
A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

16

Run-Time Adaptive Processor Allocation of Self-Configurable
Intel IXP2400 Network Processor

A.Satheesh vbsatheesh@yahoo.com
Department of Computer Science and Engineering
Periyar Maniammai University
Thanjavur-613 403, Tamil Nadu, India

Dr.D.Kumar kumar_durai@yahoo.com
Department of Electronics and Communication Engineering
Periyar Maniammai University
Thanjavur-613 403, Tamil Nadu, India

Dr.A.Vincent Jeyakumar avjeyakumar2004@yahoo.com
Department of Mathematics
Periyar Maniammai University
Thanjavur-613 403, Tamil Nadu, India

Abstract

An ideal Network Processor, that is, a programmable multi-processor device
must be capable of offering both the flexibility and speed required for packet
processing. But current Network Processor systems generally fall short of the
above benchmarks due to traffic fluctuations inherent in packet networks, and the
resulting workload variation on individual pipeline stage over a period of time
ultimately affects the overall performance of even an otherwise sound system.
One potential solution would be to change the code running at these stages so
as to adapt to the fluctuations; a near robust system with standing traffic
fluctuations is the dynamic adaptive processor, reconfiguring the entire system,
which we introduce and study to some extent in this paper. We achieve this by
using a crucial decision making model, transferring the binary code to the
processor through the SOAP protocol.

Keywords: Network Processor, Reconfiguration, Runtime adaptation, dynamically adapting processor,

Active Network, Self-Configurable, SOAP, IXP2400

1. INTRODUCTION

Traditionally most of the network core components have been implemented using Application
Specific Integrated Chips (ASICs). We first recapitulate some of the earlier related works. Kevin
Lee and Geoffrey Coulson in [14] analyse the exact position that runtime reconfiguration
occupies in Network Processor (NP), such as dynamically extendable services, network resource
management, configurable network based encryption , offload processing etc. Dynamic
deployment of resources to different flows in NPs has been known to Kind, Pletka and Waldvogel
(see [1]). Implementations of NPs as system-on-a chip multiprocessor, involving multiple
multithreaded processing engines and on-and-off chip memory, was the contribution of Tilman

A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

17

Wolf [18], [19]. However, these devices lack flexibility and speed and also consume more
energy. They therefore require replacement of physical components in the network core
whenever there is a protocol change or update. These replacements still need some fine tuning
which we provide by the use of programmable processors in the reconfigurable environment.
These Neo Network Processors are multiprocessor devices designed for the efficient data-plane
and control-plane by processing in networking applications. They are programmed to offer the
required flexibility in packet processing and at the same time they appropriately provide the
necessary computing resources to meet the speed requirement constraints of the network
protocols. Intel’s IXA architecture provides the basis of a family of such NPs, of which the
IXP2400 Network Processor is being used in this paper for the implementation of run-time
adaptive processor allocation of self-configurable systems. An adaptive processor allocation to
pipeline stages of a packet processing application at run-time can improve robustness of the
system to traffic fluctuations, can reduce processor provisioning requirement of the system and
can conserve energy.

2. THE SYSTEM ARCHITECTURE

The Intel IXP2400 scores over many other processors due to its high programming flexibility,
code reuse, and faster deployment capabilities and many other advantages like supporting a wide
variety of LAN and WAN applications. We therefore choose this Network Processor for our study.

2.1 Intel IXP2400 Network Processor

The IXP2400 is an integrated Network Processor, comprised of a single X-Scale Core processor,
eight Micro engines, standard memory interfaces, and high-speed bus interfaces. It is targeted at
networking applications requiring a high degree of flexibility, programmability, scalability,
performance, and low power consumption. The unique architecture of the IXP2400 affords the
user a highly concurrent packet processing model, while keeping the programming model simple.
This is accomplished by providing many features in hardware that simplify the programming
model. It allows the designer to implement the software, what was previously implemented in
custom ASICs. This flexible, reprogrammable approach makes development time faster,
facilitates easy bug-fixing, adds features to products after deployment in the field while
conforming to standards that are not yet finalized. The micro engines are custom processors
implemented specifically for networking applications. They are especially well suited to high-
speed data manipulation and movement. The micro engines being fully programmable
processors are able to examine packet contents at all levels of the networking stack. This makes
them suitable not only for layer 2 and 3 switching/forwarding, but also for applications that require
deeper inspection and manipulation of packet contents. The key features of IXP2400 NP are
scrupulously discussed in [7], [15], [17] whose standard block diagram of Intel IXP2400 NP
architecture as shown in Figure.1. This shows the six functional units, which are traditionally
known as Intel X-Scale Core [3], Micro-engines [5], control store, contexts, Data path
Registers [9], local memory, SRAM and DRAM controller [10] , [11], Media and switch Fabric
Interface, PCI controller, X-Scale core Peripheral, Performance monitor [8], Scratchpad memory
and Hash unit.

