
Mitra Shahabi

International Journal of Computational Linguistics (IJCL), Volume (3) : Issue (1) : 2012 53

Comparing Three Plagiarism Tools
(Ferret, Sherlock, and Turnitin)

Mitra Shahabi
1
 mitra.shahabi@ua.pt

Department of Language and Culture
University of Aveiro
Aveiro, 3800-356, Portugal

Abstract

An attempt was made to carry out an experiment with three plagiarism detection tools (two
free/open source tools, namely, Ferret and Sherlock, and one commercial web-based software
called Turnitin) on Clough-Stevenson’s corpus [1] including documents classified in three types of
plagiarism and one type of non-plagiarism. The experiment was toward Extrinsic/External
detecting plagiarism. The goal was to observe the performance of the tools on the corpus and
then to analyze, compare, and discuss the outputs and, finally to see whether the tools’
identification of documents is the same as that identified by Clough and Stevenson.

Keywords: Plagiarism detection tool, Ferret, Sherlock, Turnitin, Clough-Stevenson’s corpus.

1. INTRODUCTION

Plagiarism, defined as the act of using others´ ideas and words in a text document without
acknowledging the sources, is one of the most increasing issues in academic communities
especially for the higher education institutions [2]. The existence of Internet and online search
engines has advanced the international collaboration in education but at the same time it also has
raised the plagiarism opportunity. Nowadays, pre-written essays are accessible online through
the websites, essay banks or paper mills. This technology can be misused by the students and
lead them to plagiarism.

Motivated by the plagiarism problem, a field namely plagiarism detection arises. Both the
academic and commercial communities put their effort to detect plagiarism [1]. Plagiarism
analysis can be distinguished as intrinsic and extrinsic analysis [3]. In intrinsic analysis, the aim is
to detect plagiarism within the document (i.e. the source does not to be identified); whilst in
extrinsic analysis, the aim is to detect plagiarism across documents (i.e. comparing suspicious
documents with their potential sources).

Plagiarism detection methods in natural language originate from diverse areas such as file
comparison, information retrieval, authorship attribution, file compression, and copy detection.
These approaches work well to handle text with minimal alterations such as word-for-word
plagiarism. However, they still have problems in detecting paraphrasing plagiarism, plagiarism of
ideas, and cross-lingual plagiarism where the text is altered significantly [1]. The academic and
commercial communities are still in the process of delivering a better plagiarism detection
solution; see for example the three competitions on plagiarism detection in the recent years:
PAN´09, PAN´10, and PAN´11. PAN´11 was held in conjunction with 2011 CLEF conference [4];
eleven plagiarism detection were evaluated based on the third revised edition of the PAN
plagiarism corpus PAN-PC-11. Figure 1 shows the overview of important corpus parameters [4].

Comparing the detection performance measures of plagdet, precision, recall, and granularity of

1 PhD student in Translation with scholarship from Fundação para a Ciência e a Tecnologia (FCT) (Portugal),
with reference number SFRH/BD/60210/2009

Mitra Shahabi

International Journal of Computational Linguistics (IJCL), Volume (3) : Issue (1) : 2012 54

the detectors
2
, Grman and Raven [5] was known as the best-performing detector and Grozea and

Popescu [6] and Oberreuter et al. [7] were known as the second and the third best-performing
tools, respectively (cited in [4]).

FIGURE 1: A screenshot of the corpus statistics for 26 939 documents and 61 064 plagiarism cases in the

PAN-PC-11.

In comparison with the performance reported in PAN´09 and PAN´10, a PAN´11 shows a drop in
the plagdet performance; this result has been attributed to an increased detection difficulty [4].

There are different plagiarism detection tools among which we can refer to Turnitin, Glatt, Eve2,
Wordcheck, CopyCatchGold, and so on [8; 9; 10; 11; 12; 13].

The tools performance is usually based on two methods, statistical, semantical, or both. However,
the statistical method are better welcomed since they are easily applicable

In this study, an extrinsic plagiarism detection experiment was conducted. The applied detection
tools were using three tools Ferret [14], Sherlock [15] and Turnitin, which is an online service
created by iParadigms, LLC. The rest of this document will explain the details of the tools and
corpus, discussion of the experiment results, and conclusion of the experiment.

2. THE COURPUS

In this study, the freely available Clough-Stevenson’s corpus [1] was applied. The corpus consists
of answers to five short questions on a variety of topics in Computer Science field. The five short
questions are:

1. What is inheritance in object oriented programming?

2

S: the set of plagiarism in the corpus; R: the set of detection reported by a plagiarism detector for the
suspicious document; F1: the equally weighted harmonic mean of precision and recall. Plagdet is the
combination of the other three measures.

Mitra Shahabi

International Journal of Computational Linguistics (IJCL), Volume (3) : Issue (1) : 2012 55

2. Explain the PageRank algorithm that is used by the Google search engine.
3. Explain the Vector Space Model that is used for Information Retrieval.
4. Explain Bayes Theorem from probability theory.
5. What is dynamic programming?

To simulate plagiarism, for each question, a suitable entry in Wikipedia which contains the
answer to the question was selected as the source document. In order to represent a variety of
different degrees of plagiarism, participants were asked to answer the question using one of the
following models (pp. 7-8):

Near Copy: Participants were asked to answer the questions by performing copy-and-paste
action from the relevant Wikipedia entry of 200-300 words without any instruction about which
parts of the article to copy.

