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Abstract 

 
An attempt was made to carry out an experiment with three plagiarism detection tools (two 
free/open source tools, namely, Ferret and Sherlock, and one commercial web-based software 
called Turnitin) on Clough-Stevenson’s corpus [1] including documents classified in three types of 
plagiarism and one type of non-plagiarism. The experiment was toward Extrinsic/External 
detecting plagiarism. The goal was to observe the performance of the tools on the corpus and 
then to analyze, compare, and discuss the outputs and, finally to see whether the tools’ 
identification of documents is the same as that identified by Clough and Stevenson.  
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1. INTRODUCTION 

Plagiarism, defined as the act of using others´ ideas and words in a text document without 
acknowledging the sources, is one of the most increasing issues in academic communities 
especially for the higher education institutions [2]. The existence of Internet and online search 
engines has advanced the international collaboration in education but at the same time it also has 
raised the plagiarism opportunity. Nowadays, pre-written essays are accessible online through 
the websites, essay banks or paper mills. This technology can be misused by the students and 
lead them to plagiarism. 
 
Motivated by the plagiarism problem, a field namely plagiarism detection arises. Both the 
academic and commercial communities put their effort to detect plagiarism [1]. Plagiarism 
analysis can be distinguished as intrinsic and extrinsic analysis [3]. In intrinsic analysis, the aim is 
to detect plagiarism within the document (i.e. the source does not to be identified); whilst in 
extrinsic analysis, the aim is to detect plagiarism across documents (i.e. comparing suspicious 
documents with their potential sources). 
 
Plagiarism detection methods in natural language originate from diverse areas such as file 
comparison, information retrieval, authorship attribution, file compression, and copy detection. 
These approaches work well to handle text with minimal alterations such as word-for-word 
plagiarism. However, they still have problems in detecting paraphrasing plagiarism, plagiarism of 
ideas, and cross-lingual plagiarism where the text is altered significantly [1]. The academic and 
commercial communities are still in the process of delivering a better plagiarism detection 
solution; see for example the three competitions on plagiarism detection in the recent years: 
PAN´09, PAN´10, and PAN´11. PAN´11 was held in conjunction with 2011 CLEF conference [4]; 
eleven plagiarism detection were evaluated based on the third revised edition of the PAN 
plagiarism corpus PAN-PC-11. Figure 1 shows the overview of important corpus parameters [4]. 
 
Comparing the detection performance measures of plagdet, precision, recall, and granularity of 
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the detectors
2
, Grman and Raven [5] was known as the best-performing detector and Grozea and 

Popescu [6] and Oberreuter et al. [7]  were known as the second and the third best-performing 
tools, respectively (cited in [4]). 
 

 
 
FIGURE 1: A screenshot of the corpus statistics for 26 939 documents and 61 064 plagiarism cases in the 

PAN-PC-11. 

 
In comparison with the performance reported in PAN´09 and PAN´10, a PAN´11 shows a drop in 
the plagdet performance; this result has been attributed to an increased detection difficulty [4]. 
 
There are different plagiarism detection tools among which we can refer to Turnitin, Glatt, Eve2, 
Wordcheck, CopyCatchGold, and so on [8; 9; 10; 11; 12; 13]. 
 
The tools performance is usually based on two methods, statistical, semantical, or both. However, 
the statistical method are better welcomed since they are easily applicable 
 
In this study, an extrinsic plagiarism detection experiment was conducted. The applied detection 
tools were using three tools Ferret [14], Sherlock [15] and Turnitin, which is an online service 
created by iParadigms, LLC.  The rest of this document will explain the details of the tools and 
corpus, discussion of the experiment results, and conclusion of the experiment. 

 
2. THE COURPUS 

In this study, the freely available Clough-Stevenson’s corpus [1] was applied. The corpus consists 
of answers to five short questions on a variety of topics in Computer Science field. The five short 
questions are: 
  
1. What is inheritance in object oriented programming?  

                                                 
2 

 
S: the set of plagiarism in the corpus; R: the set of detection reported by a plagiarism detector for the 
suspicious document; F1: the equally weighted harmonic mean of precision and recall. Plagdet is the 
combination of the other three measures. 
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2. Explain the PageRank algorithm that is used by the Google search engine.  
3. Explain the Vector Space Model that is used for Information Retrieval. 
4. Explain Bayes Theorem from probability theory. 
5. What is dynamic programming? 
 
To simulate plagiarism, for each question, a suitable entry in Wikipedia which contains the 
answer to the question was selected as the source document. In order to represent a variety of 
different degrees of plagiarism, participants were asked to answer the question using one of the 
following models (pp. 7-8): 
 
Near Copy: Participants were asked to answer the questions by performing copy-and-paste 
action from the relevant Wikipedia entry of 200-300 words without any instruction about which 
parts of the article to copy.  
 
