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Abstract 

 
Green computing is a hot issue that has received a great amount of interests in 
the past few years. Energy proportionality is a principal to ensure that energy 
consumption is proportional to the system workload. Energy proportional design 
can effectively improve energy efficiency of computing systems. In this paper, an 
energy proportional model is proposed based on queuing theory and service 
differentiation in server clusters, which can provide controllable and predictable 
quantitative control over power consumption with theoretically guaranteed 
service performance. Further study for the transition overhead is carried out 
corresponding strategy is proposed to compensate the performance degradation 
caused by transition overhead. The model is evaluated via extensive simulations 
and justified by the real workload data trace. The results show that our model can 
achieve satisfied service performance while still preserving energy efficiency in 
the system. 
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1. INTRODUCTION 

Green computing is to support personal and business computing needs in a green and 
sustainable manner, such as minimizing strain and impact on resources and environment. 
Computing systems, particularly enterprise data centers and high-performance cluster systems 
consume a significant amount of energy, thus placing an increasing burden on power supply and 
operational cost. For example, the power consumption of enterprise data centers in the U.S. 
doubled between 2000 and 2005, and will likely triple again in a few years [1]. In 2005, US data 
centers consumed 45 billion kWH, which was roughly 1.2 percent of the total amount of US 
electricity consumption, resulting in utility bills of $2.7 billion [2]. In 2006, the U.S. Congress 
passed bills to raise the IT industry’s role in energy and environmental policy to the national level 
[3]. Furthermore, it is estimated that servers consume 0.5 percent of the world’s total electricity 
[4], which if current demand continues, is projected to quadruple by 2010. Some analysts 
predicted that IT infrastructure power usage will soon cost more than the hardware itself [5].  
 
Many of the existing works on power management in server clusters rely heavily on heuristics or 
feedback control [6][7][8][9]. An important principle in green computing is to ensure energy 
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consumption proportionality, which states that the energy consumption should be proportional to 
the system workload [10]. For example, when there is no or little workload, the system should 
consume no or little energy; when workload increases, energy consumption should increase 
proportionally, until the system reaches the full workload. This idea can effectively improve the 
energy efficiency in real-life usage. Energy proportionality is relatively hard to be achieved on a 
standalone server because of hardware constraints. However, it is possible to achieve energy 
proportionality on a server cluster, since we can control the number of active and inactive nodes 
in a server cluster.  
 
In this paper, we propose an energy proportional model in a server cluster and study its 
performance in both single and multiple classes’ scenarios. We further investigate the transition 
overhead based on this model. The simulation results show that the energy proportional model 
can provide controllable and predictable quantitative control over power consumption with 
theoretically guaranteed service performance. 
 
 The rest of the paper is organized as follows. Section 2 reviews related work. Section 3 
introduces the energy proportional model. Performance metrics and servers allocation strategy 
are introduced in section 4. Section 5 evaluates the model and discusses the transition overhead 
influence, a strategy is also proposed to compensate the transition overhead in this section, the 
model is further evaluated based on the real workload data trace, and the last section concludes 
the paper. 
 

2. RELATED WORK 

In literatures, green computing is often related to terms like green IT, sustainable computing, 
energy efficiency, energy saving, power aware, power saving, and energy proportional. In this 
section, we review relevant techniques commonly used on single server and server clusters. 
 

 A. Single Server 
The green computing techniques for a single server focus on microprocessors, memories and 
disks. Current microprocessors allow power management by dynamic voltage and frequency 
scaling (DV/FS). DV/FS works because reducing the voltage and frequency provides substantial 
savings in power at the cost of slower program execution. Some researches tie the scheduler 
directly to DV/FS [11][12][13]. Most works deal exclusively with meeting real-time scheduling 
deadlines while conserving energy.  
 
Traditionally, many power management solutions rely heavily on heuristics. Recently, feedback 
control theoretical approaches for energy efficiency have been proposed by a number of 
researchers. On a single server, recent works [14][15] proposed power control schemes based on 
feedback control theory. Femal et al. [16] developed an algorithm based on linear programming. 
In [8], a control theoretical power management scheme on standalone servers was proposed. 
The feedback control theory is better than the traditional techniques by providing high accuracy 
and stability.  
 
