used. For this paper, an existing model was used [25], although we briefly considered training our
own model. However, the existing model formed a good starting point because it was trained on a

Wouter Mercelis

International Journal of Computational Linguistics (IJCL), Volume (12): Issue (2): 2021 16
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

large Wikipedia corpus. Nevertheless, fine-tuning these data with our own, smaller Wikipedia
corpus increased the performance of the model.

The second step is fine-tuning the general language model on the target task. This takes into
account that the training data often have a different distribution than the data used in the general
model [24]. It is possible to use discriminative fine-tuning while training the fine-tuned model. This
means that different layers of the model are trained with different learning rates, which improves
the performance of the model. The vocabulary size of the language model is 60,000 words. The
loss function is a standard cross-entropy loss function, which is used for the classifier training as
well. This function can be described as follows [26]:

The input of this function is a vector with three elements during the training of the classifier, one
for each possible class. The predicted class is positive, while the other two are negative. The
displayed result of the loss function is the average loss per epoch. A lower loss means that there
is less distance between the predicted classes and the ground truth.

The third and final step involves fine-tuning the classifier. For this task, two linear layers are
added to the language model, with a ReLU activation for the first layer and a softmax activation
for the second layer. This way, the classifier gives a probability distribution over the classes as
output. To fine-tune the classifier, it is possible to use gradual unfreezing. This means that the
layers of the model are fine-tuned one by one instead of all layers being fine-tuned at the same
time. This process starts at the last layer, as this layer contains the most specific knowledge. By
using this technique, the risk of catastrophic forgetting is reduced [24]. A visualisation of the
ULMFiT architecture is shown in Figure 3.

FIGURE 3: A visualisation of the ULMFiT architecture [27].

3.2.2 Fast.ai
Fast.ai is an AI library for Python, built on PyTorch, that aims to make AI more accessible to the
general public [28]. As fast.ai v2 [29] was still in development during this study, I used fast.ai v1.
The library is built in such a way that both people with limited coding skills and experts are able to

Wouter Mercelis

International Journal of Computational Linguistics (IJCL), Volume (12): Issue (2): 2021 17
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

work with it. As the developers of fast.ai also developed ULMFiT, the platform is best suited to
use this architecture. However, other techniques can be used as well, such as BERT-based
models

3
.

3.3 Overview of the Trained Models
For this paper, I experimented with various models, whose results will be explained in more detail
here, with special attention given to the final model.

The experiments showed that using fast.ai's gradual unfreezing technique provides good results.
It predicted the right learning rate per epoch, as shown in the below graph (Figure 4).

FIGURE 4: The learning rate predictor during model training. The red dot is the suggested learning rate.

Equalising the verbs, as described in section 2.1, resulted in a negative impact. Few training data
remained, resulting in a performance hit, especially in the test data.

The final experiments involved the equalised data sets, adding the DPC equalised set to the well-
performing Wikipedia corpus in one experiment, and adding the Europarl equalised set to the
Wikipedia corpus in another. The combination Wikipedia-Europarl outperformed Wikipedia-DPC
by a slight margin, possibly because the Europarl data set was larger. For an unknown reason,
the Wikipedia-DPC corpus performs badly on the test data, while the Wikipedia-Europarl
combination notes good results. By combining data sets in this way, I found the perfect balance
between an unequalised and an equalised data set, combining advantages from both.

The last described model (Wikipedia + equalised Europarl) is my final model, of which the results
are highlighted in Table 3. The model was trained in one work day (excluding preprocessing time
as this was already done) and is thus easily extendable to other, similar problems. The process of
this internship clearly demonstrates that it is important to use data from a domain comparable to
the target domain.

The accuracy of the model can still be improved by adding more data containing inverted
sentences in the second person singular present. It is not of great importance for the current task,
as students are not expected to use this form often in their writings, but it is important if the tool
should ever be released for general purposes. Future research can provide a part-of-speech
tagger that achieves an even higher accuracy than spaCy's.

3.4 Other Metrics
The main task of this study consisted of training an accurate model. However, there are other
metrics that measure whether a model's corrections are right or not, such as precision, recall and

3 Training BERT-like models did not provide a useful outcome, mainly due to memory issues and the lack of a
dummy symbol in the pretrained model.

Wouter Mercelis

International Journal of Computational Linguistics (IJCL), Volume (12): Issue (2): 2021 18
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

the F1-score. These metrics are used in the same way as in Heyman et al. [6]. In this section, I
will compute these metrics where possible, using the final model on the various test data sets.