Light Revision: Participants were asked to answer the questions by performing copy-and-paste 
action from the relevant Wikipedia entry and they may alter it in some basic ways such as 
substituting words and phrases with synonyms and also paraphrasing. However, they are not 
allowed to alter the order of information found in the sentences. 
 
Heavy Revision: Participants were asked to answer the questions by performing copy-and-paste 
action from the relevant Wikipedia entry and instructed to rephrase the text without any constraint 
about how to alter the text. 
 
Non-plagiarism: Learning materials such as lecture notes or textbooks sections that are relevant 
with the questions were provided to the participants. They were asked to answer the questions by 
using their own knowledge including what they had learned from the materials provided. 
Participants were allowed to look at other materials but Wikipedia to answer the questions. 
 
Accordingly, the corpus consists of 100 documents: five Wikipedia entries and 95 answers 
provided by 19 participants. A breakdown of the number of answers in the corpus can be seen in 
Table 1. The average length of file in the corpus is 208 words and 113 tokens. 59 of the files are 
written by native English speakers and the remaining 36 files by non-native speakers. 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 1: Corpus breakdown 

 

3. THE PLAGIRISM DETECTION TOOLS 
Plagiarism detection tools are useful in terms of detecting and also preventing plagiarism. Since 
there are many tools available now, one should be wise on selecting it according to their need. 
And also, as plagiarism detection software only gives suggestion to the user about the suspicious 
documents, further analysis should be done by human as well as the final decision. 
 
For this study, the three plagiarism detection tools Ferret, Sherlock, and Turnitin were compared 
and analyzed. The systems detect plagiarism based on the statistical methods of matching n-
gram words (adjacent `words´ of input), between the texts. The comparison is carried out 
between all the documents, i.e. every document is compared with every other document. As the 

Category 
Learning Task 

Total 
A B C D E 

Near Copy 4 3 3 4 5 19 

Light Revisions 3 3 4 5 4 19 

Heavy Revisions 3 4 5 4 3 19 

Non-plagiarism 9 9 7 6 7 38 

Total 19 19 19 19 19 95 
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tools read the documents they extract all n-grams of the two documents under the comparison 
and then match them. Afterwards, they calculate the rate of documents similarity based on the 
following formula, where A is “the set of n-grams extracted from one of the documents and B is 
the set of n-grams from the comparing document by [16]. 

 

 
 
3.1. Ferret 
Ferret is a freely available standalone plagiarism detection system developed at the University of 
Hertfordshire. It runs on Windows environment and very easy to install and run. File formats that 
Ferret can process are .txt, .rtf, .doc and .pdf. The algorithm is written in C++. Ferret takes a set 
of documents, converts each text into reference number, set of characteristic trigrams. It 
compares every text with each other based on counting the number of distinct trigrams similar 
between the texts, and produces a list of file-pairs together with the similarity scores that ranked 
from the most similar pair to the least similar one. This count is used to calculate the resemblance 
measure, as the number of similar trigrams in a pair of documents, divided by the total number of 
different trigrams in the pair. Ferret manifests the scores of similarity precisely like 0.90991. The 
numbers were rounded for sake of being simplified for analysis; in this case, for example, it was 
taken as 0.91.  The system allows user to select any pair of texts and do further investigation as 
they will be displayed side by side with similar paragraphs highlighted (similar parts in blue and 
different parts in black). See the Figures 2 and 3. 
 
3.2. Sherlock 
Sherlock is a free and open source plagiarism detection program for essays, computer source 
code files, and other kinds of textual documents in digital form. It turns the texts into digital 
signatures to measure the similarity between the documents. A digital signature is a number 
formed by turning several words (3 by default) in the input into a series of bits and joining those 
bits into a number.  
 

 

 
FIGURE 2: A screenshot of Ferret showing a table of comparison 

 

Sherlock is written in C programming language (Fig. 4) and needs to be compiled before being 
installed either on Unix/Linux or Windows. It is a command-line program and it does not have a 
graphical user interface. Executing a “sherlock *.txt” command will compare all the text files in the 
current directory and produce a list of file-pairs together with the similarity percentage (Fig. 5). 
This output list is not ordered by the similarity percentage. 
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FIGURE 3: A screenshot of Ferret showing the analysis of copying between two texts 

 
Important point to be noted when analyzing the output of Sherlock is the fact that 100% score 
does not imply that the files are identical because the Sherlock program actually throws away 
some data randomly in the process in order to simplify and speed up the match. 
 