A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

18

FIGURE 1: Simplified block diagram of the IXP2400

2.2 Workload Model

Network processing in Intel IXA is essentially a series of tasks that are applied to a constant
stream of packet or cell data. With the multi-processor/multi-threaded architecture of the IXP
2400 network processor, these tasks are distributed over several micro-engines, each of which is
programmed to perform specific tasks. When a micro-engine completes its tasks, it passes the
context to the next micro-engine so that it can continue processing the data.

2.3 Performance Metrics

In our analysis, we focus on the following performance metrics, which are key indicators of the
performance of a runtime system:

• Processor utilization (ρ): This metric is defined as the fraction of time that the processor
is busy. Processor utilization indicates the efficiency at which the system operates.

• Packets in the system K. This metric indicates the extent to which the queues and
processors are utilized in the system. A large value indicates that many packets are
queued and that packets experience a large delay when traversing the system.

2.4 Organization of the paper

The remainder of this paper is organized as follows: Section 3 discusses related works. The
overall methodology is described in Section 4. In Section 5 we draw the state diagram of the
proposed system. In Section 6 we describe the model which we propose to introduce. The
implementation details will be discussed in section 7. The results will be analyzed in Section 8.
We conclude the paper in section 9.

Media switch
Fabric

Scratchpad
memory

SRAM
controller 1

SRAM
controller 2

DRAM
controller

PCI
controller

Hash
Unit

CAP

Intel X scale
core
Peripheral

Intel X-
scale core

Performance
monitor

ME

0x0
ME

0x1

ME

0x3

ME

0x2

ME

0x11

ME

0x10

ME

0x13

ME

0x12

ME Cluster 2 ME Cluster 1

A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

19

3. RELATED WORK

Recently, several studies have been initiated in reconfiguration of network processors. We

brief a few here. Xin Huang and Tilman Wolf [22],[23] in their work present a methodology for
evaluating runtime systems for NPs by defining workload models, queuing discipline and
improving existing mapping algorithm . In paper [12] J. Allen et al have used Hifn PowerNp,
wherein they discussed the challenges and demands posed by next generation networks and
have described how network processors can address these issues by performing highly
sophisticated packet processing at line speed. Kevin Lee and Geoffrey Coulson [13], [14] in
their work demonstrated the importance of the specialized software, to support runtime
reconfiguration that exploits the potential of NPs. They have focused mainly on the generic
mechanism that can be potentially applied in all areas. They have used Intel IXP 2400 as a
representative of the state-of-the-art current generation of NPs. In fact, they discover new
approaches that present a runtime component based approach to programming NPs. The
approach promotes conceptual uniformity and design portability across a wide variety of NP types
while simultaneously exploiting hardware assists that are specific to individual NPs. Troxel, et al [
6] have demonstrated the superior performance of enhanced NP over baseline NP for prioritized
traffic that is non uniform. In the baseline experiments, the ME pipelines were not reconfigurable.
This type of system mimics the behavior of today’s NPs. Ravi kokku, et al [16], [17] have
presented a new approach of delay-conscious processor allocation algorithm (PAL) for packet
processing systems. And they analyzed the benefits and challenges of adapting allocations of
processors to packet types in the above systems and also they demonstrated that, for all the
applications and traces considered, run-time adaptation can reduce energy consumption and
processor provisioning level. On the other hand, Vinod Balakrishnan, et al [21] concentrate on
balancing two requirements in packet-processing applications on multi-core processors.
Arun Raghunath, et al [2] present yet another approach to support network processor platforms,
which are increasingly required to support a rich set of services. These multi-service systems are
also subjected to widely varying and unpredictable traffic. According to them, current network
processor systems do not simultaneously deal well with a variety of services and fluctuating
workloads. They have implemented an adaptive system that automatically changes the mapping
of services to processors, and handles migration of services between different processor core
types to match the current workload.