Light Revision: Participants were asked to answer the questions by performing copy-and-paste
action from the relevant Wikipedia entry and they may alter it in some basic ways such as
substituting words and phrases with synonyms and also paraphrasing. However, they are not
allowed to alter the order of information found in the sentences.

Heavy Revision: Participants were asked to answer the questions by performing copy-and-paste
action from the relevant Wikipedia entry and instructed to rephrase the text without any constraint
about how to alter the text.

Non-plagiarism: Learning materials such as lecture notes or textbooks sections that are relevant
with the questions were provided to the participants. They were asked to answer the questions by
using their own knowledge including what they had learned from the materials provided.
Participants were allowed to look at other materials but Wikipedia to answer the questions.

Accordingly, the corpus consists of 100 documents: five Wikipedia entries and 95 answers
provided by 19 participants. A breakdown of the number of answers in the corpus can be seen in
Table 1. The average length of file in the corpus is 208 words and 113 tokens. 59 of the files are
written by native English speakers and the remaining 36 files by non-native speakers.

TABLE 1: Corpus breakdown

3. THE PLAGIRISM DETECTION TOOLS
Plagiarism detection tools are useful in terms of detecting and also preventing plagiarism. Since
there are many tools available now, one should be wise on selecting it according to their need.
And also, as plagiarism detection software only gives suggestion to the user about the suspicious
documents, further analysis should be done by human as well as the final decision.

For this study, the three plagiarism detection tools Ferret, Sherlock, and Turnitin were compared
and analyzed. The systems detect plagiarism based on the statistical methods of matching n-
gram words (adjacent `words´ of input), between the texts. The comparison is carried out
between all the documents, i.e. every document is compared with every other document. As the

Category
Learning Task

Total
A B C D E

Near Copy 4 3 3 4 5 19

Light Revisions 3 3 4 5 4 19

Heavy Revisions 3 4 5 4 3 19

Non-plagiarism 9 9 7 6 7 38

Total 19 19 19 19 19 95

Mitra Shahabi

International Journal of Computational Linguistics (IJCL), Volume (3) : Issue (1) : 2012 56

tools read the documents they extract all n-grams of the two documents under the comparison
and then match them. Afterwards, they calculate the rate of documents similarity based on the
following formula, where A is “the set of n-grams extracted from one of the documents and B is
the set of n-grams from the comparing document by [16].

3.1. Ferret
Ferret is a freely available standalone plagiarism detection system developed at the University of
Hertfordshire. It runs on Windows environment and very easy to install and run. File formats that
Ferret can process are .txt, .rtf, .doc and .pdf. The algorithm is written in C++. Ferret takes a set
of documents, converts each text into reference number, set of characteristic trigrams. It
compares every text with each other based on counting the number of distinct trigrams similar
between the texts, and produces a list of file-pairs together with the similarity scores that ranked
from the most similar pair to the least similar one. This count is used to calculate the resemblance
measure, as the number of similar trigrams in a pair of documents, divided by the total number of
different trigrams in the pair. Ferret manifests the scores of similarity precisely like 0.90991. The
numbers were rounded for sake of being simplified for analysis; in this case, for example, it was
taken as 0.91. The system allows user to select any pair of texts and do further investigation as
they will be displayed side by side with similar paragraphs highlighted (similar parts in blue and
different parts in black). See the Figures 2 and 3.

3.2. Sherlock
Sherlock is a free and open source plagiarism detection program for essays, computer source
code files, and other kinds of textual documents in digital form. It turns the texts into digital
signatures to measure the similarity between the documents. A digital signature is a number
formed by turning several words (3 by default) in the input into a series of bits and joining those
bits into a number.

FIGURE 2: A screenshot of Ferret showing a table of comparison

Sherlock is written in C programming language (Fig. 4) and needs to be compiled before being
installed either on Unix/Linux or Windows. It is a command-line program and it does not have a
graphical user interface. Executing a “sherlock *.txt” command will compare all the text files in the
current directory and produce a list of file-pairs together with the similarity percentage (Fig. 5).
This output list is not ordered by the similarity percentage.

Mitra Shahabi

International Journal of Computational Linguistics (IJCL), Volume (3) : Issue (1) : 2012 57

FIGURE 3: A screenshot of Ferret showing the analysis of copying between two texts

Important point to be noted when analyzing the output of Sherlock is the fact that 100% score
does not imply that the files are identical because the Sherlock program actually throws away
some data randomly in the process in order to simplify and speed up the match.

FIGURE 4: A screenshot of Sherlock showing a command-line

FIGURE 5: A screenshot of Sherlock showing the results the similarity of the compared documents

There are four command-line options giving a possibility to change the numbers in the command
line in order to see different performance results.