 
 

FIGURE 4: A screenshot of Sherlock showing a command-line 
 
 

 
 

FIGURE 5: A screenshot of Sherlock showing the results the similarity of the compared documents 

 
There are four command-line options giving a possibility to change the numbers in the command 
line in order to see different performance results. 
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a) -t threshold%.  The system is showing the files with similarities of 20% by default; the higher 
this threshold the more similar files are printed.  

b) -z zerobits.  The ‘granularity’ of the comparison is 4 by default but it can be changed from 0 to 
31. However, it should be noticed that the higher this number, the less exact the comparison 
will be but the faster, and vice versa. 

c) -n number_of_words.  The default for the system is 3 words (3-gram) form one digital 
signature. We can change the number of words (min 1, max 7); the higher the number the 
slower but more exact the process however “the less likely they are to co-occur in both texts” 
(Specia, 2010), and vice versa. 

d) -o outfile. It is to store the different results, acquired by making some changes in the 
aforementioned program options, in the same folder that the corpus exists.  

 
Example: sherlock -t 80% -z 3 -n 2 -o results.txt *.java (see Fig. 4). 
 
With Sherlock, it is not possible to see what parts of the compared documents are similar. It is 
only possible to see the rate of similarity of the documents in question in percentage (see Fig. 5). 

3.3. Turnitin 
Turnitin is a web-based subscription plagiarism detection service, maintained by a company 
named iParadigms. To use this service, user simply has to log on to Turnitin website without any 
other installation. Turnitin detects material copied from the Internet and also cross-checking of 
submitted essays within a task as well as other text documents in the database. Every submitted 
essay is added to the database and will be used in the future when other essay is submitted. 
Turnitin offers a free restricted trial account that allows user to submit five text documents over 30 
days period. In this trial account, access to the Turnitin database is not given. 
 
In Turnitin, we cannot have, like Ferret, both the documents in one window to see the similarities 
of the compared texts. The only document that is shown is the suspicious text; the parts similar to 
the other document appear in red the distinct parts are in black color (see Fig. 6). 
 

 
 

FIGURE 6: A screenshot of Turnitin showing the results the similarity of the compared documents 

 

4. METHODOLOY 
The experiment was carried out with the three tools on the corpus. The present study did not 
cover all the results reported by the three tools; the focus was only on the results of comparison 
between the students’ documents (tasks a to e) and their related original sources (original a to e). 
The results of comparison between the student’ documents, or in case of Turnitin the comparison 
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with other sources, were left. 
 
For Sherlock, t (threshold) was changed from 0.20 to 0.00 in order to make the tool compatible 
with Ferret and Turnitin which report the similarities from 0.00.  
 
After analyzing the differences and similarities between the three tools, the goal was to find 
whether or not their outputs match the classification of the tasks presented by Clough and 
Stevenson.  
 
As the outputs of all systems appeared in numbers, the Clough-Stevenson’s classification of 
documents (Appendix B) was also needed in numbers; hence, the mean similarity between the 
documents and the Wikipedia articles illustrated by Clough and Stevenson [1] (p.14) was used for 
this purpose. See Figure 7. 
 

 

 
FIGURE 7: mean similarity between the documents and the Wikipedia articles illustrated by Clough and 

Stevenson 

 

5. ANALYSIS AND DISCUSSION  
Appendix A shows the results of all the three systems along with Clough-Stevenson’s 
classification of the documents Ferret and Sherlock, in most cases, reported the results more or 
less the same, but Turnitin’s outputs in many cases were greatly different from the other two, 
usually showing a higher percentage of similarities (Appendix A). In order to investigate the 
reason, The system´s ‘analysis part’ was checked to see the overlapped parts of the two 
documents in order to examine whether or not the tools have matched the compared documents 
properly. It could be realized only with Ferret and Turnitin, because as aforementioned before 
Sherlock has the drawback of not providing a graphical user interface showing the two 
documents with the overlapped and distinct parts; it just reports the percentages results.  
 
It was discovered that Turnitin performs quite well and it is Ferret that does not show the 
expected percentage, because it considers the longer text (for this corpus, the longer is always 
the source [1]) as the base and then looks how much of this text is overlapped by the shorter text 
and the result is shown as the percentage of similarity between the two documents

3
, i.e. if the 

suspicious document is, for example, 100% similar to the original document but its size covers 
only 40% of the original source, Instead of reporting 100% plagiarism, Ferret reports 40% 
plagiarism.  
 
Regarding the fact that Ferret and Sherlock reported a quite similar output it was speculated that 
Sherlock, probably, performs like Ferret. And because of the problems addressed to Ferret and 
Sherlock, the comparison was only made between the Turnitin’s output and Clough-Stevenson’s 
classification. 
 