4. THE INTEL IXP2400 NP CONFIGURABLE ENVIRONMENT

This section gives the complete high level design details of the Intel IXP2400 NP that is needed in
our work, by developing a self-configurable environment that would dynamically reconfigure its
resources based on the results of monitoring traffic flows. For this, flow statistic is gathered by
runtime-mapping-technique. In contrast, the unused hardware resources such as micro-engines
are also quantified. These statistics will be used for choosing the appropriate resources for the
services being offered, i.e., dynamic deployment reconfiguration.

The proposed system and its architecture are depicted in Figure.2. This will provide the resources
based on the network traffic for the purpose of reconfiguration. The network traffic is analyzed
using the monitoring module. The monitoring module will scrutinize the number of packets coming
in and getting out of packet processing system, using a counter. Based on the number of packets,
the arrival rate and departure rate of the packets can be determined.

A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

20

FIGURE 2: Functional block diagram of NP reconfiguration

The result of this monitoring module will be used for decision making wherein the need for extra
processor is decided. This is done using the decision table and service table (see Table.1 and
Table 2) to be explained in section 4.2.

We list below the salient functions of the above reconfigurable diagram,
1. Monitoring module monitors the incoming and outgoing packets.
2. Decision-making module decides whether to deploy the code or to stop the Micro-engine.
3. Dynamic deployment module dynamically deploys the code in the Micro-engine.
4. Active code transfer module parses the SOAP packet that comes from administrator. This
packet contains the binary file for deployment.

4.1 Monitoring Module

The counter is set at the micro-engine level. The counters at ingress will keep track of the
incoming packets to the queue. And the last counter, which is at egress, will keep track of the
outgoing packets from the packet processing system that is to be processed by the egress.
These two counters help to determine the number of packets in the intermediate stage. So, with
the help of Arrival and Departure rate from and to the packet processing system, the traffic
intensity is determined as shown in Figure 3. Since there is need for accessing the counter by
both the processors, the counter values must be maintained in common to both the X-scale
processor and Micro-engine for easy access to it.

Monitoring module

Decision making
module

Decision table

Dynamic Deployment
module

Service Table

Ingress Classifier

Deploy ()

Deploy_statu
s()

MICRO_ENGINE

X-SCALE

Monitor ()

Active parser

Egress

Active Handler

Forwarder

Monitor_statu

A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

21

FIGURE 3: Role of X scale and ME in the Monitoring Process

In this module the following two functions are performed,
 1: Counting of incoming packets to the ingress and
 2: Counting of outgoing packets from the egress

We calculate the service rate in this module using the following equation (1),

 Overall service rate X (t) = N /t, (1)

where N = Number of packets (packet count) transmitted
 t = Time interval in seconds.

We also generalize these ideas to k server by iteration process as shown below.

At the initial level, we are assuming the traffic level is low. In this situation the system is used in
single micro-engine for packet processing. So the service rate is

 . (2)

We are assuming in the second level that the system is in moderate traffic, so that it can be
provisioned by additional resources. The service rate of the second processor is,

 . (3)

And when the system is in heavy traffic, more number of processors can be provisioned. The
service rate of additional resource is,

 . (4)

We can generalize the service rate of the j

th
server as

 (). (5)

where,

E = total count of egress value.

……. Ingress Egress

SRAM

counter

Monitor module X-SCALE

MICRO-ENGINE

A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

22

4.2 Decision making module

Before we go into the various parameters of this module, we must explain the most important
aspect of this module, which is perhaps the most important concept of this paper itself. The basic
idea is to optimize the resources and avoid the packet loss when the activated micro-engines are

at full throttle. We fix two parameters and , for the queue lengths where .

The decision making module decides whether to dynamically deploy the code in a Micro-engine
or relieve the load on a currently utilized Micro-engine, based on the packet arrival rate (λ) and

the lagging packets in the intermediate queue (k). When the arrival rate is less, we call the

minimum threshold (Tmin) and when the arrival rate is at its peak, we call the maximum

threshold (Tmax) and these threshold values are fixed based on the network trace obtained by
monitoring module. This module employs the decision table (Table. 1) and the service table
(Table. 2) for dynamic deployment.

