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Abstract 
 

Screening of grouped urine sample was suggested during the Second World War as a method for 
reducing the cost of detecting syphilis in U.S. soldiers. Grouping has been used in 
epidemiological studies for screening of human immunodeficiency virus HIV/AIDS antibody to 
help curb the spread of the virus in recent studies. It reduces the cost of testing and more 
importantly it offers a feasible way to lower the misclassifications associated with labeling 
samples when imperfect tests are used. Furthermore, misclassifications can be reduced by 
employing a re-testing design in a group testing procedure. This study has developed a 
computational statistical model for classifying a large sample of interest based on a proposed 
design of group testing with re-testing. This model permits computation of moments on the 
number of tests and misclassification arising in this design. Simulated data from a multinomial 
distribution (specifically a trinomial distribution) has been used to illustrate these computations. 
From our study, it has been established that re-testing reduces misclassifications significantly and 
more so, it is stable at high rates of probability of incidences as compared to Dorfman procedure 
although re-testing comes with a cost i.e. increase in the number of tests. Re-testing considered 
reduces the sensitivity of the testing scheme but at the same time it improves the specificity. 
 
Keywords: Group, Re-test, Specificity, Sensitivity, Multinomial, Misclassifications. 

 

1. INTRODUCTION 
Pooling refers to the process of putting together individuals to form a group and then testing the 

group rather than testing each individual for evidence of the characteristic of interest. Pool testing 

began during World War II as an economical method of testing blood samples of army inductees 

in order to detect the presence of infection (Dorfman, 1943). The basic idea in pooling testing is 

that a test is done on a pool and a good reading indicates that the group contains no defective 

items and a defective reading indicates the presence of at least one defective. There are two 

objectives of pool testing: classification of the units of a population as either defective or non-

defective (Dorfman, 1943) and estimation of the prevalence of a disease in a population (Sobel 

and Elashoff, 1975). Pool testing reduces the cost of testing when the prevalence rate is low. This 

is because if a pool tests negative, it implies all its constituent members are non-defective and 

hence it is not necessary to test each member of the pool. An algorithm of classifying a 

population of interest into defective and non-defective when each unit i of the population has a 

different probability pi of being defective (which is called a generalized binomial group test, 

GBGT) problem has been studied (Hwang, 1975). 
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In situation where all the units have the same probability p of being defective, the generalized 

binomial group test problem reduces to a binary pool testing problem which is the Dorfman, 

(1943) procedure. Hwang (1976) has considered pool testing model in the presence of dilution 

effect i.e. a pool containing a few defective items may be misidentified as a pool containing no 

such items, especially when the size of the pool is large.  

Pool testing has been used in testing the population for the presence of HIV/AIDs antibody (Kline 

et al., 1989 and Monzon et al., 1992). The cost effectiveness of pooling algorithm for the objective 

of identifying individuals with the trait has also been studied using hierarchical procedures 

(Johnson et al., 1992). In this procedure, each pool that test positive is divided into two equal 

groups, which are tested, groups that tested positive are further subdivided and tested and so on. 

This work has been extended by considering pooling algorithms when there are errors and 

showed that some of these algorithms can reduce the error rates of the screening procedures 

(the false positives and false negatives) compared to individual testing (Litvak et al., 1994). 

Computational statistics has been used in pool testing to compute the statistical measures when 

perfect and imperfect tests are used has been considered (Nyongesa and Syaywa, 2011; 

Nyongesa and Syaywa, 2010; Tamba et al., 2012).  

The applications of pool testing are vast (Sobel and Groll, 1966). Pooling has been applied 

industries (Mundel, 1984), and recently it has been applied in screening the population for the 

presence of HIV antibody (Kline et al., 1989 and Manzon et al., 1992). Pool testing has been 

used in screening HIV antibody to help curb the further spread of the virus (Litvak et al., 1994). It 

has been established that pooling offers a feasible way to lower the error rates associated with 

labeling samples when screening low risk HIV population. For instance, given the limited 

precision of the available test kits, it has been shown that screening pooled sera can be used to 

reduce the probability that a sample labeled negative in fact has antibodies since each test has a 

certain sensitivity and specificity. 