Analyzing the data in Appendix A, it was discovered that out of 95 documents, Turnitin identified 
61 documents similar to and 34 documents different from Clough-Stevenson’s classification of 
documents. Table 2 illustrates these 34 cases. The system acted properly for all the non-
plagiarized tasks; the outputs match with Clough-Stevenson’s. The differences up to 0.20 
between Turnitin outputs and Clough-Stevenson’s classification of the documents was ignored 
since, for Clough-Stevenson’s classification of the texts, the mean similarity was considered for 

                                                 
3 It is infact the shorter text which must be checked how much of it has been covered by the original text.   
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comparison; however, for Turnitin’s the exact percentage of similarity was taken into account. 
 
Table 2 shows the documents whose rate of plagiarism has been wrongly reported by Turnitin. 
The figures in blue indicate 0.40 ≤ 0.20 differences between the results of the system and the 
Clough and Stevenson´s; and the reds signify a considerable difference (≥ 0.40) between them.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 2: The differences between Turnitin’s output and Clough-Stevenson’s classifications
4
. 

 
In order to simplify the results, the wrong outputs are presented below in table 3, in the way 

                                                 
4 As this table has been, in fact, extracted from the table in Appendix A, the numbers in the left column seem 
out of order. 
 

Document 1 Document 2 
Clough -Stevenson 

Turnitin 

  (mean similarity) 

3 g0pA_taskc.txt orig_taskc.txt 0.56 0.85 

4 g0pA_taskd.txt orig_taskd.txt 0.34 0.00 

11 g0pC_taska.txt orig_taska.txt 0.34 0.00 

15 g0pC_taske.txt orig_taske.txt 0.56 0.89 

17 g0pD_taskb.txt orig_taskb.txt 0.56   0.76* 

18 g0pD_taskc.txt orig_taskc.txt 0.34 0.58 

21 g0pE_taska.txt orig_taska.txt 0.56 0.99 

22 g0pE_taskb.txt orig_taskb.txt 0.34 0.66 

27 g1pA_taskb.txt orig_taskb.txt 0.34 0.00 

28 g1pA_taskc.txt orig_taskc.txt 0.56 0.26 

29 g1pA_taskd.txt orig_taskd.txt 0.85 0.34 

34 g1pB_taskd.txt orig_taskd.txt 0.56 0.35 

35 g1pB_taske.txt orig_taske.txt 0.85 0.50 

36 g1pD_taska.txt orig_taska.txt 0.56 0.34 

42 g2pA_taskb.txt orig_taskb.txt 0.34 0.00 

43 g2pA_taskc.txt orig_taskc.txt 0.56   0.78* 

44 g2pA_taskd.txt orig_taskd.txt 0.85 0.31 

48 g2pB_taskc.txt orig_taskc.txt 0.34 0.00 

49 g2pB_taskd.txt orig_taskd.txt 0.56 0.93 

51 g2pC_taska.txt orig_taska.txt 0.85   0.66* 

54 g2pC_taskd.txt orig_taskd.txt 0.34 0.56 

55 g2pC_taske.txt orig_taske.txt 0.56 0.00 

62 g3pA_taskb.txt orig_taskb.txt 0.34 0.00 

68 g3pB_taskc.txt orig_taskc.txt 0.34 0.00 

69 g3pB_taskd.txt orig_taskd.txt 0.56 0.30 

75 g3pC_taske.txt orig_taske.txt 0.56   0.78* 

78 g4pB_taskc.txt orig_taskc.txt 0.34 0.61 

79 g4pB_taskd.txt orig_taskd.txt 0.56 0.82 

84 g4pC_taskd.txt orig_taskd.txt 0.34 0.97 

85 g4pC_taske.txt orig_taske.txt 0.56 0.91 

86 g4pD_taska.txt orig_taska.txt 0.56 0.28 

91 g4pE_taska.txt orig_taska.txt 0.34 0.00 

92 g4pE_taskb.txt orig_taskb.txt 0.56 0.93 

93 g4pE_taskc.txt orig_taskc.txt 0.85 0.32 
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Clough and Stevenson classified the texts (near-copy, heavy revision, light revision, and non-
plagiarism). If the differences between the Turnitin´s figures are higher than 20 it is an indication 
of changing the level of the text in the classification of texts; that is, the text with 0.56 rate of 
plagiarism, being classified by Clough and Stevenson as highly revised, was seen in turnitin´s 
outputs with 0.35 rate of plagiarism; so it was reported as a lightly revised text in turnitin´s results. 
It can be concluded that the blue colors mean texts with one level higher or lower than the real 
classification of the text, and the red color identifies two levels higher or lower than the accurate 
position; except for light revision and near-copy texts which the difference of the rate of their 
plagiarism is ≤0.30); they have been marked with (*).  The differences are summarized in table 3 
below. 