As Heyman et al. used different data sets with a classifier that was trained on a slightly different
task, it is not possible to make an accurate comparison between their approach and the approach
of this paper.

The predicted labels (the verb endings) are divided into four groups:

• True positives (tp): the predicted ending corrects the original wrong ending successfully
• False positives (fp): the original ending was correct; the predicted ending introduces a

mistake
• True negatives (tn): both the original and the predicted ending are correct
• False negatives (fn): both the original and the predicted ending are incorrect

The precision, recall and F1-score are then defined as follows:

I was not able to measure these metrics for the Heyman data set because we only had the data
set with dummy symbols, without actual answers. A different problem was found in the Schol_1
data set, where all the verbs were both correctly spelled and predicted. This way, all the labels
belong to the group with true negatives, resulting in a division by zero when calculating precision
and recall.

For the Schol_2 data set, calculating these metrics was trivial, as there were mistakes in the
original labels and the accuracy of the predictions was 100%. This means that my model
achieves a precision, recall and F1-score of 1.

The ILT data set is more interesting for these metrics. The data contains 64 corrected errors, 2
untouched originally correct verbs and 3 mistakes that were not corrected. There were no false
positives. This results in a precision of 1, a recall of 0.9552 and an F1-score of 0.9771.

The results using this metrics are listed in Table 4. One should keep in mind that these metrics
only consider the verbs in the data set. This means that erroneously written verbs that spaCy's
part-of-speech tagger did not consider verbs are not included. However, the tagger still
occasionally considered non-existent forms such as hij duwd instead of hij duwt as verbs.
Nevertheless, these wrongly spelled verbs may still form an area of potential improvement.

 Schol_1 Schol_2 ILT
tp 0 3 64

fp 0 0 0

tn 100 30 2

fn 0 0 3

Precision / 1 1

Recall / 1 0.9552

F1 / 1 0.9771

TABLE 4: An overview of the precision, recall and F1-score of the final model, tested on various test data

sets. Heyman et al. are not included, as their data consisted of sentences in which the ending should be
predicted. Their data did not include writers’ filled-in endings with mistakes.

Wouter Mercelis

International Journal of Computational Linguistics (IJCL), Volume (12): Issue (2): 2021 19
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

4 DISCUSSION
4.1 General
While the model should be able to generalise well, it has a few disadvantages. For example, the
model clearly has trouble predicting the second person singular in inversed sentences. This is
due to a lack of training data. As this type of sentence is rather rare in student writings from
secondary schools, I chose, due to time constraints, to keep the model as it stands. Needless to
say, it is possible to search for more inversed sentences and add them to the training data.

Another possible flaw is the reliance on spaCy's part-of-speech tagger. I observed a case in the
test data where a name (De Gucht), was incorrectly tagged as a verb, masking the ending -t. This
can obviously lead to unexpected results. A similar case occurred in the training data, where a
sentence contained an enumeration of points, explicitly written as point a until point d. The tagger
identified point d as a verb, replacing the ending (the same d) with a dummy symbol. The rest of
the verb thus remained empty, causing an unexpected error. Although such mistakes can happen
during training, the neural model can handle some noise if the size of the data set is sufficiently
large. However, if these mistakes happen when the model is actually in use, the user may not get
the expected result. This may occur, for example, if someone uses the name De Gucht and the
model determines that this is a verb that should end in –dt,

It is possible to visualise which words the model deems the most important in order to produce
the ending output, thanks to the attention mechanisms. Figure 5 shows the attention the model
gives to the sentence Vind je het een slim besluit van het kabinet dit soort subsidies af te
schaffen? meaning 'Do you think it is a smart decision from the cabinet to abolish subsidies of
this kind?' It is clear in the picture that the model gives most of its attention to the verb (without
the ending) 'vin' and to the subject 'je'. These are indeed the two important factors that determine
the verb's ending. In this case, the model correctly predicts the ending -d.

FIGURE 5: An example of attention: the two important words are highlighted.

The trained model makes use of a dummy symbol to predict verb endings. This means that the
model is easy to generalise to other cases and that it can be trained for other classification tasks
as well. For example, the diphthong /ɛɪ/ is written in two different ways in Dutch: ei and ij. While a
dictionary-based model can solve most of these, as only one of the two possibilities exists, a
neural network-based model can be trained to solve the cases where both words exist, based on
context. Examples of minimal pairs for this problem are the verbs leiden ('to lead') and lijden ('to
suffer') and the nouns peil ('level') and pijl ('arrow'). Instead of replacing the verb endings with a
dummy symbol, these diphthongs should be replaced in the training data.