In this study, we discuss the computation of moments on number of tests and misclassifications 
based on a proposed group testing with re-testing strategy. To the authors knowledge no article 
has appeared in the literature of group-testing based on Monzon et al. (1992) design that has 
discussed the procedure in computational aspect. The rest of the paper is arranged as follows: 
Section 2 discusses the re-testing scheme whereas the model of this study is discussed in 
Section 3. The central moments and the number of tests are discussed in Section 4. 
Misclassifications in the group testing with re-testing scheme are discussed in Section 5. Section 
6 provides the discussion and conclusion of the study. 

2. THE RE-TESTING SCHEME 
Suppose we have a large population; say of size N   with the purpose of testing the 

constituent members to detect the defective ones. To achieve this, Dorfman (1943) group testing 
procedure  is employed as follows: subdivide N into n portions herein referred to as groups each 
of equal size say k. each of the n constructed groups is subjected to testing. Since the test kits 
employed in the study are not perfect, we employ repeated testing to recover some lost sensitivity 
(c.f Nyongesa 2011). In this testing strategy, if a group tests negative it is dropped from further 
investigation while if tests positive, it is re-tested and if it tests positive on the duplicate test, its 
constituent members are tested to identify the defective members. The testing procedure is 
represented in Figure 1. 
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Groups 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 1: Group Testing with Re-testing Strategy. 

 
The figure shows the n constructed groups and the test result on the i

th
 group, for i=1, 2, …, n. 

The analysis in this study will require the following indicator functions: 
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The indicator functions provided above are essential in the subsequent developments. The 
observations of the constituent members of the i

th
 group will be represented by 

1 2( , ,..., ,..., )i i ij ik    or simply 1{ }k

ij j  . Clearly, 

 

1 2Pr( 0) Pr( 0, 0,..., 0,..., 0)i i i ij ikD           

 
by definition. For analysis purposes, we shall assume that the constituent member of a group act 
independently of each other, hence 
 

Pr( 0) (1 ) ,k

iD p     where, p is the prevalence rate.                  

3. THE MODEL 

From Figure 1, let 1X  be the number of groups that test positive on the initial test,
 2X  test 

negative on the initial test. Let 11X  and 12X  be the number of groups that test positive and 

1 2 i n 
, , … … … … … … … … , ,  … … … … … … … , 

+ve - ve 

+ve - ve 
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negative on the re-test respectively. Then 
11X  and 

12X are random variables. Utilizing these 

random variables, we derive the probability of declaring a group as negative on the initial tests; 

1 Pr( 0)iT    as,  

1 (1 ) [1 (1 ) ](1 ).k kp p       

                              

                  (1) 

 

where, is the sensitivity and   is the specificity of the test kits.  By sensitivity, we mean the 

probability of correctly classifying a positive group and individual while specificity means the 
probability of correctly classifying a negative group and individual. The probability, 

'

2 Pr( 1, 0)i iT T      of declaring a group as negative on re-testing a group initially classified 

as positive is 

2 (1 )(1 ) (1 )[1 (1 ) ].k kp p          

           

                              (2) 

 
With (1) and (2) at hand one can easily obtain the probability of classifying a group as positive on 

re-testing a group classified as positive on the initial test i.e.
'

3 Pr( 1, 1)i iT T     as,  

    
3 2 11                                                        (3) 

 
Equation (3) can be deduced as, 
 

2 2

3 (1 ) (1 ) [1 (1 ) ].k kp p                                           

                 

The probabilities 1 2, 3, and    can be used to define the model of group testing with re-testing. 

The joint probability distribution of
2X , 

12X and 
11X  is a multinomial model given by  

 

  2 112 11

2 11 12 2 11 12 2 11 12 1 2 1 2   ( , , ) 1 .
n

n x xx x

X X Xf x x x x x x    
  

   
 

         

(4) 

 

In this retesting strategy, 
2 is regarded as a measure that filters out negative groups from the 

groups that were initially classified as positive. The covariance matrix of the random 

variables
2X , 

11X and 
12X is  

1 1 1 2 1 3

2 12 11 1 2 2 2 2 3

1 3 2 3 3 3

(1 )

ov( , , ) (1 ) .

(1 )

n n n

C X X X n n n

n n n

     

     

     

   
 

    
                            

 

   

(c.f Nyongesa, 2011). 

