Intuitionistic Fuzzy W- Closed Sets and Intuitionistic Fuzzy W -Continuity

S. S. Thakur

samajh_singh@rediffmail.com

Department of Applied Mathematics Jabalpur Engineering College Jabalpur (M.P.) 482011

Jyoti Pandey Bajpai

Department of Applied Mathematics Jabalpur Engineering College Jabalpur (M.P.) 482001 yk1305@ gmail.com

Abstract

The aim of this paper is to introduce and study the concepts of intuitionistic fuzzy wclosed sets, intuitionistic fuzzy w-continuity and inttuitionistic fuzzy w-open & intuitionistic fuzzy w-closed mappings in intuitionistic fuzzy topological spaces.

Key words: Intuitionistic fuzzy w-closed sets, Intuitionistic fuzzy w-open sets, Intuitionistic fuzzy w-connectedness, Intuitionistic fuzzy w-compactness, intuitionistic fuzzy w-continuous mappings.

2000, Mathematics Subject Classification: 54A

1. INTRODUCTION

After the introduction of fuzzy sets by Zadeh [23] in 1965 and fuzzy topology by Chang [4] in 1967, several researches were conducted on the generalizations of the notions of fuzzy sets and fuzzy topology. The concept of intuitionistic fuzzy sets was introduced by Atanassov [1] as a generalization of fuzzy sets. In the last 25 years various concepts of fuzzy mathematics have been extended for intuitionistic fuzzy sets. In 1997 Coker [5] introduced the concept of intuitionistic fuzzy topological spaces. Recently many fuzzy topological concepts such as fuzzy compactness [7], fuzzy connectedness [21], fuzzy separation axioms [3], fuzzy continuity [8], fuzzy g-closed sets [15] and fuzzy g-continuity [16] have been generalized for intuitionistic fuzzy topological spaces. In the present paper we introduce the concepts of intuitionistic fuzzy w-closed sets; intuitionistic fuzzy w-continuity obtain some of their characterization and properties.

2. PRELIMINARIES

Let X be a nonempty fixed set. An intuitionistic fuzzy set A[1] in X is an object having the form A = $\{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$, where the functions $\mu_A : X \rightarrow [0,1]$ and $\Upsilon_A : X \rightarrow [0,1]$ denotes the degree of membership $\mu_A(x)$ and the degree of non membership $\gamma_A(x)$ of each element $x \in X$ to the set A respectively $0 > x \in X$ are respectively called empty and whole intuitionistic fuzzy set on X. An intuitionistic fuzzy set A = { $\langle x, \mu_A(x), \gamma_A(x) \rangle$: $x \in X$ } is called a subset of an intuitionistic fuzzy set B = { $\langle x, \mu_B(x), \gamma_B(x) \rangle$: $x \in X$ } (for short A \subseteq B) if $\mu_A(x) \le \mu_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$ for each $x \in X$. The complement of an intuitionistic fuzzy set A = { $\langle x, \mu_A(x), \gamma_A(x) \rangle$: $x \in X$ } is the intuitionistic fuzzy set A^c = { $\langle x, \gamma_A(x), \mu_A(x) \rangle$: $x \in X$ }. The intersection (resp. union) of any arbitrary family of intuitionistic fuzzy sets $A_i = \{ < x, \mu_{A_i}(x) > : x \in X, \mu_{A_i}(x) > : x \in X \}$ $(i \in A)$ of X be the intuitionistic fuzzy set $\cap A_i = \{<x, \land \mu_{A_i}(x), \lor \gamma_{A_i}(x) > : x \in X\}$ (resp. $\cup A_i = \{<x, \lor \mu_{A_i}(x)\}$, $\land \gamma_{Ai}(x) >: x \in X$). Two intuitionistic fuzzy sets A = { $\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X$ } and B = { $\langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X$ } $\in X$ are said be q-coincident (A_aB for short) if and only if \exists an element $x \in X$ such that $\mu_A(x) > \gamma_B(x)$ or $\gamma_A(x) < \mu_B(x)$. A family 3 of intuitionistic fuzzy sets on a non empty set X is called an intuitionistic fuzzy topology [5] on X if the intuitionistic fuzzy sets $\tilde{\mathbf{0}}$, $\tilde{\mathbf{1}} \in \mathfrak{Z}$, and \mathfrak{Z} is closed under arbitrary union and finite intersection. The ordered pair (X,3) is called an intuitionistic fuzzy topological space and each intuitionistic fuzzy set in 3 is called an intuitionistic fuzzy open set. The compliment of an intuitionistic fuzzy open set in X is known as intuitionistic fuzzy closed set .The intersection of all intuitionistic fuzzy closed sets which contains A is called the closure of A. It denoted cl(A). The union of all intuitionistic fuzzy open subsets of A is called the interior of A. It is denoted int(A) [5].

Lemma 2.1 [5]: Let A and B be any two intuitionistic fuzzy sets of an intuitionistic fuzzy topological space (X, \mathfrak{I}) . Then:

- (a). $\mathbf{I}(A_qB) \Leftrightarrow A \subseteq B^c$.
- (b). A is an intuitionistic fuzzy closed set in $X \Leftrightarrow cl (A) = A$.
- (c). A is an intuitionistic fuzzy open set in $X \Leftrightarrow int (A) = A$.
- (d). cl $(A^{c}) = (int (A))^{c}$.
- (e). int $(A^c) = (cl (A))^c$.
- (f). $A \subseteq B \Rightarrow int (A) \subseteq int (B)$.
- (g). $A \subseteq B \Rightarrow cl (A) \subseteq cl (B)$.
- (h). cl $(A \cup B) = cl (A) \cup cl(B)$.
- (i). $int(A \cap B) = int(A) \cap int(B)$

Definition 2.1 [6]: Let X is a nonempty set and $c \in X$ a fixed element in X. If $\alpha \in (0, 1]$ and $\beta \in [0, 1)$ are two real numbers such that $\alpha + \beta \le 1$ then:

- (a) $c(\alpha,\beta) = \langle x,c_{\alpha}, c_{1-\beta} \rangle$ is called an intuitionistic fuzzy point in X, where α denotes the degree of membership of $c(\alpha,\beta)$, and β denotes the degree of non membership of $c(\alpha,\beta)$.
- (b) $c(\beta) = \langle x, 0, 1-c_{1-\beta} \rangle$ is called a vanishing intuitionistic fuzzy point in X, where β denotes the degree of non membership of $c(\beta)$.

Definition 2.2[7] : A family { $G_i : i \in \land$ } of intuitionistic fuzzy sets in X is called an intuitionistic fuzzy open cover of X if \cup { $G_i : i \in \land$ } = $\tilde{1}$ and a finite subfamily of an intuitionistic fuzzy open cover { $G_i : i \in \land$ } of X which also an intuitionistic fuzzy open cover of X is called a finite sub cover of { $G_i : i \in \land$ }.

Definition 2.3[7]: An intuitionistic fuzzy topological space (X, \Im) is called fuzzy compact if every intuitionistic fuzzy open cover of X has a finite sub cover.

Definition 2.4[8]: An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X,3) is called intuitionistic fuzzy semi open (resp. intuitionistic fuzzy semi closed) if there exists a intuitionistic fuzzy open (resp. intuitionistic fuzzy closed) U such that $U \subseteq A \subseteq cl(A)$ (resp.int(U) $\subseteq A \subseteq U$)

Definition 2.5 [21]: An intuitionistic fuzzy topological space X is called intuitionistic fuzzy connected if there is no proper intuitionistic fuzzy set of X which is both intuitionistic fuzzy open and intuitionistic fuzzy closed.

Definition 2.6[15]: An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, 3) is called:

(a) Intuitionistic fuzzy g-closed if cl (A) \subseteq O whenever A \subseteq O and O is intuitionistic fuzzy open.

(b) Intuitionistic fuzzy g-open if its complement A^c is intuitionistic fuzzy g-closed.