Another problem, already studied by Allein et al. [7], is the disambiguation of the Dutch words die
and dat, which was explained in section 1.2. Further research is needed to determine if the model
proposed in this report more effectively addresses these specific problems compared to the
current state-of-the-art models.

Finally, multi-label classification, such as predicting punctuation, should also be possible. Due to
the higher number of labels, this is a harder task, but the setup used during this study can be
used here as well.

4.2 Impact and Possible Comparisons with Heyman et al. [6]
The approach in this article differs from the one used by Heyman et al. [6] at several points.
Firstly, the structure of the neural network is different, as Heyman et al. [6] used a recurrent
neural network, whereas I made use of an LSTM-powered feed forward neural network.

Secondly, this article does not cover the same set of spelling mistakes as Heyman et al. [6], as
they tried to detect dt-mistakes in the broad sense, while this article focuses on dt-mistakes in the

Wouter Mercelis

International Journal of Computational Linguistics (IJCL), Volume (12): Issue (2): 2021 20
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

narrow sense. Additionally, this paper pays attention to mistakes that result in non-existing verb
forms, whereas Heyman et al. [6] only detect so-called context-dependent mistakes.

Furthermore, there was no need to automatically introduce mistakes to create an evaluation
corpus, as this study had access to student-written texts with real mistakes.

Finally, the model presented in this paper is easily scalable, and does not need many
computational resources, as it was able to be trained in less than a day on a Google Colab
server.

5 SUMMARY
This paper focused on creating a model for detecting dt-mistakes in Dutch sentences. Sentences
were preprocessed in that SpaCy's part-of-speech tagger identified the verbs. One verb per
sentence received a masked ending (the dummy symbol #). A neural network-based model,
based on the ULMFiT transfer learning technique, was trained to classify the sentences as -d, -t
or -dt, providing the verb ending. If the ending did not match the ending written by the author of
the sentence, the system signaled that a dt-mistake was made. The final model needed one day
of training on Google Colab's servers, with a training time of around 20 minutes per epoch, which
is a major benefit. This model achieved high scores on various test data sets, comparable with
the results of Heyman et al. [6], although it is difficult to accurately compare the two approaches.

In the future, more inverted sentences (mainly questions in the second person singular) could be
added to the training data to improve performance predicting the second person singular of verbs
in inverted sentences. Furthermore, the reasons causing the failure of the BERT model for this
task can be researched. Finally, part-of-speech taggers other than spaCy may further improve the
current model.

If the preprocessing is adjusted to a certain extent, the model should be usable, as a practical
implication, for a wide range of other correction tasks as well, such as the die/dat problem
(mentioned above) or the difference between the homophonous diphthongs ei and ij.

The model is thus of great interest for education purposes, as it can form part of a more extensive
spellchecker.

6 APPENDIX: DATA OVERVIEW

Data set Verb Endings

Name Subset d t dt / Total
EUR_100K train 34,088 61,332 11,809 253,324 360,553

 valid 8,704 15,394 3,029 63,011 90,138

 total 42,792 76,726 14,838 316,335 450,691

EUR_100K_NO_/ train 34,088 61,332 11,809 0 107,229

 valid 8,704 15,394 3,029 0 27,127

 total 42,792 76,726 14,838 0 134,356

EUR_100K_EQUAL train 11,809 11,809 11,809 0 35,427

 valid 3,029 3,029 3,029 0 9,087

 total 14,838 14,838 14,838 0 44,514

EUR_FULL train 512,756 925,976 178,211 3,837,637 5,454,580

 valid 128,061 231,347 44,442 959,794 1,363,644

 total 640,817 1,157,323 222,653 4,797,431 6,818,224

EUR_FULL_NO_/ train 512,756 925,976 178,211 0 1,616,943

 valid 128,061 231,347 44,442 0 403,850

 total 640,817 1,157,323 222,653 0 2,020,793

EUR_FULL_EQUAL train 178,211 178,211 178,211 0 534,633

 valid 44,442 44,442 44,442 0 133,326

 total 222,653 222,653 222,653 0 667,959

Wouter Mercelis

International Journal of Computational Linguistics (IJCL), Volume (12): Issue (2): 2021 21
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