 

4. CENTRAL MOMENTS AND THE NUMBER OF TESTS 
In this section, we provide the number of tests based on the proposed re-testing design as 
presented in Figure 1 described by Model (4) and the central moments of the number of tests. Let 
Z be the number of tests in this proposed group testing scheme. Therefore,  
 

1 11.Z n X kX                                                         (5) 
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where, 
1X is the number of groups that test positive on the initial test. To obtain the expected 

number of tests and the variance of the number of tests, we employ the martingale theory. The 
expected number of tests is 
 

  31 .E Z n n kn                                                             (6) 

 

where,  is Pr( 1)iT  , the probability of classifying a group as positive by the initial test and is 

given by  
 

1 (1 ) (1 )(1 )k kp p                       (7)                                                           

 
 
 
 
The variance of the number of test is 

    2

3 3 3( ) 1 2 1 (1 )Var Z n kn k n                                     (8) 

 

from which, the standard deviation is     2

3 3 31 2 1 (1 )n kn k n          . Next, we 

consider the skewness and kurtosis of the number of tests. In general, using the theory of 

moment generating function of a multinomial distribution the central moments of 
1X  and

11X  can 

be obtained as follows:  
 

   
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1
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E X n n n n n

n n n

  
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      

   

  

        

      

   

                (9)           

 

Similarly the central moments for 
11X  are given by 

 

   

   

   
  

2

11 3 3 3

3 22 2

11 3 3 3 3 3 3 3

4 22 2

11 3 3 3 3 3 3 3
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3 3 3 3

1
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n n n
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      

   
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       
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                (10) 

 
With the aid of Equations (9) and (10), we derive skewness and kurtosis of the random 

variable Z . First, by definition, the skewness, 
1 of Z is  

1

a

b
                                         (11)        



Cox Lwaka Tamba & Martin Wafula Nandelenga 

 

International Journal of Contemporary Advanced Mathematics (IJCM), Volume (3) : Issue (1) : 2014 6 

where, 

 
   

 

2
3 22 23 3 3 3

1 1

33

11 3

1 3 3 3 1a E X n k k E X n k

k E X n

   
 

   



       
             

      



     

    
3

2 2

3 3 31 2 1 (1 )b n kn k n                

Next is the computation of kurtosis,
2 and is given by, 

2

c

d
                                                                                                  (12) 

where, 

 

 
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2 3
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1 2
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  

  

     
         

     

       
           

       

    
        

    

 

    
2

2

3 3 31 2 1 (1 )d n kn k n           . 

 

5. MISCLASSIFICATIONS IN THE GROUP TESTING STRATEGY WITH RE-
TESTING 
In this study, we modeled the model of interest with errors of inspection through sensitivity and 
specificity of the test kits. Thus allowing errors in inspection, misclassifications are bound to arise 
and this is the subject of this section. There are two possible misclassifications namely: false 
negative and false positive. A false- positive refers to a non- defective item being classified as 
defective whereas a false- negative means that a defective item is classified as non-defective. 

First, we derive sensitivity of the re-testing scheme, Sensitivity=
'Pr( 1, 1, 1| 1)i i ij ijT T T      

and by the assumption of independence in the tests used, we have the sensitivity as 
 

3.Sensitivity                                                                                                 (13) 

 
Thus the false positive probability of the scheme is 

         
31 .pf  

                                                   
(14) 

 

Note that 
3  since 0 1   therefore the re-testing procedure lowers the sensitivity, thus 

this calls for re-testing of groups that were classified as negative in order to recover some lost 

sensitivity. Similarly
3 2  , and hence the sensitivity of this re-testing procedure is less than 

that of pool testing strategy without re-testing (cf Tamba et al., 2012). Now the specificity of this 
testing procedure is given by 
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 

'

'

2 1 2 1

Pr( 0 | 0) Pr( 1, 0 | 0)

Pr( 1, 1, 0 | 0).

1 (1 ) (1 ) (1 ) (1 (1 ) ) .

i

i

i ij i ij

i ij ij

k k

Specificity T D T T D

T T T D

p p   

       

   

       

                  (15)                

     
This design improves the specificity as compared to the Dorfman (1943) Model. One minus the 
specificity of the testing scheme yields the probability of false negative as 
 

 2 1 2 1  (1 ) (1 ) (1 ) (1 (1 ) ) .k k

nf p p         
                     

(16) 

 
To investigate the performance of this design we shall utilize Equation (14) and (16), in our 
computations. 