Remark 2.1[15]: Every intuitionistic fuzzy closed set is intuitionistic fuzzy g-closed but its converse may not be true.

Definition 2.7[18]: An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, \Im) is called: (a) Intuitionistic fuzzy sg-closed if scl (A) \subseteq O whenever A \subseteq O and O is intuitionistic fuzzy semi open. (b) Intuitionistic fuzzy sg -open if its complement A^c is intuitionistic fuzzy sg-closed.

Remark 2.2[18]: Every intuitionistic fuzzy semi-closed (resp. Intuitionistic fuzzy semi-open) set is intuitionistic fuzzy sg-closed (intuitionistic fuzzy sg-open) but its converse may not be true.

Definition 2.8[12]: An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, \Im) is called: (a) Intuitionistic fuzzy gs-closed if scl (A) \subseteq O whenever A \subseteq O and O is intuitionistic fuzzy open. (b) Intuitionistic fuzzy gs -open if its complement A^c is intuitionistic fuzzy gs-closed.

Remark 2.3[12]: Every intuitionistic fuzzy sg-closed (resp. Intuitionistic fuzzy sg-open) set is intuitionistic fuzzy gs-closed (intuitionistic fuzzy gs-open) but its converse may not be true.

Definition 2.9: [5] Let X and Y are two nonempty sets and f: $X \to Y$ is a function. : (a) If B = {<y, $\mu_B(y)$, $\gamma_B(y)$ > : $y \in Y$ }is an intuitionistic fuzzy set in Y, then the pre image of B under f denoted by f⁻¹(B), is the intuitionistic fuzzy set in X defined by f⁻¹(B) = <x, f⁻¹(μ_B) (x), f⁻¹(γ_B) (x)>: x $\in X$ }.

(b) If A = {<x, $\lambda_A(x)$, $\nu_A(x)$ > : $x \in X$ } is an intuitionistic fuzzy set in X, then the image of A under f denoted by f(A) is the intuitionistic fuzzy set in Y defined by

 $\label{eq:constraint} \begin{array}{l} f\left(A\right)=\{<\!y,\,f\left(\lambda_{A}\right)\,(y),\,f(\nu_{A})\,(y)\!>\!\!:\,y\in\,Y\}\\ \text{Where}\quad f\left(\nu_{A}\right)=1-f\,(1\!-\!\nu_{A}). \end{array}$

Definition 2.10[8]: Let (X, \mathfrak{I}) and (Y, σ) be two intuitionistic fuzzy topological spaces and let *f*: $X \rightarrow Y$ be a function. Then *f* is said to be

- (a) Intuitionistic fuzzy continuous if the pre image of each intuitionistic fuzzy open set of Y is an intuitionistic fuzzy open set in X.
- (b) Intuitionistic fuzzy semi continuous if the pre image of each intuitionistic fuzzy open set of Y is an intuitionistic fuzzy semi open set in X.
- (c) Intuitionistic fuzzy closed if the image of each intuitionisic fuzzy closed set in X is an intuitionistic fuzzy closed set in Y.
- (d) Intuitionistic fuzzy open if the image of each intuitionisic fuzzy open set in X is an intuitionistic fuzzy open set in Y.

Definition 2.6[12, 16,17 19]: Let (X, \mathfrak{I}) and (Y, σ) be two intuitionistic fuzzy topological spaces and let f: X \rightarrow Y be a function. Then *f* is said to be

- (a) Intuitionistic fuzzy g-continuous [16] if the pre image of every intuitionistic fuzzy closed set in Y is intuitionistic fuzzy g –closed in X.
- (b) Intuitionistic fuzzy gc-irresolute[17]if the pre image of every intuitionistic fuzzy g-closed in Y is intuitionistic fuzzy g-closed in X
- (c) Intuitionistic fuzzy sg-continuous [19] if the pre image of every intuitionistic fuzzy closed set in Y is intuitionistic fuzzy sg –closed in X.
- (d) Intutionistic fuzzy gs-continuous [12] if the pre image of every intuitionistic fuzzy closed set in Y is intuitionistic fuzzy gs –closed in X.

Remark 2.4[12, 16, 19]:

- (a) Every intuitionistic fuzzy continuous mapping is intuitionistic fuzzy g-continuous, but the converse may not be true [16].
- (b) Every intuitionistic fuzzy semi continuous mapping is intuitionistic fuzzy sg-continuous, but the converse may not be true [19].
- (c) Every intuitionistic fuzzy sg- continuous mapping is intuitionistic fuzzy gs-continuous, but the converse may not be true [12].
- (d) Every intuitionistic fuzzy g- continuous mapping is intuitionistic fuzzy gs-continuous, but the converse may not be true [12].

3. INTUITIONISTIC FUZZY W-CLOSED SET

Definition 3.1: An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, \mathfrak{I}) is called an intuitionistic fuzzy w-closed if $cl(A) \subseteq O$ whenever $A \subseteq O$ and O is intuitionistic fuzzy semi open.

Remark 3.1: Every intuitionistic fuzzy closed set is intuitionistic fuzzy w-closed but its converse may not be true.

Example 3.1: Let X = {a, b} and $\Im = \{\tilde{\mathbf{0}}, \tilde{\mathbf{1}}, U\}$ be an intuitionistic fuzzy topology on X, where U= {< a,0.5,0.5>,< b, 0.4, 0.6 > }. Then the intuitionistic fuzzy set A = {<a,0.5,0.5>,<b,0.5,0.5>} is intuitionistic fuzzy w -closed but it is not intuitionistic fuzzy closed.

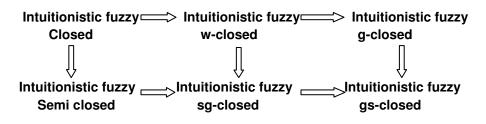
Remark 3.2: Every intuitionistic fuzzy w-closed set is intuitionistic fuzzy g-closed but its converse may not be true.

Example 3.2: Let X = {a, b} and $\Im = \{\tilde{\mathbf{0}}, \tilde{\mathbf{1}}, U\}$ be an intuitionistic fuzzy topology on X, where U= {< a,0.7,0.3>,< b, 0.6, 0.4 >}. Then the intuitionistic fuzzy set A = {<a,0.6,0.4>,<b,0.7,0.3>} is intuitionistic fuzzy g -closed but it is not intuitionistic fuzzy w-closed.

Remark 3.3: Every intuitionistic fuzzy w-closed set is intuitionistic fuzzy sg-closed but its converse may not be true.

Example 3.3: Let X = {a, b} and $\Im = \{\tilde{\mathbf{0}}, \tilde{\mathbf{1}}, U\}$ be an intuitionistic fuzzy topology on X, where U= {< a,0.5,0.5>,< b, 0.4, 0.6 >}. Then the intuitionistic fuzzy set A ={<a,0.5,0.5>,<b,0.3,0.7>} is intuitionistic fuzzy sg -closed but it is not intuitionistic fuzzy w-closed.

Remark 3.4: Remarks 2.1, 2.2, 2.3, 3.1, 3.2, 3.3 reveals the following diagram of implication.



Theorem 3.1: Let (X,\Im) be an intuitionistic fuzzy topological space and A is an intuitionistic fuzzy set of X. Then A is intuitionistic fuzzy w-closed if and only if $\exists (AqF) \Rightarrow \exists (cl (A)qF)$ for every intuitionistic fuzzy semi closed set F of X.

Proof: Necessity: Let F be an intuitionistic fuzzy semi closed set of X and \neg (AqF). Then by Lemma 2.1(a), A \subseteq F^c and F^c intuitionistic fuzzy semi open in X. Therefore cl(A) \subseteq F^c by Def 3.1 because A is intuitionistic fuzzy w-closed. Hence by lemma 2.1(a), \neg (cl (A)qF).