Mitra Shahabi

International Journal of Computational Linguistics (IJCL), Volume (3) : Issue (1) : 2012 58

a) -t threshold%. The system is showing the files with similarities of 20% by default; the higher
this threshold the more similar files are printed.

b) -z zerobits. The ‘granularity’ of the comparison is 4 by default but it can be changed from 0 to
31. However, it should be noticed that the higher this number, the less exact the comparison
will be but the faster, and vice versa.

c) -n number_of_words. The default for the system is 3 words (3-gram) form one digital
signature. We can change the number of words (min 1, max 7); the higher the number the
slower but more exact the process however “the less likely they are to co-occur in both texts”
(Specia, 2010), and vice versa.

d) -o outfile. It is to store the different results, acquired by making some changes in the
aforementioned program options, in the same folder that the corpus exists.

Example: sherlock -t 80% -z 3 -n 2 -o results.txt *.java (see Fig. 4).

With Sherlock, it is not possible to see what parts of the compared documents are similar. It is
only possible to see the rate of similarity of the documents in question in percentage (see Fig. 5).

3.3. Turnitin
Turnitin is a web-based subscription plagiarism detection service, maintained by a company
named iParadigms. To use this service, user simply has to log on to Turnitin website without any
other installation. Turnitin detects material copied from the Internet and also cross-checking of
submitted essays within a task as well as other text documents in the database. Every submitted
essay is added to the database and will be used in the future when other essay is submitted.
Turnitin offers a free restricted trial account that allows user to submit five text documents over 30
days period. In this trial account, access to the Turnitin database is not given.

In Turnitin, we cannot have, like Ferret, both the documents in one window to see the similarities
of the compared texts. The only document that is shown is the suspicious text; the parts similar to
the other document appear in red the distinct parts are in black color (see Fig. 6).

FIGURE 6: A screenshot of Turnitin showing the results the similarity of the compared documents

4. METHODOLOY
The experiment was carried out with the three tools on the corpus. The present study did not
cover all the results reported by the three tools; the focus was only on the results of comparison
between the students’ documents (tasks a to e) and their related original sources (original a to e).
The results of comparison between the student’ documents, or in case of Turnitin the comparison

Mitra Shahabi

International Journal of Computational Linguistics (IJCL), Volume (3) : Issue (1) : 2012 59

with other sources, were left.

For Sherlock, t (threshold) was changed from 0.20 to 0.00 in order to make the tool compatible
with Ferret and Turnitin which report the similarities from 0.00.

After analyzing the differences and similarities between the three tools, the goal was to find
whether or not their outputs match the classification of the tasks presented by Clough and
Stevenson.

As the outputs of all systems appeared in numbers, the Clough-Stevenson’s classification of
documents (Appendix B) was also needed in numbers; hence, the mean similarity between the
documents and the Wikipedia articles illustrated by Clough and Stevenson [1] (p.14) was used for
this purpose. See Figure 7.

FIGURE 7: mean similarity between the documents and the Wikipedia articles illustrated by Clough and

Stevenson

5. ANALYSIS AND DISCUSSION
Appendix A shows the results of all the three systems along with Clough-Stevenson’s
classification of the documents Ferret and Sherlock, in most cases, reported the results more or
less the same, but Turnitin’s outputs in many cases were greatly different from the other two,
usually showing a higher percentage of similarities (Appendix A). In order to investigate the
reason, The system´s ‘analysis part’ was checked to see the overlapped parts of the two
documents in order to examine whether or not the tools have matched the compared documents
properly. It could be realized only with Ferret and Turnitin, because as aforementioned before
Sherlock has the drawback of not providing a graphical user interface showing the two
documents with the overlapped and distinct parts; it just reports the percentages results.

It was discovered that Turnitin performs quite well and it is Ferret that does not show the
expected percentage, because it considers the longer text (for this corpus, the longer is always
the source [1]) as the base and then looks how much of this text is overlapped by the shorter text
and the result is shown as the percentage of similarity between the two documents

3
, i.e. if the

suspicious document is, for example, 100% similar to the original document but its size covers
only 40% of the original source, Instead of reporting 100% plagiarism, Ferret reports 40%
plagiarism.

Regarding the fact that Ferret and Sherlock reported a quite similar output it was speculated that
Sherlock, probably, performs like Ferret. And because of the problems addressed to Ferret and
Sherlock, the comparison was only made between the Turnitin’s output and Clough-Stevenson’s
classification.

Analyzing the data in Appendix A, it was discovered that out of 95 documents, Turnitin identified
61 documents similar to and 34 documents different from Clough-Stevenson’s classification of
documents. Table 2 illustrates these 34 cases. The system acted properly for all the non-
plagiarized tasks; the outputs match with Clough-Stevenson’s. The differences up to 0.20
between Turnitin outputs and Clough-Stevenson’s classification of the documents was ignored
since, for Clough-Stevenson’s classification of the texts, the mean similarity was considered for

3 It is infact the shorter text which must be checked how much of it has been covered by the original text.

Mitra Shahabi

International Journal of Computational Linguistics (IJCL), Volume (3) : Issue (1) : 2012 60

comparison; however, for Turnitin’s the exact percentage of similarity was taken into account.

Table 2 shows the documents whose rate of plagiarism has been wrongly reported by Turnitin.
The figures in blue indicate 0.40 ≤ 0.20 differences between the results of the system and the
Clough and Stevenson´s; and the reds signify a considerable difference (≥ 0.40) between them.

TABLE 2: The differences between Turnitin’s output and Clough-Stevenson’s classifications
4
.