 
 Turnitin´s 

Clough & 
Stevenson´s 

Near-copy High revision Light revision Non-plagiarism 

Near-copy − − − − 

High revision 8 − 4 1 

Light revision 1 5 − 7 

Non-plagiarism − 3 1 − 

 
TABLE 3: Differences of texts classification between Turnitin´s outputs and Clough and Stevenson´s 

classification of texts 

 
As noticed in table 3, the noises produced by Turnitin are as follows: 8 highly revised texts were 
reported near-copy, 4 were reported lightly revised, and 1 as non-plagiarized; one lightly revised 
texts was reported near-copy, 5 were reported as highly revised, and 7 as non-plagiarized; and  3 
non-plagiarized texts were reported as highly revised and 1 as lightly revised.  
 
Regarding the fact that Ferret and Sherlock reported a quite similar output it was speculated that 
Sherlock, probably, performs like Ferret. Although they did not report the results in a manner 
expected (like Turnitin), their outputs were evaluated in terms of precision and recall (Table 4). 
Only file-pairs of answer and source within the same task were included for the evaluation.  
 
As noticed in table 4, both Ferret and Sherlock give a perfect precision score for all cases, 
starting from similarity score 0.1 for Ferret and similarity percentage 10% for Sherlock, which 
means all captured documents are indeed plagiarism. However, both systems give a very low 
recall score when thresholds are set very high (0.5 for Ferret and 50% for Sherlock). As the 
thresholds are set lower, the recall scores are getting higher. At similarity score threshold 0.1, 
recall score of Ferret is 0.68421053 where 39 out of 57 cases of plagiarism detected. At similarity 
percentage threshold 10%, recall score of Sherlock is 0.57894737 where 33 out of 57 cases of 
plagiarism detected. 
 
 
 
 
 
 
 
 
 
 
 

TABLE 4: Precision and Recall of Ferret and Sherlock Outputs 

 
In Ferret output, the majorities of the file-pairs captured with similarity score ≥ 0.2 are near copy 
and light revision plagiarism. Among 26 suspicious documents, only four of them are categorized 
as heavy revision and all these four texts are written by non-native English speakers. The file-
pairs captured with similarity score 0.1-0.2 vary between near copy, light revision, and heavy 

Ferret Sherlock 

 Precision Recall  Precision Recall 

≥ 0.5 1 0.14035088 ≥ 50% 1 0.10526316 

≥ 0.4 1 0.19298246 ≥ 40% 1 0.1754386 

≥ 0.3 1 0.31578947 ≥ 30% 1 0.22807018 

≥ 0.2 1 0.45614035 ≥ 20% 1 0.36842105 

≥ 0.1 1 0.68421053 ≥ 10% 1 0.57894737 
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revision plagiarism. All of the non-plagiarism answers have similarity score below 0.03. There are 
also three heavy revision plagiarism texts within this range as well as one near copy plagiarism 
text written by a non-native English speaker but he/she claims a very good knowledge of the 
question topic and the question is perceived as a not difficult one. There is only one document 
that contains plagiarism but has zero similarity score against its original. 
 
Similar to Ferret, in Sherlock output, the majorities of the file-pairs captured with similarity 
percentage ≥ 30% are near copy and light revision plagiarism. Only one of 13 suspicious 
documents is a heavy revision and it is written by a non-native English speaker. The rest of the 
heavy plagiarism answers have similarity percentage below 30% along with the other near copy 
and light revision plagiarism. There are 15 texts which have similarity percentage between 1%-
9% and three of them are non-plagiarism. Setting the threshold to 1% will give 45 (out of 57) 
documents that contains plagiarism with different degrees and three non-plagiarism documents, 
which implies there are 12 documents that actually contains plagiarism but assigned a similarity 
percentage of zero. 
 

6. CONCLUSION 
In this paper it was tried to reveal some strengths and weaknesses of three plagiarism detection 
tools, namely, Sherlock, Ferret, and Turnitin. They were compared according to their features and 
performances. The criterion for selecting these tools for this study was to discover how the easily 
available or free/open source tools are performing and at the end which of them can be 
considered the best. Since one of the advantages of open source tools is that we can improve 
them in order to meet our goals. It appeared that Ferret and Sherlock, in most cases, produce the 
same results in plagiarism detection performance; however, Turnitin reported the results with 
great difference from the other two tools: It showed a higher percentage of similarities between 
the documents and the source. After investigating the reason (just checked with Ferret and 
Turnitin, cause Sherlock does not provide a view of the two documents with the overlapped and 
distinct parts), it was discovered that Turnitin performs quite acceptable and it is Ferret that does 
not show the expected percentage; it considers the longer text (for this corpus the longer is 
always the source) as the base and then looks how much of this text is overlapped by the shorter 
text and the result is shown as the percentage of similarity between the two documents, and this 
leads to wrong results. Therefore, there is always a need for human intervention to make a lot of 
effort to check if the output reports a real percentage of plagiarism. From this it can be also 
speculated that Sherlock does not manifest the results properly. Although they did not report the 
results in a manner expected (like Turnitin), their outputs were evaluated in terms of precision and 
recall. 
 