Sufficiency: Let O be an intuitionistic fuzzy semi open set of X such that $A \subseteq O$ i.e. $A \subseteq (O)^{c})^{c}$ Then by Lemma 2.1(a), $\exists (A_qO^c)$ and O^c is an intuitionistic fuzzy semi closed set in X. Hence by hypothesis $\exists (cl (A)_qO^c)$. Therefore by Lemma 2.1(a), $cl (A) \subseteq ((O)^{c})^{c}$ i.e. $cl (A) \subseteq O$ Hence A is intuitionistic fuzzy w-closed in X.

Theorem 3.2: Let A be an intuitionistic fuzzy w-closed set in an intuitionistic fuzzy topological space (X, \Im) and $c(\alpha,\beta)$ be an intuitionistic fuzzy point of X such that $c(\alpha,\beta)_q cl$ (A) then $cl(c(\alpha,\beta))qA$.

Proof: If $|c|(c(\alpha,\beta))_qA$ then by Lemma 2.1(a), $c|(c(\alpha,\beta) \subseteq A^c$ which implies that $A \subseteq (c|(c(\alpha,\beta)))^c$ and so $c|(A) \subseteq (c|(c(\alpha,\beta)))^c \subseteq (c(\alpha,\beta))^c$, because A is intuitionistic fuzzy w-closed in X. Hence by Lemma 2.1(a), $|(c(\alpha,\beta)_q (c|(A))), a \text{ contradiction}.$

Theorem 3.3: Let A and B are two intuitionistic fuzzy w-closed sets in an intuitionistic fuzzy topological space (X, \Im) , then A \cup B is intuitionistic fuzzy w-closed.

Proof: Let O be an intuitionistic fuzzy semi open set in X, such that $A \cup B \subseteq O$. Then $A \subseteq O$ and $B \subseteq O$. So, cl (A) $\subseteq O$ and cl (B) $\subseteq O$. Therefore cl (A) \cup cl (B) = cl (A \cup B) $\subseteq O$. Hence A \cup B is intuitionistic fuzzy w-closed.

Remark 3.2: The intersection of two intuitionistic fuzzy w-closed sets in an intuitionistic fuzzy topological space (X, \Im) may not be intuitionistic fuzzy w-closed. For,

Example 3.2: Let X = {a, b, c} and U, A and B be the intuitionistic fuzzy sets of X defined as follows: U = {<a, 1, 0>, <b, 0, 1 >, < c, 0, 1>} A = {<a, 1, 0 >, < b, 1, 0 >, < c, 0, 1>} B = {<a, 1, 0 >, < b, 0, 1>, < c, 1, 0>} Let $\mathfrak{I} = \{\tilde{\mathbf{0}}, \tilde{\mathbf{1}}, \mathbf{U}\}$ be intuitionistic fuzzy topology on X. Then A and B are intuitionistic fuzzy w-closed in (X,\mathfrak{I}) but $A \cap B$ is not intuitionistic fuzzy w-closed.

Theorem 3.4: Let A be an intuitionistic fuzzy w-closed set in an intuitionistic fuzzy topological space (X, \Im) and $A \subseteq B \subseteq cl$ (A). Then B is intuitionistic fuzzy w-closed in X.

Proof: Let O be an intuitionistic fuzzy semi open set such that $B \subseteq O$. Then $A \subseteq O$ and since A is intuitionistic fuzzy w-closed, cl (A) \subseteq O. Now $B \subseteq$ cl (A) \Rightarrow cl (B) \subseteq cl (A) \subseteq O. Consequently B is intuitionistic fuzzy w-closed.

Definition 3.2: An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X,\Im) is called intuitionistic fuzzy w-open if and only if its complement A^c is intuitionistic fuzzy w-closed.

Remark 3.5 Every intuitionistic fuzzy open set is intuitionistic fuzzy w-open. But the converse may not be true. For

Example 3.4: Let X = {a, b} and $\Im = \{\tilde{\mathbf{0}}, \tilde{\mathbf{1}}, U\}$ be an intuitionistic fuzzy topology on X, where U= {<a, 0.5, 0.5>, <b, 0.4, 0.6>}. Then intuitionistic fuzzy set B defined by B={ <a, 0.5, 0.5>, <b, 0.5, 0.5>} is an intuitionistic fuzzy w-open in intuitionistic fuzzy topological space (X, \Im) but it is not intuitionistic fuzzy open in (X, \Im).

Remark 3.6: Every intuitionistic fuzzy w-open set is intuitionistic fuzzy g-open but its converse may not be true.

Example 3.5: Let X = {a, b} and $\Im = \{\tilde{\mathbf{0}}, \tilde{\mathbf{1}}, U\}$ be an intuitionistic fuzzy topology on X, where U= {<a,0.5,0.5>,<b,0.4,0.6>}. Then the intuitionistic fuzzy set A={<a,0.4,0.6>,<b,0.3,0.7>} is intuitionistic fuzzy g-open in (X, \Im) but it is not intuitionistic fuzzy w-open in (X, \Im).

Theorem 3.5: An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, \mathfrak{I}) is intuitionistic fuzzy w-open if $F \subseteq$ int (A) whenever F is intuitionistic fuzzy semi closed and $F \subseteq A$.

Proof: Follows from definition 3.1 and Lemma 2.1

Remark 3.4: The union of two intuitionistic fuzzy w-open sets in an intuitionistic fuzzy topological space (X,\mathfrak{F}) may not be intuitionistic fuzzy w-open. For the intuitionistic fuzzy set $C = \{ <a,0.4,0.6 > , <b,0.7,0.3 > \}$ and $D = \{ < a,0.2,0.8 > , <b,0.5,0.5 > \}$ in the intuitionistic fuzzy topological space (X,\mathfrak{F}) in Example 3.2 are intuitionistic fuzzy w-open but their union is not intuitionistic fuzzy w-open.

Theorem 3.6: Let A be an intuitionistic fuzzy w-open set of an intuitionistic fuzzy topological space (X, \Im) and int $(A) \subseteq B \subseteq A$. Then B is intuitionistic fuzzy w-open.

Proof: Suppose A is an intuitionistic fuzzy w-open in X and $int(A) \subseteq B \subseteq A$. $\Rightarrow A^c \subseteq B^c \subseteq (int(A))^c \Rightarrow A^c \subseteq B^c \subseteq (int(A))^c \Rightarrow A^c \subseteq B^c \subseteq cl(A^c)$ by Lemma 2.1(d) and A^c is intuitionistic fuzzy w-closed it follows from theorem 3.4 that B^c is intuitionistic fuzzy w-closed. Hence B is intuitionistic fuzzy w-open.

Definition 3.3: An intuitionistic fuzzy topological space (X, \Im) is called intuitionistic fuzzy semi normal if for every pair of two intuitionistic fuzzy semi closed sets F_1 and F_2 such that $\exists (F_{1q}F_2)$, there exists two intuitionistic fuzzy semi open sets U_1 and U_2 in X such that $F_1 \subseteq U_1$, $F_2 \subseteq U_2$ and $\exists (U_{1q}U_2)$.

Theorem 3.7: If F is intuitionistic fuzzy semi closed and A is intuitionistic fuzzy w--closed set of an intuitionistic fuzzy semi normal space (X, \mathfrak{I}) and $\exists (A_qF)$. Then there exists intuitionistic fuzzy semi open sets U and V in X such that cl (A) \subset U, F \subset V and $\exists (U_qV)$.

Proof: Since A is intuitionistic fuzzy w-closed set and (A_qF) , by Theorem (3.1), $(cl (A)_qF)$ and (X,3) is intuitionistic fuzzy semi normal. Therefore by Definition 3.3 there exists intuitionistic fuzzy semi open sets U and V in X such that $cl (A) \subset U$, $F \subset V$ and (U_qV) .