In order to simplify the results, the wrong outputs are presented below in table 3, in the way

4 As this table has been, in fact, extracted from the table in Appendix A, the numbers in the left column seem
out of order.

Document 1 Document 2
Clough -Stevenson

Turnitin

 (mean similarity)

3 g0pA_taskc.txt orig_taskc.txt 0.56 0.85

4 g0pA_taskd.txt orig_taskd.txt 0.34 0.00

11 g0pC_taska.txt orig_taska.txt 0.34 0.00

15 g0pC_taske.txt orig_taske.txt 0.56 0.89

17 g0pD_taskb.txt orig_taskb.txt 0.56 0.76*

18 g0pD_taskc.txt orig_taskc.txt 0.34 0.58

21 g0pE_taska.txt orig_taska.txt 0.56 0.99

22 g0pE_taskb.txt orig_taskb.txt 0.34 0.66

27 g1pA_taskb.txt orig_taskb.txt 0.34 0.00

28 g1pA_taskc.txt orig_taskc.txt 0.56 0.26

29 g1pA_taskd.txt orig_taskd.txt 0.85 0.34

34 g1pB_taskd.txt orig_taskd.txt 0.56 0.35

35 g1pB_taske.txt orig_taske.txt 0.85 0.50

36 g1pD_taska.txt orig_taska.txt 0.56 0.34

42 g2pA_taskb.txt orig_taskb.txt 0.34 0.00

43 g2pA_taskc.txt orig_taskc.txt 0.56 0.78*

44 g2pA_taskd.txt orig_taskd.txt 0.85 0.31

48 g2pB_taskc.txt orig_taskc.txt 0.34 0.00

49 g2pB_taskd.txt orig_taskd.txt 0.56 0.93

51 g2pC_taska.txt orig_taska.txt 0.85 0.66*

54 g2pC_taskd.txt orig_taskd.txt 0.34 0.56

55 g2pC_taske.txt orig_taske.txt 0.56 0.00

62 g3pA_taskb.txt orig_taskb.txt 0.34 0.00

68 g3pB_taskc.txt orig_taskc.txt 0.34 0.00

69 g3pB_taskd.txt orig_taskd.txt 0.56 0.30

75 g3pC_taske.txt orig_taske.txt 0.56 0.78*

78 g4pB_taskc.txt orig_taskc.txt 0.34 0.61

79 g4pB_taskd.txt orig_taskd.txt 0.56 0.82

84 g4pC_taskd.txt orig_taskd.txt 0.34 0.97

85 g4pC_taske.txt orig_taske.txt 0.56 0.91

86 g4pD_taska.txt orig_taska.txt 0.56 0.28

91 g4pE_taska.txt orig_taska.txt 0.34 0.00

92 g4pE_taskb.txt orig_taskb.txt 0.56 0.93

93 g4pE_taskc.txt orig_taskc.txt 0.85 0.32

Mitra Shahabi

International Journal of Computational Linguistics (IJCL), Volume (3) : Issue (1) : 2012 61

Clough and Stevenson classified the texts (near-copy, heavy revision, light revision, and non-
plagiarism). If the differences between the Turnitin´s figures are higher than 20 it is an indication
of changing the level of the text in the classification of texts; that is, the text with 0.56 rate of
plagiarism, being classified by Clough and Stevenson as highly revised, was seen in turnitin´s
outputs with 0.35 rate of plagiarism; so it was reported as a lightly revised text in turnitin´s results.
It can be concluded that the blue colors mean texts with one level higher or lower than the real
classification of the text, and the red color identifies two levels higher or lower than the accurate
position; except for light revision and near-copy texts which the difference of the rate of their
plagiarism is ≤0.30); they have been marked with (*). The differences are summarized in table 3
below.

 Turnitin´s

Clough &
Stevenson´s

Near-copy High revision Light revision Non-plagiarism

Near-copy − − − −

High revision 8 − 4 1

Light revision 1 5 − 7

Non-plagiarism − 3 1 −

TABLE 3: Differences of texts classification between Turnitin´s outputs and Clough and Stevenson´s

classification of texts

As noticed in table 3, the noises produced by Turnitin are as follows: 8 highly revised texts were
reported near-copy, 4 were reported lightly revised, and 1 as non-plagiarized; one lightly revised
texts was reported near-copy, 5 were reported as highly revised, and 7 as non-plagiarized; and 3
non-plagiarized texts were reported as highly revised and 1 as lightly revised.

Regarding the fact that Ferret and Sherlock reported a quite similar output it was speculated that
Sherlock, probably, performs like Ferret. Although they did not report the results in a manner
expected (like Turnitin), their outputs were evaluated in terms of precision and recall (Table 4).
Only file-pairs of answer and source within the same task were included for the evaluation.

As noticed in table 4, both Ferret and Sherlock give a perfect precision score for all cases,
starting from similarity score 0.1 for Ferret and similarity percentage 10% for Sherlock, which
means all captured documents are indeed plagiarism. However, both systems give a very low
recall score when thresholds are set very high (0.5 for Ferret and 50% for Sherlock). As the
thresholds are set lower, the recall scores are getting higher. At similarity score threshold 0.1,
recall score of Ferret is 0.68421053 where 39 out of 57 cases of plagiarism detected. At similarity
percentage threshold 10%, recall score of Sherlock is 0.57894737 where 33 out of 57 cases of
plagiarism detected.