Thermal management is another issue in power-aware computing, since temperature is a by-
product of power dissipation [17]. Recent research demonstrated that dynamic thermal 
management (DTM) can respond to thermal conditions by adaptively adjusting a chip power 
consumption profile on the according to feedback from temperature sensors [14] [18].  
 
Research work on memory is often combined with processors and disks. In [19], the authors used 
open-loop control to shift power between processor and memory to maintain a server power 
budget. In [20], they proposed a solution to store pages and reliability data in idle RAM instead of 
using slow disk. A large portion of the power budget of servers goes into the I/O subsystem, the 
disk array in particular. Many disk systems offer multiple power modes and can be switched to a 
low power mode when not in use to achieve energy saving. Such techniques had been proposed 
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in [21][22]. Sudhanva et al. [23] presented a new approach called DRPM to modulate disk speed 
dynamically, and a practical implementation was provided for this mechanism.  
 

 B. Server Clusters 
In recent years, power management has become one of the most important concerns on server 
clusters. Some methods proposed on a single server can be extended to server clusters. In 
[24][25], the authors presented similar ways of applying DV/FS and cluster reconfiguration, using 
threshold values, based on the utilization of the system load to keep the processor frequencies as 
low as possible, with less active nodes. In [9], the authors extended the feedback control scheme 
to clusters. Power has been used as a tool for application-level performance requirements. 
Sharma et al. [26] proposed feedback control schemes to control application-level quality of 
service requirements. Chen et al. [27] presented a feedback controller to manage the response 
time in server clusters. Some researchers applied DTM on an entire data center rather than 
individual servers or chips. In [28], the authors laid out policies for workload placement to promote 
uniform temperature distribution using active thermal zones.  
 
Vary-On Vary-off (VOVF) is a dynamic structure configuration mechanism to ensure energy-
aware computing in server clusters, which turns nodes on and off to adjust the number of active 
servers by the workload. Other work had been carried out based on VOVF [29][30][28]. In [31], 
The authors proposed a method to reduce network energy consumption via sleeping and rate 
adaptation by combining VOVF and DV/FS. Another group developed power saving techniques 
for connection oriented servers [32]. The authors tested server provisioning and load dispatching 
on the MSN instant messaging framework, and evaluated various load skewing techniques to 
trade off energy saving and quality of service. 
 
Virtualization is another key strategy to reduce power consumption in enterprise networks. With 
virtualization, multiple virtual servers can be hosted on less but more powerful physical servers, 
using less electricity [33]. In [34], researchers developed methods to efficiently manage the 
aggregate platform resources according to the guest virtual machines (VM) of relative importance 
(Class-of-Service), using both the black-box and the VM-specific approach. Hu et al. [35] used 
live migration of virtual machines to transfer load among the nodes on a multilayer ring-based 
overlay. In [4], researchers scheduled virtual machines in a computer cluster to reduce power 
consumption via the technique of Dynamic Voltage Frequency Scaling (DVFS). An economy 
driven energy and resource management framework was presented for clusters in [36]. Each 
service ”bids” for resources as a function of delivered performance. In [37], researchers 
formulated the problem as a cooperative game, and used game theory to find the bargaining 
point.  
 
The energy-related budget has accounted for a large portion of total storage system cost of 
ownership. Some studies tried multispeed disks for servers [23][38]. Other techniques were 
introduced to regulate data movement. For example, the mostly used data can be transferred to 
specific disks or memory, thus other disks can be set to a low power mode [39].  
 

3. ENERGY PROPORTIONAL MODEL 

 A. Energy Proportional Model on a Single Server 
The energy proportional model states that energy consumption P should be proportional to the 

workload λ , while ensuring service performance.  

     P a bλ= ∗ +                                                                 (1) 
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Fig. 1. The energy consumption curves of non-energy 

proportional server and strict energy proportional server. 
 

Figure.1 conceptually illustrates the energy consumption curve in non-energy proportional servers 
and energy proportional servers. The typical server operating range is between 10% - 60%. We 
can see that in a non-energy proportional server, it still consumes about half of its full power when 
doing virtually no work [10]. Energy proportional server ideally consumes no power when idle (b = 
0), nearly no power when very little work is performed, and gradually more power as the activity 
level increases. Energy-proportional designs would enable large energy savings on servers. 
However, most servers nowadays are CPU, memory and hard disk intensive servers. The energy 
consumption of CPU is almost linear to its utilization [32]. But memory and hard disks are 
nonlinear energy consumption components. As a result, energy proportionality is not easy to be 
achieved on a standalone sever because of the hardware constraints.  
 