6. RESULTS 
To this end, we have presented formulas that can be used to compute the central moments of the 
number of tests in group testing with re-testing scheme. We illustrate the procedure by computing 
the central moment measures for various sensitivity and specificity. 
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Characteristics 
 

P=0.01 P=0.05 P=0.1 
    

1  
2      

1  
2      

1  
2  

Number of non- defective groups 
on the 1st test 

8.9470     1.0005     -0.888     3.3359    5.9710     1.4798     -0.205     2.8798    3.5710     1.5288     0.1718     2.7379    

Number of  non-defective groups 
on re-test 

0.0980     0.3250     0.9265 12.259    0.0900     0.3286     3.0334     12.051    0.1050     0.2986     3.7687    11.722    

Number of defective groups on 
the re- test 

0.9550 0.9428 0.9265 3.6347 3.9390 1.4696 0.2439 2.9038 6.3240 1.5490 -0.163 2.6714 

Number of group tests 11.053 - - - 14.029 - - - 16.429 - - - 

Total number of individual  tests 9.550 9.428 0.9265 3.6347 39.390 14.696 0.2439 2.9038 63.240 15.490 -0.163 2.6714 

Total number of  tests 21.576 9.428 0.9265 3.6347 54.419 14.696 0.2439 2.9038 80.669 15.490 -0.163 2.6714 

Total testing cost 21.576 9.428 0.9265 3.6347 54.419 14.696 0.2439 2.9038 80.669 15.490 -0.163 2.6714 

Percentage savings 78.424 9.428 0.9265 3.6347 45.581 14.696 0.2439 2.9038 19.331 15.490 -0.163 2.6714 

TABLE1:  Various characteristics along with relative savings for group testing with retesting strategy with 1000 runs for N =100, k=10, 99   %. 
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Characteristics 
 

P=0.01 P=0.05 P=0.1 
    

1  
2      

1  
2      

1  
2  

Number of non- defective groups 
on the 1st test 

20.275 1.9973 -0.514 3.2247 9.0480 2.2746 0.1715 3.0086 3.1950 1.6644 0.4933 3.0536 

Number of  non-defective groups 
on re-test 

0.241 0.5119 1.7600 7.3919 0.2340 0.4607 2.0780 7.7788 0.2460 0.4865 1.9591 5.5551 

Number of defective groups on 
the re- test 

4.4840 1.9387 0.5252 3.2351 15.718 2.2820 -.1354 2.8377 21.559 1.7219 -.4776 3.0860 

Number of group tests 29.725 - - - 40.952 - - - 46.805 - - - 

Total number of individual  tests 89.680 39.740 0.5252 3.2351 314.36 45.640 -.1354 2.8377 431.18 34.438 -.4776 3.0860 

Total number of  tests 120.41 39.740 0.5252 3.2351 356.31 45.640 -.1354 2.8377 478.99 34.438 -.4776 3.0860 

Total testing cost 24.082 7.9480 0.5252 3.2351 71.262 9.1280 -.1354 2.8377 95.798 6.8876 -.4776 3.0860 

Percentage savings 75.918 7.9480 0.5252 3.2351 28.738 9.1280 -.1354 2.8377 4.202 6.8876 -.4776 3.0860 

TABLE 2: Various characteristics along with relative savings for group testing with retesting strategy with 1000 runs for N =500, k=20, 99   %. 
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Characteristics 
 

P=0.01 P=0.05 P=0.1 
    

1  
2      

1  
2      

1  
2  

Number of non- defective groups 
on the 1st test 

8.6440 1.1700 -.5423 2.9606 5.8830 1.5252 0.0222 2.8162 3.6320 1.5477 0.1486 2.8169 

Number of  non-defective groups 
on re-test 

0.4970 0.6982 1.2849 4.5230 0.4490 0.6842 1.1915 4.1657 0.4260 0.6766 1.2065 4.8986 

Number of defective groups on 
the re- test 

0.8590 0.9300 0.8361 3.3976 3.6680 1.5228 0.0719 3.0232 5.9420 1.5957 -.1297 2.8060 

Number of group tests 11.356 - - - 14.117 - - - 16.368 - - - 

Total number of individual  tests 8.590 9.300 0.8361 3.3976 36.680 15.228 0.0719 3.0232 59.420 15.957 -.1297 2.8060 

Total number of  tests 20.946 9.300 0.8361 3.3976 51.797 15.228 0.0719 3.0232 76.788 15.957 -.1297 2.8060 