TABLE 4: Precision and Recall of Ferret and Sherlock Outputs

In Ferret output, the majorities of the file-pairs captured with similarity score ≥ 0.2 are near copy
and light revision plagiarism. Among 26 suspicious documents, only four of them are categorized
as heavy revision and all these four texts are written by non-native English speakers. The file-
pairs captured with similarity score 0.1-0.2 vary between near copy, light revision, and heavy

Ferret Sherlock

 Precision Recall Precision Recall

≥ 0.5 1 0.14035088 ≥ 50% 1 0.10526316

≥ 0.4 1 0.19298246 ≥ 40% 1 0.1754386

≥ 0.3 1 0.31578947 ≥ 30% 1 0.22807018

≥ 0.2 1 0.45614035 ≥ 20% 1 0.36842105

≥ 0.1 1 0.68421053 ≥ 10% 1 0.57894737

Mitra Shahabi

International Journal of Computational Linguistics (IJCL), Volume (3) : Issue (1) : 2012 62

revision plagiarism. All of the non-plagiarism answers have similarity score below 0.03. There are
also three heavy revision plagiarism texts within this range as well as one near copy plagiarism
text written by a non-native English speaker but he/she claims a very good knowledge of the
question topic and the question is perceived as a not difficult one. There is only one document
that contains plagiarism but has zero similarity score against its original.

Similar to Ferret, in Sherlock output, the majorities of the file-pairs captured with similarity
percentage ≥ 30% are near copy and light revision plagiarism. Only one of 13 suspicious
documents is a heavy revision and it is written by a non-native English speaker. The rest of the
heavy plagiarism answers have similarity percentage below 30% along with the other near copy
and light revision plagiarism. There are 15 texts which have similarity percentage between 1%-
9% and three of them are non-plagiarism. Setting the threshold to 1% will give 45 (out of 57)
documents that contains plagiarism with different degrees and three non-plagiarism documents,
which implies there are 12 documents that actually contains plagiarism but assigned a similarity
percentage of zero.

6. CONCLUSION
In this paper it was tried to reveal some strengths and weaknesses of three plagiarism detection
tools, namely, Sherlock, Ferret, and Turnitin. They were compared according to their features and
performances. The criterion for selecting these tools for this study was to discover how the easily
available or free/open source tools are performing and at the end which of them can be
considered the best. Since one of the advantages of open source tools is that we can improve
them in order to meet our goals. It appeared that Ferret and Sherlock, in most cases, produce the
same results in plagiarism detection performance; however, Turnitin reported the results with
great difference from the other two tools: It showed a higher percentage of similarities between
the documents and the source. After investigating the reason (just checked with Ferret and
Turnitin, cause Sherlock does not provide a view of the two documents with the overlapped and
distinct parts), it was discovered that Turnitin performs quite acceptable and it is Ferret that does
not show the expected percentage; it considers the longer text (for this corpus the longer is
always the source) as the base and then looks how much of this text is overlapped by the shorter
text and the result is shown as the percentage of similarity between the two documents, and this
leads to wrong results. Therefore, there is always a need for human intervention to make a lot of
effort to check if the output reports a real percentage of plagiarism. From this it can be also
speculated that Sherlock does not manifest the results properly. Although they did not report the
results in a manner expected (like Turnitin), their outputs were evaluated in terms of precision and
recall.

Both Ferret and Sherlock give a perfect precision score for all cases, which means all captured
documents are indeed plagiarism. However, both systems give a very low recall score when
thresholds are set very high. As the thresholds are set lower, the recall scores are getting higher.

7. Future work
A change in Ferret system program can probably solve the problem of giving wrong percentage,
because its problem seems just in giving the non-intended percentage, and it works well in
matching the 3-grams. One negative point of Sherlock is the user interface; It does not have a
graphical user interface, i.e., it does not manifest the content of the texts in condition we need to
analyze the output. It is very important that a user be able to easily compare the parts that are
marked similar. For this purpose it is better that the tool displays the comparing files next to each
other with highlighting similar parts

The reliability of the Clough-Stevenson’s corpus, as the only base of evaluation, is also
questionable.

Mitra Shahabi

International Journal of Computational Linguistics (IJCL), Volume (3) : Issue (1) : 2012 63

8. REFERENCES
1. P. Clough and M. Stevenson. “Developing a Corpus of Plagiarized Short Answers, Language

Resources and Evaluation: Special Issue on Plagiarism and Authorship Analysis, In Press.”
Internet: http://ir.shef.ac.uk/cloughie/resources/plagiarism_corpus.html#Download, Sep. 10,
2009 [Oct. 12, 2011].

2. G. Judge. “Plagiarism: Bringing Economics and Educations Together (With a Little Help from
IT).” Computers in Higher Economic Review, vol. 20(1), pp. 21-26, 2008.

3. B. Stein and S. Meyer zu Eissen. “Near similarity search and plagiarism analysis,” in From

Data and Information Analysis to Knowledge Engineering, M. Spiliopoulou et al., EDs.
Springer, 2006, pp. 430-437.