Both Ferret and Sherlock give a perfect precision score for all cases, which means all captured 
documents are indeed plagiarism. However, both systems give a very low recall score when 
thresholds are set very high. As the thresholds are set lower, the recall scores are getting higher.  
 

7. Future work 
A change in Ferret system program can probably solve the problem of giving wrong percentage, 
because its problem seems just in giving the non-intended percentage, and it works well in 
matching the 3-grams. One negative point of Sherlock is the user interface; It does not have a 
graphical user interface, i.e., it does not manifest the content of the texts in condition we need to 
analyze the output. It is very important that a user be able to easily compare the parts that are 
marked similar. For this purpose it is better that the tool displays the comparing files next to each 
other with highlighting similar parts  
 
The reliability of the Clough-Stevenson’s corpus, as the only base of evaluation, is also 
questionable.  
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APPENDICES 
 

APPENDIX A: The results shown by the three systems & Clough and Stevenson´s mean similarity of 
documents 

  

Documents Plagiarism detection tools 

Document 1 Document 2 
Clough-Stevenson 

Ferret Sherlock Turnitin 
(mean similarity) 

1 g0pA_taska.txt          orig_taska.txt 0.05 0.00 0.00 0.00 
2 g0pA_taskb.txt   orig_taskb.txt 0.85 0.38 0.27 1.00 
3 g0pA_taskc.txt    orig_taskc.txt 0.56 0.42 0.25 0.85 
4 g0pA_taskd.txt   orig_taskd.txt 0.34 0.06 0.00 0.00 
5 g0pA_taske.txt   orig_taske.txt 0.05 0.00 0.00 0.00 
6 g0pB_taska.txt    orig_taska.txt 0.05 0.00 0.00 0.00 
7 g0pB_taskb.txt    orig_taskb.txt 0.05 0.01 0.00 0.00 
8 g0pB_taskc.txt    orig_taskc.txt 0.85 0.60 0.71 0.74 
9 g0pB_taskd.txt    orig_taskd.txt 0.56 0.22 0.16 0.58 

10 g0pB_taske.txt    orig_taske.txt 0.34 0.11 0.15 0.49 
11 g0pC_taska.txt    orig_taska.txt 0.34 0.05 0.00 0.00 
12 g0pC_taskb.txt   orig_taskb.txt 0.05 0.00 0.00 0.00 
13 g0pC_taskc.txt   orig_taskc.txt 0.05 0.00 0.00 0.00 
14 g0pC_taskd.txt   orig_taskd.txt 0.85 0.42 0.34 0.97 
15 g0pC_taske.txt  orig_taske.txt 0.56 0.18 0.15 0.89 
16 g0pD_taska.txt   orig_taska.txt 0.85 0.39 0.19 1.00 
17 g0pD_taskb.txt   orig_taskb.txt 0.56 0.08 0.02 0.76 
18 g0pD_taskc.txt   orig_taskc.txt 0.34 0.22 0.20 0.58 
19 g0pD_taskd.txt   orig_taskd.txt 0.05 0.00 0.00 0.00 
20 g0pD_taske.txt   orig_taske.txt 0.05 0.00 0.00 0.00 
21 g0pE_taska.txt orig_taska.txt 0.56 0.90 0.81 0.99 
22 g0pE_taskb.txt orig_taskb.txt 0.34 0.10 0.05 0.66 
23 g0pE_taskc.txt orig_taskc.txt 0.05 0.00 0.00 0.00 
24 g0pE_taskd.txt orig_taskd.txt 0.05 0.00 0.00 0.00 
25 g0pE_taske.txt orig_taske.txt 0.85 0.18 0.13 1.00 
26 g1pA_taska.txt orig_taska.txt 0.05 0.00 0.00 0.00 
27 g1pA_taskb.txt orig_taskb.txt 0.34 0.02 0.00 0.00 
28 g1pA_taskc.txt orig_taskc.txt 0.56 0.10 0.00 0.26 
29 g1pA_taskd.txt orig_taskd.txt 0.85 0.18 0.12 0.34 
30 g1pA_taske.txt orig_taske.txt 0.05 0.01 0.00 0.00 
31 g1pB_taska.txt orig_taska.txt 0.05 0.00 0.00 0.00 
32 g1pB_taskb.txt orig_taskb.txt 0.05 0.00 0.00 0.00 
33 g1pB_taskc.txt orig_taskc.txt 0.34 0.14 0.03 0.32 
34 g1pB_taskd.txt orig_taskd.txt 0.56 0.09 0.03 0.35 
35 g1pB_taske.txt orig_taske.txt 0.85 0.22 0.16 0.50 
36 g1pD_taska.txt orig_taska.txt 0.56 0.09 0.05 0.34 
37 g1pD_taskb.txt orig_taskb.txt 0.85 0.11 0.10 0.88 
38 g1pD_taskc.txt orig_taskc.txt 0.05 0.00 0.00 0.00 
39 g1pD_taskd.txt orig_taskd.txt 0.05 0.02 0.06 0.00 
40 g1pD_taske.txt orig_taske.txt 0.34 0.02 0.02 0.00 
41 g2pA_taska.txt orig_taska.txt 0.05 0.00 0.00 0.00 
42 g2pA_taskb.txt orig_taskb.txt 0.34 0.07 0.03 0.00 
43 g2pA_taskc.txt orig_taskc.txt 0.56 0.41 0.47 0.78 
44 g2pA_taskd.txt orig_taskd.txt 0.85 0.22 0.25 0.31 
45 g2pA_taske.txt orig_taske.txt 0.05 0.00 0.00 0.00 
46 g2pB_taska.txt orig_taska.txt 0.05 0.00 0.00 0.00 
47 g2pB_taskb.txt orig_taskb.txt 0.05 0.00 0.00 0.00 
48 g2pB_taskc.txt orig_taskc.txt 0.34 0.00 0.07 0.00 
49 g2pB_taskd.txt orig_taskd.txt 0.56 0.57 0.58 0.93 
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APPENDIX B: The Clough-Stevenson’s classification of the level of plagiarism (Plg.) in documents 