DPC_FULL train 116,069 201,673 37,318 706,500 1,061,560

 valid 28,519 50,281 9,332 177,257 265,389

 total 144,588 251,954 46,650 883,757 1,326,949

DPC_FULL_NO_/ train 116,069 201,673 37,318 0 355,060

 valid 28,519 50,281 9,332 0 88,132

 total 144,588 251,954 46,650 0 443,192

DPC_FULL_EQUAL train 37,232 37,232 37,232 0 111,696

 valid 9,418 9,418 9,418 0 28,254

 total 46,650 46,650 46,650 0 139,950

WIKI train 132,530 113,211 21,581 501,889 769,211

 valid 32,878 28,537 5,351 125,536 192,302

 total 165,408 141,748 26,932 627,425 961,513

WIKI_NO_/ train 132,530 113,211 21,581 0 267,322

 valid 32,878 28,537 5,351 0 66,766

 total 165,408 141,748 26,932 0 334,088

WIKI_EQUAL train 21,581 21,581 21,581 0 64,743

 valid 5,351 5,351 5,351 0 16,053

 total 26,932 26,932 26,932 0 80,796

WIKI_NO_/ train 169,762 150,433 58,813 0 379,018

+ DPC_FULL_EQ. valid 42,296 37,955 14,769 0 95,020

 total 212,058 188,398 73,582 0 474,038

WIKI_NO_/ train 310,741 291,422 199,792 0 801,955

+ EURO_FULL_EQ. valid 77,320 72,979 49,793 0 200,092

 total 388,061 364,401 249,585 0 1,002,047

TABLE 5: Overview of the used training data sets. 'EQUAL' denotes that the amounts of -d, -t are -dt are

made equal, 'NO_/' indicates the removal of irrelevant verb endings, which were displayed with a / sign.

7 REFERENCES
[1] L. Salifou, and H. Â Naroua. (2014, Jun.). “Design of A Spell Corrector For Hausa

Language.” International Journal of Computational Linguistics. [On-line]. 5(2), pp. 14-26.
Available: https://www.cscjournals.org/library/manuscriptinfo.php?mc=IJCL-56 [May 5,
2021].

[2] G. Alafang Malema, N. Motlogelwa, B. Okgetheng and O. Mogotlhwane. (2016, Aug.).
“Setswana Verb Analyzer and Generator.” International Journal of Computational
Linguistics. [On-line]. 7(1), pp. 1-11. Available:

https://www.cscjournals.org/library/manuscriptinfo.php?mc=IJCL-73 [May 5, 2021].

[3] J.S. Sumamo, and S. Teferra. (2018, Oct.). “Designing A Rule Based Stemming Algorithm
for Kambaata Language Text.” International Journal of Computational Linguistics. [On-line].
9(2), pp. 41-54. Available: https://www.cscjournals.org/library/manuscriptinfo.php?mc=IJCL-
73 [May 5, 2021].

[4] Z. Liu and Y. Liu. (2016). “Exploiting Unlabeled Data for Neural Grammatical Error
Detection.” arXiv.org. [On-line]. Available: http://search.proquest.com/docview/2080422559/

[Mar. 21, 2021].

[5] Y. Li, A. Anastasopoulos, and A. W. Black. (2020, Jan.). “Towards Minimal Supervision
BERT-based Grammar Error Correction.” ArXiv200103521. [On-line]. Available:

http://arxiv.org/abs/2001.03521 [Mar. 21, 2021].

[6] G. Heyman, I. Vulić, Y. Laevaert, and M.-F. Moens. (2018, Dec.). “Automatic detection and
correction of context-dependent dt-mistakes using neural networks.” Comput. Linguist.
Neth. J. [On-line]. 8, pp. 49–65. Available: https://clinjournal.org/clinj/article/view/79 [Mar.

21, 2021].

Wouter Mercelis

International Journal of Computational Linguistics (IJCL), Volume (12): Issue (2): 2021 22
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

[7] L. Allein, A. Leeuwenberg, and M.-F. Moens. (2020). "Binary and Multitask Classification
Model for Dutch Anaphora Resolution: Die/Dat Prediction." ArXiv. [On-line]. Available:

https://arxiv.org/abs/2001.02943 [Mar. 21, 2021].

[8] C. Leacock, M. Chodorow, M. Gamon, and J. Tetreault. (2014). "Automated Grammatical
Error Detection for Language Learners". (2nd ed). [On-line]. Available:
https://www.morganclaypool.com/doi/abs/10.2200/S00562ED1V01Y201401HLT025 [Mar.
21, 2021].

[9] T. Brants and A. Franz. (2006). "Web 1T 5-gram Version 1 - Linguistic Data Consortium."
2006. [On-line]. Available: https://catalog.ldc.upenn.edu/LDC2006T13 [Mar. 21, 2021].