 B. Energy Proportional Model on Server Clusters  
It is more feasible to achieve energy proportionality in a server cluster. Most computing systems 
nowadays have at least two modes of operation: an active mode when the system is working and 
an idle mode when the system is inactive and consumes little energy. Some researchers 
proposed to have finer-grained power modes, running at low speed and with lower power supply 
voltage. It is known that to quantitatively control energy consumption, one feasible way is to 
adaptively and dynamically control the number of servers running in active and inactive modes 
according to system workload.  
 
For simplicity, we assume all the servers in the cluster are identical nodes. On typical web 

servers and web clusters, system workload can be described by the request arrival rate λ . Let M 

be the total number of servers in the cluster, and Λ  be the maximum arrival rate for the cluster. 

m∑ is the total number of active servers. The total energy consumption of a server cluster is:  

( )ac in
P m P M m P= ∗ + − ∗∑ ∑

                                          (2)
 

ac
P is the power consumption of fully active nodes; 

in
P is the power consumption of inactive 

nodes. Based on the energy proportional model, we have: 

                  

max
PP

r
λ

= ∗
Λ                                                            (3)

 

where
max ac

P M P= ∗ . r  is a parameter, which adjusts the energy consumption curve in Figure 

1. The rationale of using parameter r is as follows. Ideally the r is set to r =1 where energy 
consumption is strictly proportional to workload. However, we can adjust it to satisfy different 
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performance constraints. With the help of (2), we can rewrite equation (3) as: 

( ) / ( )
/

ac
in ac in

P
m r M P P P

M
= ∗ − ∗ −

Λ
∑                                         (4) 

 

Here MΛ is the maximum jobs that a single cluster node can handle. Ideally 
in

P  = 0, which 

indicates that a server consumes no energy when it is running on an inactive mode. For 

simplicity, we suppose 
in

P  = 0 in this paper, this assumption will not affect the performance of our 

model. We finally achieve that the total number of active servers m∑ is determined by the 

system workload λ :  

 

m r
M

λ
= ∗

Λ
∑

                                                                (5)

 

The number of servers may not be an integer based on (5). We will set the integer no less 

than m∑ , which is the minimal number of servers to run in fully active mode. 

 

4. SERVERS ALLOCATION BASED ON ENERGYPROPORTIONAL MODEL 

 
An important task of energy aware computing is to achieve energy efficiency while ensuring 
performance. In this section, we will describe how to allocate servers according to workload, while 
ensuring quality of services (QoS) metrics. 
 

 A. Performance Metrics 
One important and commonly used QoS metric on Internet servers is slowdown, which is defined 
as the division of waiting time by service time. Another commonly used performance metric is 
request time which is the sum of waiting time and service time. We choose slowdown and request 
time as performance metrics in our model because they are related to both waiting time and 
service time.  
 
Our theoretical framework is built along the line of the previous service differentiation models 
presented in [40][41][42][43]. In our network model, a heavy-tailed distribution of packet size is 
used to describe web traffic. Here we assume that the service time is proportional to the packet 
size.  
 
The packet inter-arrival time follows exponential distributed with a mean of 1/λ, where λ is the 
arrival rate of incoming packets. A set of tasks with size following a heavy-tailed Bounded Pareto 
distribution are characterized by three parameters: α the shape parameter; k, the shortest 
possible job; p, the upper bound of jobs. The probability density function can be defined as: 

 

( )
( )

11

1
f x k x

k p

α α

α
α − −=

−
                                           (6)

 

where, α , 0k > , k x p≤ ≤ . If we define a function: 

( )
( )

, ,
1

k
K k p

k p

α

α

α
α =

−
                                                  (7)

 

then we have: 
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( )
( )

( )

( ) ( )

, ,
1;

1, ,[ ]

ln ln , , 1.

p

k

K k p
if

K k pE X f x dx

p k K k p if

α
α

α

α α


≠

−= = 
 − =

∫
                         (8)