Theorem 3.8: Let A be an intuitionistic fuzzy w-closed set in an intuitionistic fuzzy topological space (X, \mathfrak{I}) and f: $(X, \mathfrak{I}) \rightarrow (Y, \mathfrak{I})$ is an intuitionistic fuzzy irresolute and intuitionistic fuzzy closed mapping then f (A) is an intuitionistic w-closed set in Y.

Proof: Let A be an intuitionistic fuzzy w-closed set in X and f: $(X,\mathfrak{I}) \to (Y,\mathfrak{I})$ is an intuitionistic fuzzy continuous and intuitionistic fuzzy closed mapping. Let $f(A) \subseteq G$ where G is intuitionistic fuzzy semi open in Y then $A \subseteq f^{-1}(G)$ and $f^{-1}(G)$ is intuitionistic fuzzy semi open in X because f is intuitionistic fuzzy irresolute .Now A be an intuitionistic fuzzy w-closed set in X , by definition 3.1 $cl(A) \subseteq f^{-1}(G)$. Thus $f(cl(A)) \subseteq G$ and f(cl(A)) is an intuitionistic fuzzy closed set in Y (since cl(A) is intuitionistic fuzzy closed in X and f is intuitionistic fuzzy closed mapping). It follows that $cl(f(A) \subseteq cl(f(cl(A))) = f(cl(A)) \subseteq G$. Hence $cl(f(A)) \subseteq G$ whenever $f(A) \subseteq G$ and G is intuitionistic fuzzy semi open in Y. Hence f (A) is intuitionistic fuzzy w-closed set in Y.

Theorem 3.9: Let(X, \Im) be an intuitionistic fuzzy topological space and IFSO(X) (resp.IFC(X)) be the family of all intuitionistic fuzzy semi open (resp. intuitionistic fuzzy closed) sets of X. Then IFSO(X) = IFC(X) if and only if every intuitionisic fuzzy set of X is intuitionistic fuzzy w -closed.

Proof :Necessity : Suppose that IFSO(X) = IFC(X) and let A is any intuitionistic fuzzy set of X such that $A \subseteq U \in IFSO(X)$ i.e. U is intuitionistic fuzzy semi open. Then cl (A) \subseteq cl (U) = U because $U \in IFSO(X) = IFC(X)$. Hence cl (A) \subseteq U whenever A \subseteq U and U is intuitionistic fuzzy semi open. Hence A is w- closed set.

Sufficiency: Suppose that every intuitionistic fuzzy set of X is intuitionistic fuzzy w- closed. Let $U \in IFSO(X)$ then since $U \subseteq U$ and U is intuitionistic fuzzy w- closed, cl $(U) \subseteq U$ then $U \in IFC(X)$. Thus $IFSO(X) \subseteq IFC(X)$. If $T \in IFC(X)$ then $T^c \in IFO(X) \subseteq IFSO \subseteq IFC(X)$ hence $T \in IFO(X) \subseteq IFSO(X)$. Consequently $IFC(X) \subseteq IFSO(X)$ and IFSO(X) = IFC(X).

4: INTUITIONISTIC FUZZY W-CONNECTEDNESS AND INTUITIONISTIC FUZZY W-COMPACTNESS

Definition 4.1: An intuitionistic fuzzy topological space (X \Im) is called intuitionistic fuzzy w – connected if there is no proper intuitionistic fuzzy set of X which is both intuitionistic fuzzy w- open and intuitionistic fuzzy w- closed.

Theorem 4.1: Every intuitionistic fuzzy w-connected space is intuitionistic fuzzy connected.

Proof: Let (X, \mathfrak{I}) be an intuitionistic fuzzy w –connected space and suppose that (X, \mathfrak{I}) is not intuitionistic fuzzy connected .Then there exists a proper intuitionistic fuzzy set A(A $\neq \tilde{\mathbf{0}}$, A $\neq \tilde{\mathbf{1}}$) such that A is both

intuitionistic fuzzy open and intuitionistic fuzzy closed. Since every intuitionistic fuzzy open set (resp. intuitionistic fuzzy closed set) is intuitionistic w-open ((resp. intuitionistic fuzzy w-closed), X is not intuitionistic fuzzy w-connected, a contradiction.

Remark 4.1: Converse of theorem 4.1 may not be true for ,

Example 4.1: Let X = {a, b} and $\Im = \{\tilde{\mathbf{0}}, \tilde{\mathbf{1}}, U\}$ be an intuitionistic fuzzy topology on X, where U = {< a,0.5,0.5>,< b, 0.4, 0.6 > }. Then intuitionistic fuzzy topological space (X, \Im) is intuitionistic fuzzy connected but not intuitionistic fuzzy w-connected because there exists a proper intuitionistic fuzzy set A={<a,0.5,0.5>,<b,0.5,0.5>} which is both intuitionistic fuzzy w -closed and intuitionistic w-open in X.

Theorem 4.2: An intuitionistic fuzzy topological (X,\mathfrak{J}) is intuitionistic fuzzy w-connected if and only if there exists no non zero intuitionistic fuzzy w-open sets A and B in X such that $A=B^{c}$.

Proof: Necessity: Suppose that A and B are intuitionistic fuzzy w-open sets such that $A \neq \tilde{0} \neq B$ and $A = B^{c}$. Since $A=B^{c}$, B is an intuitionistic fuzzy w-open set which implies that $B^{c} = A$ is intuitionistic fuzzy w-closed set and $B \neq \tilde{0}$ this implies that $B^{c} \neq \tilde{1}$ i.e. $A \neq \tilde{1}$ Hence there exists a proper intuitionistic fuzzy set A($A \neq \tilde{0}, A \neq \tilde{1}$) such that A is both intuitionistic fuzzy w- open and intuitionistic fuzzy w-closed. But this is contradiction to the fact that X is intuitionistic fuzzy w- connected.

Sufficiency: Let (X,\mathfrak{I}) is an intuitionistic fuzzy topological space and A is both intuitionistic fuzzy w-open set and intuitionistic fuzzy w-closed set in X such that $\tilde{\mathbf{0}} \neq A \neq \tilde{1}$. Now take $B = A^{c}$. In this case B is an intuitionistic fuzzy w-open set and $A \neq \tilde{\mathbf{1}}$. This implies that $B = A^{c} \neq \tilde{\mathbf{0}}$ which is a contradiction. Hence there is no proper intuitionistic fuzzy set of X which is both intuitionistic fuzzy w- open and intuitionistic fuzzy w- closed. Therefore intuitionistic fuzzy topological (X, \mathfrak{I}) is intuitionistic fuzzy w-connected

Definition 4.2: Let (X, \Im) be an intuitionistic fuzzy topological space and Abe an intuitionistic fuzzy set X. Then w-interior and w-closure of A are defined as follows.

wcl (A) = \cap {K: K is an intuitionistic fuzzy w-closed set in X and A \subseteq K} wint (A) = \cup {G: G is an intuitionistic fuzzy w-open set in X and G \subset A}

Theorem 4.3: An intuitionistic fuzzy topological space (X, \Im) is intuitionistic fuzzy w-connected if and only if there exists no non zero intuitionistic fuzzy w-open sets A and B in X such that $B = A^c$, $B = {wcl(A))^c}$, $A = (wcl(B))^c$.

Proof: Necessity : Assume that there exists intuitionistic fuzzy sets A and B such that $A \neq \tilde{\mathbf{0}} \neq B$ in X such that $B=A^{c}$, $B=(wcl(A))^{c}$, $A=(wcl(B))^{c}$. Since $(wcl(A))^{c}$ and $(wcl(B))^{c}$ are intuitionistic fuzzy w-open sets in X, which is a contradiction.

Sufficiency: Let A is both an intuitionistic fuzzy w-open set and intuitionistic fuzzy w-closed set such that $\tilde{\mathbf{0}} \neq A \neq \tilde{1}$. Taking B= A^c, we obtain a contradiction.