[10] J. Zhang, Y. Zeng, and B. Starly. (2021, Mar.). “Recurrent neural networks with long term
temporal dependencies in machine tool wear diagnosis and prognosis.” SN Appl. Sci. [On-
line]. 3(4), p. 442. Available: https://link.springer.com/article/10.1007/s42452-021-04427-5
[Apr. 28, 2021]

[11] N. Verhaert and D. Sandra. (2016). “Homofoondominantie veroorzaakt dt-fouten tijdens het
spellen en maakt er ons blind voor tijdens het lezen.” Levende Talen Tijdschr. [On-line].

Available: https://lt-tijdschriften.nl/ojs/index.php/ltt/article/view/1632 [Mar. 21, 2021].

[12] “d / dt / t.” Internet: https://www.vlaanderen.be/taaladvies/d-dt-t, 2021 [Apr. 28, 2021].

[13] H. Schmid. (1997). “Probabilistic Part-of-Speech Tagging Using Decision Trees,” New
Methods in Language Processing.[On-line]. pp. 154–164. Available: https://www.cis.uni-

muenchen.de/~schmid/tools/TreeTagger/data/tree-tagger1.pdf [Mar. 21, 2021].

[14] M. Honnibal and I. Montani. (2017). “spaCy 2: Natural language understanding with Bloom
embeddings, convolutional neural networks and incremental parsing.” [On-line]. Available:
https://sentometrics-research.com/publication/72/ [Mar. 21, 2021].

[15] P. Koehn. (2005). “Europarl: A Parallel Corpus for Statistical Machine Translation.”
Conference Proceedings: the tenth Machine Translation Summit. [On-line]. pp. 79–86.

Available: http://mt-archive.info/MTS-2005-Koehn.pdf [Mar. 21, 2021].

[16] H. Paulussen, L. Macken, W. Vandeweghe, and P. Desmet. (2013). “Dutch Parallel Corpus:
A Balanced Parallel Corpus for Dutch-English and Dutch-French.” [On-line]. pp. 185–199.
Available: https://link.springer.com/chapter/10.1007/978-3-642-30910-6_11 [Mar. 21, 2021].

[17] “Index of /nlwiki/.” Internet: https://dumps.wikimedia.org/nlwiki/, 2021 [Apr. 28, 2021].

[18] “LIIR – Home.” Internet:
http://liir.cs.kuleuven.be/software_pages/dt_correction_dataset_preprocessing.php, 2018
[Mar. 21, 2021].

[19] “Circus Maximus.” Internet: https://www.scholieren.com/verslag/werkstuk-geschiedenis-
circus-maximus, 2007 [Mar. 21, 2021].

[20] “De gevolgen van de ontdekkingsreizen.” Internet:
https://www.scholieren.com/verslag/werkstuk-geschiedenis-de-gevolgen-van-de-
ontdekkingsreizen, 2003 [Mar. 21, 2021].

[21] “Aquaducten.” Internet: https://www.scholieren.com/verslag/werkstuk-latijn-aquaducten,
2021 [Mar. 21, 2021].

[22] “Internationale politiek België.” Internet: https://www.scholieren.com/verslag/opdracht-
geschiedenis-internationale-politiek-belgie, 2004 [Mar. 21, 2021].

Wouter Mercelis

International Journal of Computational Linguistics (IJCL), Volume (12): Issue (2): 2021 23
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php

[23] “Cold Skin.” Internet: https://www.scholieren.com/verslag/boekverslag-engels-cold-skin-
door-steven-herrick, 2010 [Mar. 21, 2021].

[24] J. Howard and S. Ruder. (2018). “Universal Language Model Fine-tuning for Text
Classification.” [On-line]. Available: http://arxiv.org/abs/1801.06146 [Mar. 21, 2021].

[25] B. van der Burgh. "110k Dutch Book Reviews Dataset for Sentiment Analysis." Internet:
https://github.com/benjaminvdb/DBRD, 2019 [Mar. 21, 2021].

[26] “torch.nn - PyTorch 1.5.0 documentation.” Internet: https://pytorch.org/docs/stable/nn.html
[Mar. 21, 2021].

[27] S. Faltl, M. Schimpke, and C. Hackober. "ULMFiT: State-of-the-Art in Text Analysis",
Internet: https://humboldt-
wi.github.io/blog/research/information_systems_1819/group4_ulmfit/, 2019 [Mar. 21, 2021].

[28] “About - fast.ai,” Internet: https://www.fast.ai/about/, 2020 [Mar. 21, 2021].

[29] J. Howard and S. Gugger. (2020, Feb.). “Fastai: A Layered API for Deep Learning.”
Information. 11(2). p. 108. Available: https://www.mdpi.com/2078-2489/11/2/108 [May 4,

2021].