4. M. Potthast et al. “Overview of the 3rd international competition in plagiarism detection”:

notebook for PAN at CLEF 2011, in Notebook Papers of CLEF 2011 LABs and Workshops,
19-22 Sep., Amsterdam, The Netherlands, 2011.

5. J. Grman and R. Ravas. “Improved implementation for finding text similarities in large

collection of data: notebook for PAN at CLEF 2011, in Notebook Papers of CLEF 2011 LABs
and Workshops, 19-22 Sep., Amsterdam, The Netherlands, 2011.

6. C. Grozea and M. Poescu. “The encoplot similarity measure for automatic detection of
plagiarism”: notebook for PAN at CLEF 2011, in Notebook Papers of CLEF 2011 LABs and
Workshops, 19-22 Sep., Amsterdam, The Netherlands, 2011.

7. G. Oberreuter, G. L´Huillier, S. Apíos, and J. D. Velasquez. “Approaches for intrinsic and
external plagiarism detection”: notebook for PAN at CLEF 2011, in Notebook Papers of CLEF
2011 LABs and Workshops, 19-22 Sep., Amsterdam, The Netherlands, 2011.

8. M. Delvin. “Plagiarism detection software: how effective is it? Assessing Learning in Australian

Universities.” Internet: http://www.cshe.unimelb.edu.au/assessing
learning/docs/PlagSoftware.pdf, 2002 [Sep. 23, 2012].

9. T. Lancaster and F. Culwin. “A review of electronic services for plagiarism detection in student
submissions.” the Teaching of Computing, Edinburgh, 2000. Internet:
http://www.ics.heacademy.ac.uk/events/presentations/317_Culwin.pdf, 2000 [Oct. 01, 2012].

10. T. Lancaster and F. Culwin. “Classifications of Plagiarism Detection Engines.” ITALICS, vol. 4
(2), 2005.

11. H. Maurer, F. Kappe, and B. Zaka. “Plagiarism – A Survey.” Journal of Universal Computer
Sciences, vol. 12 (8), pp. 1050 – 1084, 2006.

12. C. J. Neill and G. Shanmuganthan. “A Web – enabled plagiarism detection tool.” IT
Professional, vol. 6 (5), pp. 19 – 23, 2004.

13. C. Lyon, R. Barrett and J. Malcolm. “A theoretical basis to the automated detection of copying
between texts and its practical implementation in the Ferret plagiarism and collusion detector,” in
Proc. The Plagiarism: Prevention, Practice and Policies Conference, 2004.

14. R. Pike. “The Sherlock Plagiarism Detector.” Internet:
http://www.cs.su.oz.au/~scilect/sherlock, 2007 [Oct. 04, 2011].

Mitra Shahabi

International Journal of Computational Linguistics (IJCL), Volume (3) : Issue (1) : 2012 64

15. J. Malcolm and P. Lane. “Efficient Search for Plagiarism on the Web.” Kuwait, vol. 1, pp. 206-
211, 2008.

APPENDICES

APPENDIX A: The results shown by the three systems & Clough and Stevenson´s mean similarity of
documents

Documents Plagiarism detection tools

Document 1 Document 2
Clough-Stevenson

Ferret Sherlock Turnitin
(mean similarity)

1 g0pA_taska.txt orig_taska.txt 0.05 0.00 0.00 0.00
2 g0pA_taskb.txt orig_taskb.txt 0.85 0.38 0.27 1.00
3 g0pA_taskc.txt orig_taskc.txt 0.56 0.42 0.25 0.85
4 g0pA_taskd.txt orig_taskd.txt 0.34 0.06 0.00 0.00
5 g0pA_taske.txt orig_taske.txt 0.05 0.00 0.00 0.00
6 g0pB_taska.txt orig_taska.txt 0.05 0.00 0.00 0.00
7 g0pB_taskb.txt orig_taskb.txt 0.05 0.01 0.00 0.00
8 g0pB_taskc.txt orig_taskc.txt 0.85 0.60 0.71 0.74
9 g0pB_taskd.txt orig_taskd.txt 0.56 0.22 0.16 0.58