Definition 4.3: An intuitionistic fuzzy topological space (X, \Im) is said to be intuitionistic fuzzy w- T_{1/2} if every intuitionistic fuzzy w-closed set in X is intuitionistic fuzzy closed in X.

Theorem 4.4: Let (X, \mathfrak{I}) be an intuitionistic fuzzy w- $T_{1/2}$ space, then the following conditions are equivalent:

(a) X is intuitionistic fuzzy w-connected.

(b) X is intuitionistic fuzzy connected.

Proof: (a) \Rightarrow (b) follows from Theorem 4.1

(b) \Rightarrow (a): Assume that X is intuitionistic fuzzy w- $T_{1/2}$ and intuitionistic fuzzy w-connected space. If possible, let X be not intuitionistic fuzzy w-connected, then there exists a proper intuitionistic fuzzy set A such that A is both intuitionistic fuzzy w-open and w-closed. Since X is intuitionistic fuzzy w- $T_{1/2}$, A is intuitionistic fuzzy open and intuitionistic fuzzy closed which implies that X is not intuitionistic fuzzy connected, a contradiction.

Definition 4.4 : A collection { $A_i : i \in \Lambda$ } of intuitionistic fuzzy w- open sets in intuitionistic fuzzy topological space (X,3) is called intuitionistic fuzzy w- open cover of intuitionistic fuzzy set B of X if $B \subseteq \cup$ { $A_i : i \in \Lambda$ }

Definition 4.5: An intuitionistic fuzzy topological space (X, \Im) is said to be intuitionistic fuzzy w-compact if every intuitionistic fuzzy w- open cover of X has a finite sub cover.

Definition 4.6 : An intuitionistic fuzzy set B of intuitionistic fuzzy topological space (X, \Im) is said to be intuitionistic fuzzy w- compact relative to X, if for every collection { $A_i : i \in \Lambda$ } of intuitionistic fuzzy w- open subset of X such that $B \subseteq \bigcup \{A_i : i \in \Lambda\}$ there exists finite subset Λ_0 of Λ such that $B \subseteq \bigcup \{A_i : i \in \Lambda_0\}$

Definition 4.7: A crisp subset B of intuitionistic fuzzy topological space (X, \Im) is said to be intuitionistic fuzzy w- compact if B is intuitionistic fuzzy w- compact as intuitionistic fuzzy subspace of X.

Theorem 4.5: A intuitionistic fuzzy w-closed crisp subset of intuitionistic fuzzy w- compact space is intuitionistic fuzzy w- compact relative to X.

Proof: Let A be an intuitionistic fuzzy w- closed crisp subset of intuitionistic fuzzy w- compact space(X,\mathfrak{S}). Then A^c is intuitionistic fuzzy w- open in X. Let M be a cover of A by intuitionistic fuzzy w- open sets in X. Then the family {M, A^c} is intuitionistic fuzzy w- open cover of X. Since X is intuitionistic fuzzy w- compact, it has a finite sub cover say {G₁, G₂, G₃....., Gn}. If this sub cover contains A^c, we discard it. Otherwise leave the sub cover as it is. Thus we obtained a finite intuitionistic fuzzy w – open sub cover of A. Therefore A is intuitionistic fuzzy w – compact relative to X.

5: INTUTIONISTIC FUZZY W- CONTINUOUS MAPPINGS

Definition 5.1:A mapping $f: (X, \mathfrak{I})$. \rightarrow (Y, σ) is intuitionistic fuzzy w- continuous if inverse image of every intuitionistic fuzzy closed set of Y is intuitionistic fuzzy w-closed set in X.

Theorem 5.1: A mapping $f : (X, \mathfrak{I})$. $\rightarrow (Y, \sigma)$ is intuitionistic fuzzy w- continuous if and only if the inverse image of every intuitionistic fuzzy open set of Y is intuitionistic fuzzy w- open in X. **Proof:** It is obvious because $f^{-1}(U^c) = (f^{-1}(U))^c$ for every intuitionistic fuzzy set U of Y.

Remark5.1 Every intuitionistic fuzzy continuous mapping is intuitionistic fuzzy w-continuous, but converse may not be true. For,

Example 5.1 Let X = {a, b}, Y ={x, y} and intuitionistic fuzzy sets U and V are defined as follows : U= {< a, 0.5, 0.5>, < b, 0.4, 0.6>} V= {<x, 0.5, 0.5>, <y, 0.5, 0.5>}

Let $\mathfrak{S} = \{\tilde{0}, \tilde{1}, \mathbf{U}\}$ and $\sigma = \{\tilde{0}, \tilde{1}, \mathbf{V}\}$ be intuitionistic fuzzy topologies on X and Y respectively. Then the mapping *f*: (X, \mathfrak{S}). \rightarrow (Y, σ) defined by *f* (a) = x and *f* (b) = y is intuitionistic fuzzy w- continuous but not intuitionistic fuzzy continuous.

Remark5.2 Every intuitionistic fuzzy w-continuous mapping is intuitionistic fuzzy g-continuous, but converse may not be true. For,

Example 5.2: Let $X = \{a, b\}$, $Y = \{x, y\}$ and intuitionistic fuzzy sets U and V are defined as follows:

U= {< a, 0.7, 0.3>, < b, 0.6, 0.4>}

V= {<x, 0.6, 0.4>, <y, 0.7, 0.3>}

Let $\mathfrak{I} = \{ \tilde{\mathbf{0}}, \tilde{\mathbf{1}}, \mathbf{U} \}$ and $\sigma = \{ \tilde{\mathbf{0}}, \tilde{\mathbf{1}}, \mathbf{V} \}$ be intuitionistic fuzzy topologies on X and Y respectively. Then the mapping *f*. (X, \mathfrak{I}). \rightarrow (Y, σ) defined by *f* (a) = x and *f* (b) = y is intuitionistic fuzzy g- continuous but not intuitionistic fuzzy w- continuous.

Remark5.3 Every intuitionistic fuzzy w-continuous mapping is intuitionistic fuzzy sg-continuous, but converse may not be true. For,

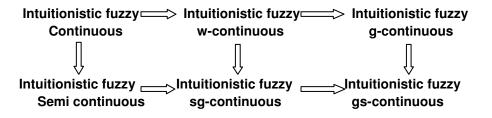
Example 5.1 Let $X = \{a, b\}$, $Y = \{x, y\}$ and intuitionistic fuzzy sets U and V are defined as follows:

U= {< a, 0.5, 0.5>, < b, 0.4, 0.6>}

V= {<x, 0.5, 0.5>, <y, 0.3, 0.7>}

Let $\mathfrak{S} = \{ \tilde{\mathbf{0}}, \tilde{\mathbf{1}}, \mathbf{U} \}$ and $\sigma = \{ \tilde{\mathbf{0}}, \tilde{\mathbf{1}}, \mathbf{V} \}$ be intuitionistic fuzzy topologies on X and Y respectively. Then the mapping *f*: (X,3). \rightarrow (Y, σ) defined by *f* (a) = x and *f* (b) = y is intuitionistic fuzzy sg- continuous but not intuitionistic fuzzy w- continuous.

Remark 5.4: Remarks 2.4, ,5.1, 5.2, 5.3 reveals the following diagram of implication:



Theorem 5.2: If *f*: (X, \Im) . \rightarrow (Y, σ) is intuitionistic fuzzy w- continuous then for each intuitionistic fuzzy point $c(\alpha,\beta)$ of X and each intuitionistic fuzzy open set V of Y such that $f(c(\alpha,\beta)) \subseteq V$ there exists a intuitionistic fuzzy w- open set U of X such that $c(\alpha,\beta) \subseteq U$ and $f(U) \subseteq V$.

Proof : Let $c(\alpha,\beta)$ be intuitionistic fuzzy point of X and V be a intuitionistic fuzzy open set of Y such that $f(c(\alpha,\beta)) \subseteq V$. Put $U = f^{-1}(V)$. Then by hypothesis U is intuitionistic fuzzy w- open set of X such that $c(\alpha,\beta) \subseteq U$ and $f(U) = f(f^{-1}(V)) \subseteq V$.