Documents Plg. Documents Plg. Documents Plg. Documents Plg. 

g0pA_taska.txt non g0pE_taske.txt cut g2pB_taskd.txt light g3pC_taskc.txt non 

g0pA_taskb.txt cut g1pA_taska.txt non g2pB_taske.txt cut g3pC_taskd.txt heavy 

g0pA_taskc.txt light g1pA_taskb.txt heavy g2pC_taska.txt cut g3pC_taske.txt light 

g0pA_taskd.txt heavy g1pA_taskc.txt light g2pC_taskb.txt non g4pB_taska.txt non 

g0pA_taske.txt non g1pA_taskd.txt cut g2pC_taskc.txt non g4pB_taskb.txt non 

g0pB_taska.txt non g1pA_taske.txt non g2pC_taskd.txt heavy g4pB_taskc.txt heavy 

g0pB_taskb.txt non g1pB_taska.txt non g2pC_taske.txt light g4pB_taskd.txt light 

g0pB_taskc.txt cut g1pB_taskb.txt non g2pE_taska.txt heavy g4pB_taske.txt cut 

g0pB_taskd.txt light g1pB_taskc.txt heavy g2pE_taskb.txt light g4pC_taska.txt cut 

g0pB_taske.txt heavy g1pB_taskd.txt light g2pE_taskc.txt cut g4pC_taskb.txt non 

50 g2pB_taske.txt orig_taske.txt 0.85 0.50 0.38 1.00 
51 g2pC_taska.txt orig_taska.txt 0.85 0.34 0.45 0.66 
52 g2pC_taskb.txt orig_taskb.txt 0.05 0.01 0.00 0.00 
53 g2pC_taskc.txt orig_taskc.txt 0.05 0.02 0.00 0.00 
54 g2pC_taskd.txt orig_taskd.txt 0.34 0.15 0.16 0.56 
55 g2pC_taske.txt orig_taske.txt 0.56 0.04 0.05 0.00 
56 g2pE_taska.txt orig_taska.txt 0.34 0.31 0.26 0.30 
57 g2pE_taskb.txt orig_taskb.txt 0.56 0.13 0.02 0.62 
58 g2pE_taskc.txt orig_taskc.txt 0.85 0.00 0.00 0.78 
59 g2pE_taskd.txt orig_taskd.txt 0.05 0.00 0.00 0.00 
60 g2pE_taske.txt orig_taske.txt 0.05 0.01 0.00 0.00 
61 g3pA_taska.txt orig_taska.txt 0.05 0.01 0.03 0.00 
62 g3pA_taskb.txt orig_taskb.txt 0.34 0.06 0.02 0.00 
63 g3pA_taskc.txt orig_taskc.txt 0.56 0.27 0.22 0.55 
64 g3pA_taskd.txt orig_taskd.txt 0.85 0.94 0.62 1.00 
65 g3pA_taske.txt orig_taske.txt 0.05 0.00 0.00 0.00 
66 g3pB_taska.txt orig_taska.txt 0.05 0.00 0.00 0.00 
67 g3pB_taskb.txt orig_taskb.txt 0.05 0.00 0.00 0.00 
68 g3pB_taskc.txt orig_taskc.txt 0.34 0.07 0.03 0.00 
69 g3pB_taskd.txt orig_taskd.txt 0.56 0.08 0.00 0.30 
70 g3pB_taske.txt orig_taske.txt 0.85 0.24 0.19 1.00 
71 g3pC_taska.txt orig_taska.txt 0.85 0.38 0.14 0.99 
72 g3pC_taskb.txt orig_taskb.txt 0.05 0.00 0.00 0.00 
73 g3pC_taskc.txt orig_taskc.txt 0.05 0.00 0.00 0.00 
74 g3pC_taskd.txt orig_taskd.txt 0.34 0.11 0.00 0.52 
75 g3pC_taske.txt orig_taske.txt 0.56 0.09 0.00 0.78 