 

 

Similarly, we can derive 
2

[ ]E X  and [ ]E X  

( )
( )

( )
2 2

, ,
[ ]

2, ,

p

k

K k p
E X f x x dx

K k p

α

α
= =

−∫                                       (9) 

 

( )
( )

( )
1 1

, ,
[ ]

1, ,

p

k

K k p
E X f x x dx

K k p

α

α
− −= =

+∫                                    (10) 

According to Pollaczek-Khinchin formula, the average waiting time for the incoming packets is: 

( )

2
[ ]

[ ]
2 1 [ ]

E X
E W

E X

λ

λ
=

−
                                                   (11) 

We can derive a closed-form expression of the expected slowdown in an M/G/1 queue on a 
single Internet server. 

 
( )

2 1

1 [ ] [ ]
[ ] [ ] [ ]

2 1 [ ]

E X E X
E S E W E X

E X

λ

λ

−
−= =

−
                                   (12) 

The expected request time with the incoming job rate is: 

( )

2
[ ]

[ ] [ ] [ ] [ ]
2 1 [ ]

E X
E R E W E X E X

E X

λ

λ
= + = +

−
                           (13) 

 B. Servers Allocation for a Single Class 
In this section, we assume all the incoming requests are classified into just one class. We want to 

ensure the QoS metrics based on different workload λ . For example, the expected request time 

of the incoming jobs should stay within a threshold, [ ]E R β< . We assume m∑ is the number 

of active server nodes handling the incoming requests. When using a round-robin dispatching 

policy, the packet arrival rate of a node is mλ ∑ . The expected request time in a server cluster 

can be calculated as: 

( )

2
[ ]

[ ] [ ]
2 [ ]

E X
E R E X

m E X

λ
β

λ
= + <

−∑
                                     (14) 

Based on the above energy proportionality (5), equation (14) can be re-written as: 

( )

2
[ ]

[ ] [ ]
2 [ ]

E X
E R E X

r M E X
β= + <

∗ Λ −
                                   (15) 

It is easy to observe that request time is not depending on workload, we can just adjust 
parameter r to satisfy different performance thresholds. 

 
 C. Servers Allocation on Service Differentiation 

Now we study server allocation schemes for service differentiation. In a cluster system, the 
incoming requests are often classified into N classes. Each class may have different QoS 

requirements. We assume 
i

m  is the number of active server nodes in class i , and 
i

λ is the arrival 

rate in class i . The expected slowdown of class i in a server cluster can be calculated as: 
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( )

2 1
[ ] [ ]

[ ]
2 [ ]

i

i

i i

E X E X
E S

m E X

λ

λ

−

=
−

                                                 (16) 

Here we choose not to use request time as a performance metric for service differentiation 
because of its overly complicated mathematical expression. However, each class should satisfy 
the request time constraint. Obviously the results presented in this paper will not be affected by 
the selection of performance metrics. 
 
We adopt a relative service differentiation model where the QoS factor of slowdown between 
different classes are based on their predefined differentiation parameters. 

[ ]

[ ]

i i

j j

E S

E S

δ

δ
=                                                            (17) 

Where 1 ,i j N≤ ≤ : 

We assume class 1 is the highest class and set
1 2

0
N

δ δ δ< < < <L , then higher classes 

receive better service, i.e., lower slowdown [39]. 
 
Based on the above energy proportionality and service differentiation model, according to formula 
(5)(17), we can derive the server allocation scheme in a cluster system as 

1

1

* [ ]

[ ]

N

i ii

i i N

ii

M
r E X

m E X

λ λ

λ
λ

=

=

 
− 

Λ = +
∑

∑

%

%
                                   (18) 

Here mi is the number of active servers in class i , and i i iλ λ δ=% is the normalized arrival rate. 

The first term of formula (18) ensures that the sub-cluster in class i  will not be overloaded. The 
second term is related to arrival rates, differentiation parameters, and r. 
 
We can also derive the expected slowdown of class i  as: 

2 1

1

1

[ ] [ ]
[ ]

2 * [ ]

N

i ii

i
N

ii

E X E X
E S

M
r E X

δ λ

λ

−

=

=

=
 

− 
Λ 

∑

∑

%

                                          (19) 

From (19) we can observe that the slowdown of class i  is proportional to the pre-specified 

parameter
i

δ , and is related to r. The slowdown ratio only depends on the pre-defined 

differentiation parameters. 
 