Theorem 5.3: Let *f*: (X,3). \rightarrow (Y, σ) is intuitionistic fuzzy w- continuous then for each intuitionistic fuzzy point $c(\alpha,\beta)$ of X and each intuitionistic fuzzy open set V of Y such that $f(c(\alpha,\beta))qV$, there exists a intuitionistic fuzzy w- open set U of X such that $c(\alpha,\beta)qU$ and $f(U) \subseteq V$.

Proof: Let $c(\alpha,\beta)$ be intuitionistic fuzzy point of X and V be a intuitionistic fuzzy open set of Y such that $f(c(\alpha,\beta))q$ V. Put U = $f^{-1}(V)$. Then by hypothesis U is intuitionistic fuzzy w- open set of X such that $c(\alpha,\beta)q$ U and $f(U) = f(f^{-1}(V)) \subseteq V$.

Theorem 5.4: If $f : (X, \mathfrak{I})$. \rightarrow (Y, σ) is intuitionistic fuzzy w-continuous, then $f(wcl(A) \subseteq cl(f(A)))$ for every intuitionistic fuzzy set A of X.

Proof: Let A be an intuitionistic fuzzy set of X. Then cl(f(A)) is an intuitionistic fuzzy closed set of Y. Since *f* is intuitionistic fuzzy w –continuous, $f^{-1}(cl(f(A)))$ is intuitionistic fuzzy w-closed in X. Clearly A $\subseteq f^{-1}(cl((A)))$. Therefore wcl (A) \subseteq wcl ($f^{-1}(cl(f(A)))) = f^{-1}(cl(f(A)))$. Hence $f(wcl(A) \subseteq cl(f(A)))$ for every intuitionistic fuzzy set A of X.

Theorem 5.5: A mapping *f* from an intuitionistic fuzzy w-T_{1/2} space (X,3) to a intuitionistic fuzzy topological space (Y, σ) is intuitionistic fuzzy semi continuous if and only if it is intuitionistic fuzzy w – continuous.

Proof: Obvious

Remark 5.5: The composition of two intuitionistic fuzzy w – continuous mapping may not be Intuitionistic fuzzy w – continuous. For

Example 5-5: Let $X = \{a, b\}$, $Y = \{x, y\}$ and $Z = \{p, q\}$ and intuitionstic fuzzy sets U,V and W defined as follows :

U = {< a, 0.5, 0.5>, < b, 0.4, 0.6>}

V = {<x, 0.5, 0.5>, <y, 0.3, 0.7>}

 $W = \{ < p, 0.6, 0.4 >, < q, 0.4, 0.6 > \}$

Let $\mathfrak{S} = \{ \tilde{\mathbf{0}}, \tilde{\mathbf{1}}, \mathbf{U} \}$, $\sigma = \{ \tilde{\mathbf{0}}, \tilde{\mathbf{1}}, \mathbf{V} \}$ and $\mu = \{ \tilde{\mathbf{0}}, \tilde{\mathbf{1}}, \mathbf{W} \}$ be intuitionistic fuzzy topologies on X, Y and Z respectively. Let the mapping *f*: (X, \mathfrak{I}). \rightarrow (Y, σ) defined by *f*(a) = x and *f*(b) = y and *g*: (Y, σ) \rightarrow (Z, μ) defined by *g*(x) = p and *g*(y) = q. Then the mappings *f* and *g* are intuitionistic fuzzy w-continuous but the mapping *gof*: (X, \mathfrak{I}) \rightarrow (Z, μ) is not intuitionistic fuzzy w-continuous.

Theorem 5.6: If *f*: (X,\mathfrak{I}) . \rightarrow (Y, σ) is intuitionistic fuzzy w-continuous and *g* : $(Y, \sigma) \rightarrow (Z, \mu)$ is intuitionistic fuzzy continuous. Then *g*o*f* : $(X,\mathfrak{I}) \rightarrow (Z,\mu)$ is intuitionistic fuzzy w-continuous.

Proof: Let A is an intuitionistic fuzzy closed set in Z. then $g^{-1}(A)$ is intuitionistic fuzzy closed in Y because g is intuitionistic fuzzy continuous. Therefore $(gof)^{-1}(A) = f^{-1}(g^{-1}(A))$ is intuitionistic fuzzy w – closed in X. Hence gof is intuitionistic fuzzy w – continuous.

Theorem 5.7 : If $f: (X,\mathfrak{I})$. \rightarrow (Y, σ) is intuitionistic fuzzy w-continuous and $g: (Y,\sigma) . \rightarrow$ (Z, μ) is intuitionistic fuzzy g-continuous and (Y, σ) is intuitionistic fuzzy (T_{1/2}) then *gof* : (X, $\mathfrak{I}) \rightarrow$ (Z, μ) is intuitionistic fuzzy w-continuous.

Proof: Let A is an intuitionistic fuzzy closed set in Z, then $g^{-1}(A)$ is intuitionstic fuzzy g-closed in Y. Since Y is $(T_{1/2})$, then $g^{-1}(A)$ is intuitionistic fuzzy closed in Y. Hence $(gof)^{-1}(A) = f^{-1}(g^{-1}(A))$ is intuitionistic fuzzy w – closed in X. Hence *gof* is intuitionistic fuzzy w – continuous.

Theorem 5.8: If *f*: (X, \mathfrak{I}). \rightarrow (Y, σ) is intuitionistic fuzzy gc-irresolute and *g* :(Y, σ) \rightarrow (Z, μ) is intuitionistic fuzzy w-continuous. Then *g*o*f* : (X, \mathfrak{I}) \rightarrow (Z, μ) is intuitionistic fuzzy g-continuous.

Proof: Let A is an intuitionistic fuzzy closed set in Z, then $g^{-1}(A)$ is intuitionistic fuzzy w-closed in Y, because g is intuitionistic fuzzy w-continuous. Since every intuitionistic fuzzy w-closed set is intuitionistic fuzzy g-closed set, therefore $g^{-1}(A)$ is intuitionistic fuzzy g-closed in Y. Then $(gof)^{-1}(A) = f^{-1}(g^{-1}(A))$ is intuitionistic fuzzy g-closed in X, because f is intuitionistic fuzzy gc- irresolute. Hence $gof: (X, \Im) \to (Z, \mu)$ is intuitionistic fuzzy g-continuous.

Theorem 5.9: An intuitionistic fuzzy w – continuous image of a intuitionistic fuzzy w-compact space is intuitionistic fuzzy compact.

Proof: Let $f: (X, \Im)$. $\rightarrow (Y, \sigma)$ is intuitionistic fuzzy w-continuous map from a intuitionistic fuzzy w-compact space (X, \Im) onto a intuitionistic fuzzy topological space (Y, σ) . Let {Ai: $i \in \Lambda$ } be an intuitionistic fuzzy open cover of Y then {f⁻¹(Ai) : $i \in \Lambda$ } is a intuitionistic fuzzy w –open cover of X. Since X is intuitionistic fuzzy w- compact it has finite intuitionistic fuzzy sub cover say { $f^{-1}(A_1)$, $f^{-1}(A_2)$,----f⁻¹(An) }. Since *f* is onto {A₁, A₂,A_n} is an intuitionistic fuzzy open cover of Y and so (Y, σ) is intuitionistic fuzzy compact.

Theorem 5.10: If $f: (X, \mathfrak{I})$. \rightarrow (Y, σ) is intuitionistic fuzzy w-continuous surjection and X is intuitionistic fuzzy w-connected then Y is intuitionistic fuzzy connected.