76 g4pB_taska.txt orig_taska.txt 0.05 0.01 0.00 0.00 
77 g4pB_taskb.txt orig_taskb.txt 0.05 0.00 0.00 0.00 
78 g4pB_taskc.txt orig_taskc.txt 0.34 0.27 0.21 0.61 
79 g4pB_taskd.txt orig_taskd.txt 0.56 0.28 0.17 0.82 
80 g4pB_taske.txt orig_taske.txt 0.85 0.55 0.41 0.93 
81 g4pC_taska.txt orig_taska.txt 0.85 0.90 0.77 0.89 
82 g4pC_taskb.txt orig_taskb.txt 0.05 0.00 0.00 0.00 
83 g4pC_taskc.txt orig_taskc.txt 0.05 0.00 0.00 0.00 
84 g4pC_taskd.txt orig_taskd.txt 0.34 0.80 0.85 0.97 
85 g4pC_taske.txt orig_taske.txt 0.56 0.36 0.40 0.91 
86 g4pD_taska.txt orig_taska.txt 0.56 0.09 0.10 0.28 
87 g4pD_taskb.txt orig_taskb.txt 0.85 0.00 0.00 0.93 
88 g4pD_taskc.txt orig_taskc.txt 0.05 0.01 0.00 0.00 
89 g4pD_taskd.txt orig_taskd.txt 0.05 0.00 0.00 0.00 
90 g4pD_taske.txt orig_taske.txt 0.34 0.15 0.08 0.51 
91 g4pE_taska.txt orig_taska.txt 0.34 0.01 0.00 0.00 
92 g4pE_taskb.txt orig_taskb.txt 0.56 0.35 0.35 0.93 
93 g4pE_taskc.txt orig_taskc.txt 0.85 0.16 0.26 0.32 
94 g4pE_taskd.txt orig_taskd.txt 0.05 0.00 0.00 0.00 
95 g4pE_taske.txt orig_taske.txt 0.05 0.02 0.04 0.00 
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g0pC_taska.txt heavy g1pB_taske.txt cut g2pE_taskd.txt non g4pC_taskc.txt non 

g0pC_taskb.txt non g1pD_taska.txt light g2pE_taske.txt non g4pC_taskd.txt heavy 

g0pC_taskc.txt non g1pD_taskb.txt cut g3pA_taska.txt non g4pC_taske.txt light 

g0pC_taskd.txt cut g1pD_taskc.txt non g3pA_taskb.txt heavy g4pD_taska.txt light 

g0pC_taske.txt light g1pD_taskd.txt non g3pA_taskc.txt light g4pD_taskb.txt cut 

g0pD_taska.txt cut g1pD_taske.txt heavy g3pA_taskd.txt cut g4pD_taskc.txt non 

g0pD_taskb.txt light g2pA_taska.txt non g3pA_taske.txt non g4pD_taskd.txt non 

g0pD_taskc.txt heavy g2pA_taskb.txt heavy g3pB_taska.txt non g4pD_taske.txt heavy 

g0pD_taskd.txt non g2pA_taskc.txt light g3pB_taskb.txt non g4pE_taska.txt heavy 

g0pD_taske.txt non g2pA_taskd.txt cut g3pB_taskc.txt heavy g4pE_taskb.txt light 

g0pE_taska.txt light g2pA_taske.txt non g3pB_taskd.txt light g4pE_taskc.txt cut 

g0pE_taskb.txt heavy g2pB_taska.txt non g3pB_taske.txt cut g4pE_taskd.txt non 

g0pE_taskc.txt non g2pB_taskb.txt non g3pC_taska.txt cut g4pE_taske.txt non 

g0pE_taskd.txt non g2pB_taskc.txt heavy g3pC_taskb.txt non 

 

 
 
 