10 g0pB_taske.txt orig_taske.txt 0.34 0.11 0.15 0.49
11 g0pC_taska.txt orig_taska.txt 0.34 0.05 0.00 0.00
12 g0pC_taskb.txt orig_taskb.txt 0.05 0.00 0.00 0.00
13 g0pC_taskc.txt orig_taskc.txt 0.05 0.00 0.00 0.00
14 g0pC_taskd.txt orig_taskd.txt 0.85 0.42 0.34 0.97
15 g0pC_taske.txt orig_taske.txt 0.56 0.18 0.15 0.89
16 g0pD_taska.txt orig_taska.txt 0.85 0.39 0.19 1.00
17 g0pD_taskb.txt orig_taskb.txt 0.56 0.08 0.02 0.76
18 g0pD_taskc.txt orig_taskc.txt 0.34 0.22 0.20 0.58
19 g0pD_taskd.txt orig_taskd.txt 0.05 0.00 0.00 0.00
20 g0pD_taske.txt orig_taske.txt 0.05 0.00 0.00 0.00
21 g0pE_taska.txt orig_taska.txt 0.56 0.90 0.81 0.99
22 g0pE_taskb.txt orig_taskb.txt 0.34 0.10 0.05 0.66
23 g0pE_taskc.txt orig_taskc.txt 0.05 0.00 0.00 0.00
24 g0pE_taskd.txt orig_taskd.txt 0.05 0.00 0.00 0.00
25 g0pE_taske.txt orig_taske.txt 0.85 0.18 0.13 1.00
26 g1pA_taska.txt orig_taska.txt 0.05 0.00 0.00 0.00
27 g1pA_taskb.txt orig_taskb.txt 0.34 0.02 0.00 0.00
28 g1pA_taskc.txt orig_taskc.txt 0.56 0.10 0.00 0.26
29 g1pA_taskd.txt orig_taskd.txt 0.85 0.18 0.12 0.34
30 g1pA_taske.txt orig_taske.txt 0.05 0.01 0.00 0.00
31 g1pB_taska.txt orig_taska.txt 0.05 0.00 0.00 0.00
32 g1pB_taskb.txt orig_taskb.txt 0.05 0.00 0.00 0.00
33 g1pB_taskc.txt orig_taskc.txt 0.34 0.14 0.03 0.32
34 g1pB_taskd.txt orig_taskd.txt 0.56 0.09 0.03 0.35
35 g1pB_taske.txt orig_taske.txt 0.85 0.22 0.16 0.50
36 g1pD_taska.txt orig_taska.txt 0.56 0.09 0.05 0.34
37 g1pD_taskb.txt orig_taskb.txt 0.85 0.11 0.10 0.88
38 g1pD_taskc.txt orig_taskc.txt 0.05 0.00 0.00 0.00
39 g1pD_taskd.txt orig_taskd.txt 0.05 0.02 0.06 0.00
40 g1pD_taske.txt orig_taske.txt 0.34 0.02 0.02 0.00
41 g2pA_taska.txt orig_taska.txt 0.05 0.00 0.00 0.00
42 g2pA_taskb.txt orig_taskb.txt 0.34 0.07 0.03 0.00
43 g2pA_taskc.txt orig_taskc.txt 0.56 0.41 0.47 0.78
44 g2pA_taskd.txt orig_taskd.txt 0.85 0.22 0.25 0.31
45 g2pA_taske.txt orig_taske.txt 0.05 0.00 0.00 0.00
46 g2pB_taska.txt orig_taska.txt 0.05 0.00 0.00 0.00
47 g2pB_taskb.txt orig_taskb.txt 0.05 0.00 0.00 0.00
48 g2pB_taskc.txt orig_taskc.txt 0.34 0.00 0.07 0.00
49 g2pB_taskd.txt orig_taskd.txt 0.56 0.57 0.58 0.93

Mitra Shahabi

International Journal of Computational Linguistics (IJCL), Volume (3) : Issue (1) : 2012 65

APPENDIX B: The Clough-Stevenson’s classification of the level of plagiarism (Plg.) in documents

Documents Plg. Documents Plg. Documents Plg. Documents Plg.

g0pA_taska.txt non g0pE_taske.txt cut g2pB_taskd.txt light g3pC_taskc.txt non

g0pA_taskb.txt cut g1pA_taska.txt non g2pB_taske.txt cut g3pC_taskd.txt heavy

g0pA_taskc.txt light g1pA_taskb.txt heavy g2pC_taska.txt cut g3pC_taske.txt light

g0pA_taskd.txt heavy g1pA_taskc.txt light g2pC_taskb.txt non g4pB_taska.txt non

g0pA_taske.txt non g1pA_taskd.txt cut g2pC_taskc.txt non g4pB_taskb.txt non

g0pB_taska.txt non g1pA_taske.txt non g2pC_taskd.txt heavy g4pB_taskc.txt heavy

g0pB_taskb.txt non g1pB_taska.txt non g2pC_taske.txt light g4pB_taskd.txt light

g0pB_taskc.txt cut g1pB_taskb.txt non g2pE_taska.txt heavy g4pB_taske.txt cut

g0pB_taskd.txt light g1pB_taskc.txt heavy g2pE_taskb.txt light g4pC_taska.txt cut