Total testing cost 20.946 9.300 0.8361 3.3976 51.797 15.228 0.0719 3.0232 76.788 15.957 -.1297 2.8060 

Percentage savings 79.054 9.300 0.8361 3.3976 48.203 15.228 0.0719 3.0232 23.212 15.957 -.1297 2.8060 

TABLE 3:  Various characteristics along with relative savings for group testing with retesting strategy with 1000 runs for N =100, k=10, 95   %. 
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Characteristics 
 

P=0.01 P=0.05 P=0.1 
    

1  
2      

1  
2      

1  
2  

Number of non- defective groups 
on the 1st test 

19.777 2.0304 -.1293 2.8915 9.3350 2.4371 0.0460 2.8004 4.0630 1.8311 0.3887 3.2041 

Number of  non-defective groups 
on re-test 

1.1230 1.0704 0.9512 2.8250 1.1620 1.0599 0.8855 3.0411 1.2420 1.0706 0.8703 3.3969 

Number of defective groups on 
the re- test 

4.1000 1.8146 0.3253 2.9687 14.503 2.5441 0.0251 2.8278 19.695 1.9869 -.3472 3.1641 

Number of group tests 30.223 - - - 40.665 - - - 45.937 - - - 

Total number of individual  tests 82.000 36.292 0.3253 2.9687 290.06 50.882 0.0251 2.8278 393.90 39.738 -.3472 3.1641 

Total number of  tests 113.22 36.292 0.3253 2.9687 331.73 50.882 0.0251 2.8278 440.84 39.738 -.3472 3.1641 

Total testing cost 22.645 7.2584 0.3253 2.9687 66.345 10.176 0.0251 2.8278 88.167 7.9476 -.3472 3.1641 

Percentage savings 77.355 7.2584 0.3253 2.9687 33.655 10.176 0.0251 2.8278 11.833 7.9476 -.3472 3.1641 

TABLE 4:  Various characteristics along with relative savings for group testing with retesting strategy with 1000 runs for N =500, k=20, 95   %.
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Probability, p N =100, k=10 N =500,k=20 N =1000,k=20 
    

1  
2      

1  
2      

1  
2  

0.01 0.0298 0.1699 5.5352 28.6422 0.1427 0.3721 2.5277 5.9728 0.2913 0.5317 1.7691 2.9258 

0.02 0.0602 0.2416 3.8927 14.1656 0.2926 0.5328 1.7652 2.9131 0.5893 0.7562 1.2439 1.4465 

0.03 0.0870 0.2905 3.2375 9.7984 0.4428 0.6555 1.4350 1.9250 0.8841 0.9262 1.0156 0.9642 

0.04 0.1188 0.3396 2.7700 7.1731 0.5861 0.7541 1.2472 1.4542 1.1762 1.0683 0.8804 0.7247 

0.05 0.1435 0.3732 2.5206 5.9395 0.7344 0.8442 1.1142 1.1606 1.4654 1.1924 0.7888 0.5817 

0.1 0.2930 0.5332 1.7642 2.9095 1.4624 1.1912 0.7896 0.5829 2.9246 1.6846 0.5584 0.2915 

0.15 0.4361 0.6505 1.4460 1.9546 2.1784 1.4539 0.6470 0.3913 4.3606 2.0570 0.4573 0.1955 

TABLE 5: Number of false positives in the group testing with retesting strategy for different group sizes for 99   %. 

 

Probability, p N =100,k=10 N =500,k=20 N =1000,k=20 
    

1  
2      

1  
2      

1  
2  

0.01 0.1623 0.3730 1.9160 1.9137 0.8085 0.8326 0.8585 0.3841 1.6098 1.1748 0.6084 0.1929 

0.02 0.2988 0.5061 1.4121 1.0395 1.4606 1.1191 0.6387 0.2126 2.9355 1.5865 0.4505 0.1058 

0.03 0.4168 0.5978 1.1957 0.7453 2.1019 1.3424 0.5324 0.1478 4.2150 1.9010 0.3760 0.0737 

0.04 0.5555 0.6901 1.0357 0.5591 2.7227 1.5279 0.4678 0.1141 5.4826 2.1681 0.3297 0.0567 

0.05 0.6822 0.7648 0.9346 0.4553 3.3942 1.7059 0.4190 0.0915 6.7955 2.4138 0.2961 0.0457 