The expected request time for class i can be calculated as: 

2

1

1

[ ]
[ ] [ ]

2 * [ ]

N

i ii

i i
N

ii

E X
E R E X

M
r E X

δ λ
β

λ

=

=

= + ≤
 

− 
Λ 

∑

∑

%

                          (20) 

i
β is request time constraint for class i . We can learn from equation (20), request time in 

class i is also independent of workload, but depends on both the pre-specified parameter 
i

δ  and 

r. 
 
The performance is controllable based on our energy proportional model, with acceptable 
performance degradation; large amounts of energy can be saved. 
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5. PERFORMANCE EVALUATION 

 
 A. Simulation Results 

We build a simulator which consists of a package generator, a server dispatcher, a number of 
waiting queues, and a number of servers. The package generator produces incoming requests 
with exponential inter-arrival time distribution and bounded Pareto packet size distribution. The 
GNU scientific library is used for stochastic simulation. 
 
Simulation parameters are set as follows. The shape parameter α of the bounded Pareto 
distribution is set to 1.5. The lower bound k and upper bound p were set to 0.1 and 100, 
respectively [44]. The number of servers in the cluster is 20. And we set the normalized maximum 

jobs one server can handle MΛ = 1. We set the power consumption 160W for active nodes 

[32]. 

  
Fig. 2. Comparison of request time between non-energy proportional model 

and energy Proportional model. r is set differently according to different 
requirements of performance in a single class scenario. 

 
 

      
Fig. 3. Comparison of power consumption between non-energy proportional 

 model and energy proportional model in a single class scenario. r is set 
differently according to different requirements of performance. we can 
achieve considerable energy saving with energy proportional model. 
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Fig. 4. Comparison of request time in higher priority class between 

non-energy proportional model and energy proportional models. 
r is set differently according to different requirements of 

performance in a multiple classes scenario. 
 

 
Fig. 5. Comparison of request time in lower priority class between 
Non-energy proportional model and energy proportional models. 

r
 
is set differently according to different requirements of 

performance in a multiple classes scenario. 
 
We first evaluate the energy proportional model for the single class scenario. We set the request 
time β= 0.9, β= 1.1 and β= 1.3 which correspond to adjustment parameter r = 1.1, r = 1 and r = 
0.9 respectively. We show the simulation results in the workload range of 10% - 80%. When the 
workload is above 80%, the impact of energy proportionality constraint is very limited. Since the 
typical server operating range is between 10% - 60%, the results presented here are sufficient to 
test the energy proportional model.  
 
As Figure 2 indicates that the request time is always around the pre-defined performance 
parameter under different workload. The request time increases as the value of r decreases. The 
results show that with adjustable parameter r desirable service performance can be achieved. 
Figure 3 compares the energy consumption of energy proportional model and non-energy 
proportion model for a single class scenario. We can achieve better energy efficiency under low 
workload, which leads to large amounts of energy saving in a server cluster. 
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Next, we compare the performance metrics in a multiple classes’ scenario, as shown in Figure 4, 
5, 6. The number of classes is normally two or three [45][46]. In this paper we choose two classes 

of incoming requests. We set the target slowdown ratio 
2 1

:δ δ  = 2 : 1. The energy curve 

parameters are set differently according to different request time constraints. Note, in a multiple 
classes scenario, parameter r is determined by performance requirements of all classes, which 
means it should be set to be the largest value satisfying the requirements of all the classes. We 
observe that the model can achieve desirable proportionality of slowdown differentiation with 
request time constraints. Figure 7 also compares the energy consumptions for proportional and 
non-proportional models in multiple classes scenario. 
 

 
Fig. 6. Comparison of slowdown ratio between non-energy proportional 

model and energy proportional models. r is set by different 
requirements of performance in a multiple classes scenario. 

 
Fig. 7. Comparison of power consumption between non-energy proportional 

model and energy proportional model in multiple classes scenario. 
r is set by different requirements of performance. We can achieve 

considerable energy saving compare to the non-energy proportional model. 
 