g0pB_taske.txt heavy g1pB_taskd.txt light g2pE_taskc.txt cut g4pC_taskb.txt non

50 g2pB_taske.txt orig_taske.txt 0.85 0.50 0.38 1.00
51 g2pC_taska.txt orig_taska.txt 0.85 0.34 0.45 0.66
52 g2pC_taskb.txt orig_taskb.txt 0.05 0.01 0.00 0.00
53 g2pC_taskc.txt orig_taskc.txt 0.05 0.02 0.00 0.00
54 g2pC_taskd.txt orig_taskd.txt 0.34 0.15 0.16 0.56
55 g2pC_taske.txt orig_taske.txt 0.56 0.04 0.05 0.00
56 g2pE_taska.txt orig_taska.txt 0.34 0.31 0.26 0.30
57 g2pE_taskb.txt orig_taskb.txt 0.56 0.13 0.02 0.62
58 g2pE_taskc.txt orig_taskc.txt 0.85 0.00 0.00 0.78
59 g2pE_taskd.txt orig_taskd.txt 0.05 0.00 0.00 0.00
60 g2pE_taske.txt orig_taske.txt 0.05 0.01 0.00 0.00
61 g3pA_taska.txt orig_taska.txt 0.05 0.01 0.03 0.00
62 g3pA_taskb.txt orig_taskb.txt 0.34 0.06 0.02 0.00
63 g3pA_taskc.txt orig_taskc.txt 0.56 0.27 0.22 0.55
64 g3pA_taskd.txt orig_taskd.txt 0.85 0.94 0.62 1.00
65 g3pA_taske.txt orig_taske.txt 0.05 0.00 0.00 0.00
66 g3pB_taska.txt orig_taska.txt 0.05 0.00 0.00 0.00
67 g3pB_taskb.txt orig_taskb.txt 0.05 0.00 0.00 0.00
68 g3pB_taskc.txt orig_taskc.txt 0.34 0.07 0.03 0.00
69 g3pB_taskd.txt orig_taskd.txt 0.56 0.08 0.00 0.30
70 g3pB_taske.txt orig_taske.txt 0.85 0.24 0.19 1.00
71 g3pC_taska.txt orig_taska.txt 0.85 0.38 0.14 0.99
72 g3pC_taskb.txt orig_taskb.txt 0.05 0.00 0.00 0.00
73 g3pC_taskc.txt orig_taskc.txt 0.05 0.00 0.00 0.00
74 g3pC_taskd.txt orig_taskd.txt 0.34 0.11 0.00 0.52
75 g3pC_taske.txt orig_taske.txt 0.56 0.09 0.00 0.78
76 g4pB_taska.txt orig_taska.txt 0.05 0.01 0.00 0.00
77 g4pB_taskb.txt orig_taskb.txt 0.05 0.00 0.00 0.00
78 g4pB_taskc.txt orig_taskc.txt 0.34 0.27 0.21 0.61
79 g4pB_taskd.txt orig_taskd.txt 0.56 0.28 0.17 0.82
80 g4pB_taske.txt orig_taske.txt 0.85 0.55 0.41 0.93
81 g4pC_taska.txt orig_taska.txt 0.85 0.90 0.77 0.89
82 g4pC_taskb.txt orig_taskb.txt 0.05 0.00 0.00 0.00
83 g4pC_taskc.txt orig_taskc.txt 0.05 0.00 0.00 0.00
84 g4pC_taskd.txt orig_taskd.txt 0.34 0.80 0.85 0.97
85 g4pC_taske.txt orig_taske.txt 0.56 0.36 0.40 0.91
86 g4pD_taska.txt orig_taska.txt 0.56 0.09 0.10 0.28
87 g4pD_taskb.txt orig_taskb.txt 0.85 0.00 0.00 0.93
88 g4pD_taskc.txt orig_taskc.txt 0.05 0.01 0.00 0.00
89 g4pD_taskd.txt orig_taskd.txt 0.05 0.00 0.00 0.00
90 g4pD_taske.txt orig_taske.txt 0.34 0.15 0.08 0.51
91 g4pE_taska.txt orig_taska.txt 0.34 0.01 0.00 0.00
92 g4pE_taskb.txt orig_taskb.txt 0.56 0.35 0.35 0.93
93 g4pE_taskc.txt orig_taskc.txt 0.85 0.16 0.26 0.32
94 g4pE_taskd.txt orig_taskd.txt 0.05 0.00 0.00 0.00
95 g4pE_taske.txt orig_taske.txt 0.05 0.02 0.04 0.00

Mitra Shahabi

International Journal of Computational Linguistics (IJCL), Volume (3) : Issue (1) : 2012 66

g0pC_taska.txt heavy g1pB_taske.txt cut g2pE_taskd.txt non g4pC_taskc.txt non

g0pC_taskb.txt non g1pD_taska.txt light g2pE_taske.txt non g4pC_taskd.txt heavy

g0pC_taskc.txt non g1pD_taskb.txt cut g3pA_taska.txt non g4pC_taske.txt light

g0pC_taskd.txt cut g1pD_taskc.txt non g3pA_taskb.txt heavy g4pD_taska.txt light

g0pC_taske.txt light g1pD_taskd.txt non g3pA_taskc.txt light g4pD_taskb.txt cut

g0pD_taska.txt cut g1pD_taske.txt heavy g3pA_taskd.txt cut g4pD_taskc.txt non

g0pD_taskb.txt light g2pA_taska.txt non g3pA_taske.txt non g4pD_taskd.txt non

g0pD_taskc.txt heavy g2pA_taskb.txt heavy g3pB_taska.txt non g4pD_taske.txt heavy

g0pD_taskd.txt non g2pA_taskc.txt light g3pB_taskb.txt non g4pE_taska.txt heavy

g0pD_taske.txt non g2pA_taskd.txt cut g3pB_taskc.txt heavy g4pE_taskb.txt light

g0pE_taska.txt light g2pA_taske.txt non g3pB_taskd.txt light g4pE_taskc.txt cut

g0pE_taskb.txt heavy g2pB_taska.txt non g3pB_taske.txt cut g4pE_taskd.txt non

g0pE_taskc.txt non g2pB_taskb.txt non g3pC_taska.txt cut g4pE_taske.txt non

g0pE_taskd.txt non g2pB_taskc.txt heavy g3pC_taskb.txt non