Proof: Suppose Y is not intuitionistic fuzzy connected. Then there exists a proper intuitionistic fuzzy set G of Y which is both intuitionistic fuzzy open and intuitionistic fuzzy closed. Therefore $f^{-1}(G)$ is a proper intuitionistic fuzzy set of X, which is both intuitionistic fuzzy w- open and intuitionistic fuzzy w - closed, because f is intuitionistic fuzzy w- continuous surjection. Hence X is not intuitionistic fuzzy w - connected, which is a contradiction.

6. INTUITIONISTIC FUZZY W-OPEN MAPPINGS

Definition 6.1: A mapping $f: (X, \mathfrak{I}) \to (Y, \sigma)$ is intuitionistic fuzzy w-open if the image of every intuitionistic fuzzy open set of X is intuitionistic fuzzy w-open set in Y.

Remark 6.1 : Every intuitionistic fuzzy open map is intuitionistic fuzzy w-open but converse may not be true. For,

Example 6.1: Let $X = \{a, b\}$, $Y = \{x, y\}$ and the intuitionistic fuzzy set U and V are defined as follows :

 $\begin{array}{l} U = \{ < a, \, 0.5. \, 0.5 > \, , < b \, , 0.4, 0.6 > \} \\ V = \{ < x, \, 0.5, \, 0.5 > \, , < y, \, 0.3, \, 0.7 > \} \end{array}$

Then $\mathfrak{I} = \{\mathbf{\tilde{0}}, \mathbf{U}, \mathbf{\tilde{1}}\}$ and $\sigma = \{\mathbf{\tilde{0}}, \mathbf{V}, \mathbf{\tilde{1}}\}$ be intuitionistic fuzzy topologies on X and Y respectively. Then the mapping $f: (X,\mathfrak{I}). \rightarrow (Y, \sigma)$ defined by f(a) = x and f(b) = y is intuitionistic fuzzy w-open but it is not intuitionistic fuzzy open.

Theorem 6.1: A mapping $f : (X, \mathfrak{I})$. \rightarrow (Y, σ) is intuitionistic fuzzy w-open if and only if for every intuitionisic fuzzy set U of X $f(int(U)) \subseteq wint(f(U))$.

Proof: **Necessity** Let *f* be an intuitionistic fuzzy w-open mapping and U is an intuitionistic fuzzy open set in X. Now $int(U) \subseteq U$ which implies that $f(int(U) \subseteq f(U)$. Since *f* is an intuitionistic fuzzy w-open mapping, $f(Int(U) \text{ is intuitionistic fuzzy w-open set in Y such that <math>f(Int(U) \subseteq f(U) \text{ therefore } f(Int(U) \subseteq wint f(U)$.

Sufficiency: For the converse suppose that U is an intuitionistic fuzzy open set of X. Then $f(U) = f(Int(U) \subseteq wint f(U))$. But wint $(f(U)) \subseteq f(U)$. Consequently f(U) = wint(U) which implies that f(U) is an intuitionistic fuzzy w-open set of Y and hence *f* is an intuitionistic fuzzy w-open.

Theorem 6.2: If $f: (X, \mathfrak{I}) \to (Y, \sigma)$ is an intuitionistic fuzzy w-open map then int $(f^{-1}(G) \subseteq f^{-1}(wint (G) for every intuitionistic fuzzy set G of Y.$

Proof: Let G is an intuitionistic fuzzy set of Y. Then int $f^{-1}(G)$ is an intuitionistic fuzzy open set in X. Since *f* is intuitionistic fuzzy w-open *f*(int $f^{-1}(G)$) is intuitionistic fuzzy w-open in Y and hence *f*(Int $f^{-1}(G)$) \subseteq wint(*f*($f^{-1}(G)$) \subseteq wint(*G*). Thus int $f^{-1}(G) \subseteq f^{-1}($ wint (*G*).

Theorem 6.3: A mapping $f: (X, \mathfrak{I})$. \rightarrow (Y, σ) is intuitionistic fuzzy w-open if and only if for each intuitionistic fuzzy set S of Y and for each intuitionistic fuzzy closed set U of X containing $f^{-1}(S)$ there is a intuitionistic fuzzy w-closed V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof: Necessity: Suppose that *f* is an intuitionistic fuzzy w- open map. Let S be the intuitionistic fuzzy closed set of Y and U is an intuitionistic fuzzy closed set of X such that $f^{-1}(S) \subseteq U$. Then $V = (f^{-1}(U^c))^c$ is intuitionistic fuzzy w- closed set of Y such that $f^{-1}(V) \subseteq U$.

Sufficiency: For the converse suppose that F is an intuitionistic fuzzy open set of X. Then

 $f^{-1}((f(F))^c \subseteq F^c$ and F^c is intuitionistic fuzzy closed set in X. By hypothesis there is an intuitionistic fuzzy w-closed set V of Y such that $(f(F))^c \subseteq V$ and $f^{-1}(V) \subseteq F^c$. Therefore $F \subseteq (f^{-1}(V))^c$. Hence $V^c \subseteq f(F) \subseteq f((f^{-1}(V))^c) \subseteq V^c$ which implies $f(F) = V^c$. Since V^c is intuitionistic fuzzy w-open set of Y. Hence f(F) is intuitionistic fuzzy w-open in Y and thus *f* is intuitionistic fuzzy w-open map.

Theorem 6.4: A mapping $f : (X, \mathfrak{I})$. \rightarrow (Y, σ) is intuitionistic fuzzy w-open if and only if f^{-1} (wcl (B) \subseteq cl f^{-1} (B) for every intuitionistic fuzzy set B of Y.

Proof: Necessity: Suppose that *f* is an intuitionistic fuzzy w- open map. For any intuitionistic fuzzy set B of Y $f^{-1}(B) \subseteq cl(f^{-1}(B))$ Therefore by theorem 6.3 there exists an intuitionistic fuzzy w-closed set F in Y such that $B \subseteq F$ and $f^{-1}(F) \subseteq cl(f^{-1}(B))$. Therefore we obtain that $f^{-1}(wcl(B)) \subseteq f^{-1}(F) \subseteq cl(f^{-1}(B))$.

Sufficiency: For the converse suppose that B is an intuitionistic fuzzy set of Y. and F is an intuitionistic fuzzy closed set of X containing $f^{-1}(B)$. Put V= cl (B), then we have $B \subseteq V$ and V is w-closed and $f^{-1}(V) \subseteq cl$ ($f^{-1}(B)) \subseteq F$. Then by theorem 6.3 *f* is intuitionistic fuzzy w-open.

Theorem 6.5: If *f*: (X,S). \rightarrow (Y, σ) and g :(Y, σ) \rightarrow (Z, μ) be two intuitionistic fuzzy map and *g*o*f* : (X,S) \rightarrow (Z, μ) is intuitionistic fuzzy w-open. If *g* :(Y, σ) \rightarrow (Z, μ) is intuitionistic fuzzy w-irresolute then *f*: (X,S). \rightarrow (Y, σ) is intuitionistic fuzzy w-open map.

Proof: Let H be an intuitionistic fuzzy open set of intuitionistic fuzzy topological space(X, \mathfrak{I}). Then (*go f*) (H) is intuitionistic fuzzy w-open set of Z because *gof* is intuitionistic fuzzy w-open map. Now since *g*:(Y, σ) \rightarrow (Z, μ) is intuitionistic fuzzy w-irresolute and (go*f*) (H) is intuitionistic fuzzy w-open set of Z therefore g⁻¹ (*gof* (H)) = *f*(H) is intuitionistic fuzzy w-open set in intuitionistic fuzzy topological space Y. Hence *f* is intuitionistic fuzzy w-open map.

7. INTUITIONISTIC FUZZY W-CLOSED MAPPINGS

Definition 7.1: A mapping $f: (X, \mathfrak{I})$. \rightarrow (Y, σ) is intuitionistic fuzzy w-closed if image of every intuitionistic fuzzy closed set of X is intuitionistic fuzzy w-closed set in Y.