 B. Transition Overhead Analysis 
The model proposed in this paper is a continual allocation process, where we dynamically change 
the number of active servers. The transition time when a server transfers from an inactive mode 
to an active mode can not be ignored, this can influence the performance during the transition 
period. Thus, it is necessary to estimate the cost of transition overhead. 
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Generally speaking, the transition time for different servers is different which depends on the 
processor and other hardware constraints. Therefore, we study the influence on performance 
caused by transition overhead under different time. Figure 8 shows how the request time changes 
when considering transition overhead as the workload gradually changed from 0%-80% based on 
the energy proportional model. We only concern the situation when the workload increases, since 
as the workload decreases, the number of active servers will decline, which will not cause 
performance degradation. The y-axis is the request time under different transition overhead. As 
indicated in the figure, larger transition time has more impact on performance. The performance 
will be affected greatly when large number of servers can not transfer to active mode on time. 

 
 

 
Fig. 8. The effect to performance of transition overhead in energy 

proportional model, the transition time is set to be 15,20,25,30 respectively 
 

 
Fig. 9. Request time after adding one spare server based on energy 

proportional model in a single class scenario, the transition time 
is set to be 15,20,25,30 respectively. 

 
It is important to make sure that the QoS is not sacrificed excessively in favor of power and 
energy savings. Spare servers are added to solve the problem of transition overhead. Figure 9, 
10 illustrate the performance after one and two spare servers are added in a single class 
scenario. By adding one spare server, the performance can be improved dramatically compared 
to the case of no spare server. Adding two spare servers, the response time can stay under the 
pre-defined threshold when the workload gradually changes from 0%-80%. However, in some 
special situations, the workload may vary significantly within two control periods. One or two 
spare servers are not adequate to compensate the performance degradation. More spare servers 
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are required.  
 

 C. Performance Evaluation Based on Real Workload Data Trace 
To evaluate the model on realistic traffic patterns, we use an hour’s workload trace collected by 
Lawrence Berkeley National Laboratory [47]. Request time threshold is set to be β= 0.6 and 

1r = . Figure 11 illustrates the performance based on our model in a single class scenario. The 
requests arrival rate and job size are normalized. We evaluate the performance in the situations 
of non-spare server and spare servers respectively. As shown in the figure, when the workload 
decreases, there is no performance degradation, however the performance degradation can be 
clearly seen as the workload increases in the case of no spare server is added. With one or two 
spare servers, the performance can be improved significantly. Especially, when two spare servers 
are always on, request time is always under predefined threshold. The result also indicates that 
as the number of spare server increases, the performance does not change dramatically. The 
request time tends to stay in a level, which demonstrates proper spare servers should be set to 
compensate the performance degradation.  

 
Fig. 10. Request time when adding two spare servers based 

on energy proportional model in a single class scenario, 
the transition time is set to be 15,20,25,30 respectively. 

              
Fig. 11. Request time when adding two spare servers based on energy 

proportional model in a single class scenario. 
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Fig. 12. Power consumption when adding two spare servers based 

on energy proportional model in a single class scenario. 
 
Figure 12 evaluates the power consumption based on our model under real workload data trace. 
The system arrival rate is the same as shown in figure 11. The power consumption is dynamically 
changed as the workload changed. With little more power consumption, we can achieve better 
performance, and eliminate the effect of transition overhead. 
 

6. CONCLUSION AND FUTURE WORK 

Energy management becomes a key issue in server clusters and data centers. This paper aims 
at providing effective strategies to reduce power consumption and reduce the impact of 
performance degradation. We summarize out work as follows: first, the energy proportional model 
based on queuing theory can provide accurate, controllable and predictable quantitative control 
over power consumption; second, we analyze the effect of transition overhead and propose a 
strategy to improve the performance efficiency. Finally we evaluate the energy proportional model 
via simulation. Simulation results show that the energy proportional model can achieve 
predictable and controllable proportional energy consumption and desirable performance in a 
server cluster.  
 
Future work would include studying the effect on performance when applying different dispatching 
strategies in our model. We are still trying to extend the server states to solve the problem of non-
integer number of nodes, which will further enhance the energy efficiency. Eventually our goal is 
to apply our model to the real Internet web servers in the future.  
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