0.1 1.3217 1.0645 0.6714 0.2350 6.6171 2.3819 0.3001 0.0469 13.2175 3.3664 0.2123 0.0235 

0.15 1.9276 1.2856 0.5560 0.1611 9.8323 2.9034 0.2462 0.0316 19.5610 4.0953 0.1745 0.0159 

TABLE 6: Number of false positives in the group testing with retesting strategy for different group sizes for 95   %. 
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Probability, p N =100, k=10 N =500,k=20 N =1000,k=20 
    

1  
2      

1  
2      

1  
2  

0.01 0.0840 0.2897 3.4459 11.8539 0.8439 0.9179 1.0858 1.1749 1.6878 1.2981 0.7678 0.5874 

0.02 0.1599 0.3995 2.4949 6.2043 1.5314 1.2356 0.8043 0.6428 3.0626 1.7473 0.5687 0.3214 

0.03 0.2283 0.4772 2.0856 4.3293 2.0905 1.4428 0.6871 0.4681 4.1797 2.0400 0.4860 0.2341 

0.04 0.2897 0.5375 1.8494 3.3994 2.5414 1.5900 0.6223 0.3831 5.0812 2.2482 0.4401 0.1916 

0.05 0.3444 0.5858 1.6947 2.8510 2.9018 1.6983 0.5816 0.3341 5.8008 2.4011 0.4114 0.1671 

0.1 0.5419 0.7339 1.3461 1.7900 3.8251 1.9475 0.5048 0.2504 7.6480 2.7538 0.3570 0.1252 

0.15 0.6433 0.7990 1.2327 1.4961 3.9910 1.9884 0.4935 0.2389 7.9783 2.8113 0.3490 0.1195 

TABLE 7: Number of false negatives in the group testing with retesting strategy for different group sizes for 99   %. 

 

Probability, p N =100, k=10 N =500,k=20 N =1000,k-20 
    

1  
2      

1  
2      

1  
2  

0.01 0.3971 0.6289 1.5773 2.4675 3.9282 1.9741 0.4985 0.2445 7.8566 2.7918 0.3525 0.1222 

0.02 0.7447 0.8597 1.1455 1.2918 7.0875 2.6429 0.3674 0.1309 14.1722 3.7373 0.2598 0.0655 

0.03 1.0594 1.0236 0.9556 0.8925 9.6540 3.0760 0.3122 0.0933 19.3125 4.3507 0.2207 0.0466 

0.04 1.3424 1.1505 0.8449 0.6931 11.7331 3.3833 0.2811 0.0749 23.4679 4.7849 0.1988 0.0374 

0.05 1.5948 1.2522 0.7718 0.5747 13.4060 3.6095 0.2615 0.0642 26.8125 5.1047 0.1849 0.0321 

0.1 2.5157 1.5640 0.6040 0.3428 17.7311 4.1278 0.2233 0.0455 35.4220 5.8343 0.1580 0.0228 

0.15 2.9931 1.6998 0.5475 0.2766 18.5761 4.2162 0.2168 0.0423 37.1598 5.9632 0.1533 0.0212 

TABLE 8: Number of false negatives in the group testing with retesting strategy for different group sizes for 95   %. 

Remark 1: In all the above tables we have;
1 2, tan , ,mean s dard deviation skewness kurtosis        
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7. DISCUSSIONS AND CONCLUSION 
This study has presented a computational group testing strategy with re-testing. It has been shown 
from the results; Tables 1, 2, 3 and 4 that when the group size and prevalence rate are small, 
significant savings are realized. This is an empirical result since group testing is only feasible when 
the prevalence rate is small otherwise individual testing is preferred. Similarly large groups are prone 
to increase the dilution effect and hence increase the misclassifications. It has been established that 
re-testing groups that were initially classified as positive increases the cost of testing however, the 
false negatives significantly reduces as compared to the Dorfman procedure when imperfect tests are 
used (Tamba et al., 2011). The results in Tables 5, 6, 7 and 8 show that the higher the efficiency of 
the tests, the lower the misclassifications. This implies that group testing should be carried out when 
specificity and sensitivity of the testing procedure are high. It has also been noted that this re-testing 
strategy improves the specificity of the testing procedure making it viable in screening the population 
for presence of HIV/AIDS. Misclassifications are high when the prevalence rate is high and the 
efficiency of the test kits is low.   
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