Remark 7.1 Every intuitionistic fuzzy closed map is intuitionistic fuzzy w-closed but converse may not be true. For,

Example 7.1: Let $X = \{a, b\}, Y = \{x, y\}$

Then the mapping $f: (X, \mathfrak{J}). \rightarrow (Y, \sigma)$ defined in Example 6.1 is intuitionistic fuzzy w- closed but it is not intuitionistic fuzzy closed.

Theorem 7.1: A mapping $f: (X,\mathfrak{I})$. \rightarrow (Y, σ) is intuitionistic fuzzy w-closed if and only if for each intuitionistic fuzzy set S of Y and for each intuitionistic fuzzy open set U of X containing $f^{-1}(S)$ there is a intuitionistic fuzzy w-open set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof: Necessity: Suppose that *f* is an intuitionistic fuzzy w- closed map. Let S be the intuitionistic fuzzy closed set of Y and U is an intuitionistic fuzzy open set of X such that $f^{-1}(S) \subseteq U$. Then $V = Y - f^{-1}(U^c)$ is intuitionistic fuzzy w- open set of Y such that $f^{-1}(V) \subseteq U$.

Sufficiency: For the converse suppose that F is an intuitionistic fuzzy closed set of X. Then $(f(F))^c$ is an intuitionistic fuzzy set of Y and F^c is intuitionistic fuzzy open set in X such that $f^{-1}((f(F))^c) \subseteq F^c$. By hypothesis there is an intuitionistic fuzzy w-open set V of Y such that $(f(F))^c \subseteq V$ and $f^{-1}(V) \subseteq F^c$. Therefore $F \subseteq (f^{-1}(V))^c$. Hence $V^c \subseteq f(F) \subseteq f((f^{-1}(V))^c) \subseteq V^c$ which implies $f(F) = V^c$. Since V^c is intuitionistic fuzzy w-closed set of Y. Hence f(F) is intuitionistic fuzzy w-closed in Y and thus f is intuitionistic fuzzy w-closed map.

Theorem 7.2: If $f: (X, \mathfrak{J})$. \rightarrow (Y, σ) is intuitionistic fuzzy semi continuous and intuitionistic fuzzy w-closed map and A is an intuitionistic fuzzy w-closed set of X, then f(A) intuitionistic fuzzy w-closed.

Proof: Let $f(A) \subseteq O$ where O is an intuitionistic fuzzy semi open set of Y. Since *f* is intuitionistic fuzzy semi continuous therefore $f^{-1}(O)$ is an intuitionistic fuzzy semi open set of X such that $A \subseteq f^{-1}(O)$. Since A is intuitionistic fuzzy w-closed of X which implies that $cl(A) \subseteq (f^{-1}(O))$ and hence $f(cl(A) \subseteq O$ which implies that $cl(A) \subseteq O$ where O is an intuitionistic fuzzy semi open set of Y. Hence f(A) is an intuitionistic fuzzy w-closed set of Y.

Corollary 7.1: If $f: (X, \mathfrak{I})$. \rightarrow (Y, σ) is intuitionistic fuzzy w-continuous and intuitionistic fuzzy closed map and A is an intuitionistic fuzzy w-closed set of X, then f(A) intuitionistic fuzzy w-closed.

Theorem 7.3: If *f*: (X, \mathfrak{I}). \rightarrow (Y, σ) is intuitionistic fuzzy closed and *g* :(Y, σ) \rightarrow (Z, μ) is intuitionistic fuzzy w-closed. Then *g*of : (X, \mathfrak{I}) \rightarrow (Z, μ) is intuitionistic fuzzy w-closed.

Proof: Let H be an intuitionistic fuzzy closed set of intuitionistic fuzzy topological space(X, \Im). Then *f*(H) is intuitionistic fuzzy closed set of (Y, σ) because *f* is inuituionistic fuzzy closed map. Now(*gof*) (H) = *g*(*f*(H)) is intuitionistic fuzzy w-closed set in intuitionistic fuzzy topological space Z because *g* is intuitionistic fuzzy w-closed map. Thus *g*of: (X, \Im) \rightarrow (Z, μ) is intuitionistic fuzzy w-closed.

REFERENCES

- 1. Atanassova K. and Stoeva S, "Intuitionistic Fuzzy Sets", In Polish Symposium on Interval and Fuzzy Mathematics, Poznan, 23-26, (1983)
- 2. Atnassova K., "Intuitionistic Fuzzy Sets", Fuzzy Sets and Systems, 20(!), 87-96,(1986).
- 3. **Bayhan Sadik**, "On Separation Axioms in Intuitionistic Topological Spaces".Intern. Jour. Math. Math. Sci. 27, no.10, 621-630,(2001).
- 4. Chang C.L. "Fuzzy Topological Spaces", J. Math. Anal. Appl. 24 182-190,(1968).
- 5. **Coker D.** "An Introduction to Intuitionistic Fuzzy Topological Spaces", Fuzzy Sets and Systems 88, 81-89,(1997).
- 6. Coker D. and Demirci, M. "On Intuitionistic Fuzzy Points". Notes On IFS:2-1, 78-83,(1995)
- 7. Coker D and A. Es. Hyder, "On Fuzzy Compactness in Intuitionistic Fuzzy Topological Spaces" The Journal of Fuzzy Mathematics ,3-4, 899-909, (1995).
- 8. **Gurcay H., Coker D and Es., A. Haydar**, "On Fuzzy Continuity in Intuitionistic Fuzzy Topological Spaces". The Journal of Fuzzy Mathematics Vol.5, no.2, 365-378, (1997).
- 9. Hdeib H.Z. "w-closed mappings", Revista colombina de Mathematics vol16,no1, 65-78,(!982).
- 10. Hdeib H.Z. "w-continuous functions", Dirasat journal, vol. 16, no. 2, 136-153,(1989).
- 11. Levine N. "Generalized Closed Sets In Topology", Rend. Cerc.Mat. Palermo.19(2), 571-599(1970)
- 12. **Sakthivel K.** "Intuitionistic fuzzy Alpha generalized continuous mappings and Intuitionistic fuzzy Alpha generalized irresolute mappings", Applied mathematical Sciences,vo.4, no37,1831-1842 (2010).

- 13. Sundaram P. and Sheik John M. "On w-closed set in topology", Acta Ciencia Indica 4,389-392,(2000)
- 14. Thakur S.S. and Malviya R., "Generalized Closed Sets in Fuzzy Topology", Math. Notae 38, 137-140(1995).
- 15. **Thakur S. S. and Rekha Chaturvedi** "Generalized closed set in intuitionistic fuzzy topology" . The journal of Fuzzy Mathematics 16(3) 559-572,(2008)
- 16. **Thakur S.S. and Rekha Chaturvedi** "Generalized Continuity in intuitionistic fuzzy topological spaces". Notes on Intuitionistic fuzzy set 12(1), 38-44,(2006)
- 17. Thakur S.S. and Rekha Chaturvedi "Intuitionistic fuzzy gc-irresolute" (communicated).
- 18. **Thakur S.S and Bajpai Pandey Jyoti** "Semi Generalized closed set in intuitionistic fuzzy topology".(Submitted).
- 19. **Thakur S.S and Bajpai pandey Jyoti** "Intuitionistic fuzzy sg-continuous mappings", International journal of Applied Mathematical Analysis and Application 5(1),45-51(2010).
- 20. Thakur S.S. and Mishra Manoj : Fuzzy w-continuous mappings, (Submitted)
- 21. **Turnali N. and D. Coker**, Fuzzy Connectedness in Intuitionistic Fuzzy topological Spaces. Fuzzy Sets and Systems 116 (3), 369-375(2000).
- 22. Yalvac T.H. Semi interior and semi closure of fuzzy sets, J.Math.Anal Appl 133,356-364(1988)
- 23. Zadeh L.H, Fuzzy Sets, Information and Control, 18, 338-353,(1965) .