Traffic Threshold Processor

Low

P1

Medium

P2

High

P3

TABLE 1: Decision Table

Processor Process Flag Service

ME0 SRAM1.uof 8107 Ingress

ME1 x.uof 8107 Dynamic deployment

ME2 SRAM2.uof 8107 Egress

ME3 x.uof 8107 Dynamic deployment

ME4 - 8106 inactive

ME5 - 8106 inactive

ME6 - 8106 inactive

ME7 - 8106 inactive

TABLE 2: An example of Service and Resource table (Moderate Traffic)

where,
 Flag value 8106 and 8107 indicate that the micro-engine is inactive and active,
 Service – is the functionality of the instance.

A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

23

The pseudo code for the rules adopted by the decision-making module is given below Algorithm.1
and 2.

 Algorithm: 1. Allocation Rule

1. int i � Tmin
2. int j � Tmax

3. int q1 �

4. int q2 �

5. if (λ > i) and (k >q1) then
6. deploy_code_for_moderate_traffic
7. if (λ> j) and (k >q2) then
8. deploy_code_for_maximum_traffic

 Algorithm: 2. Deallocation Rules

1. int i � Tmin
2. int j � Tmax
3. if (λ < i) and current_code == moderate_traffic then
4. stop_code_for_moderate_traffic
5. if (λ< j) and current_code == maximum_traffic then
6. stop_code_for_maximum_traffic

 In case the traffic is low, the threshold value = Tmin will be fixed in such a way that the arrival

rate is less than Tmin. , the system will activate the first micro-engine S1 (see State diagram S1).

 is fixed in such way that arrival rate is above 70% of the service rate of the micro-engine.

Incidentally our blanket assumption is that all micro-engines in the system have equal capacity of
service rate.

The application code for the moderate traffic occupies four micro-engines (moderate resource
provisioned) while that for heavy traffic uses all available resources in order to tolerate the
maximum traffic.

4.3 Active code Transfer module

In Figure.4, shows the working principle of Active code transfer module. All the packet processing
would be carried out in data plane (micro-engine level).Hence when the packet comes in; the
packet is classified based on the destination IP and Port by classifier. The active code will be
passed on to the active code handler and the other traffic to normal packet handler. The active
code handler will check for more flag bit set and fragmentation ID, then extract the packet content
and copy an image to SRAM. Later the X-scale will monitor the SRAM for active code and get the
content to form a binary file.

A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

24

FIGURE 4: Functional Block Diagram

The algorithm for identifying and extracting the active packet from the rest of the traffic is shown
below,

Algorithm : 3. Identifying and Extracting the Active packet

1. If (Destination_IP = NP_IP && Destination_port=port)

 //Classifier
 {
 //Active code Handler
2. Check for More Flag bit set;
3. Extract Fragmentation ID;
 Extract Total length of the packet;
4. Set the flag in SRAM with the offset of packet content;
5. Move the packet content from DRAM to SRAM;
6. Next SRAM_LOC;
 }

4.4 Active code Parser module

The XML Code which comes by SOAP as active code will be parsed in this module. SRAM
location is monitored in order to check whether the flag is set. If the flag is set, from the offset
detail, the packet content is parsed. The header and the binary image are separated from the
packet content. The Micro-engine number and file name of the active code can be identified by
parsing the content header between the XML tag <ME></ME> and <IMAGE></IMAGE>.b The
Binary UOF file will be extracted by parsing the active code between –MIME-BOUNDARY. The
Figure 5. shows the X-Scale module function.

XSCALE

ME0 (Ingress), ME1 (Classifier), ME2 (Active code

handler), ME3 (Normal packet handler), ME4(Egress)

Packet IN & OUT

SRAM

Active code Parser

Dynamic Deployment

DRAM

MICROENGINE

A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

25

X-Scale Module

FIGURE 5: X Scale module

4.5 The SOAP Format for Active code

Simple Object Access Protocol (SOAP) is a way to structure data so that any computer program
in any language can read SOAP and send messages in SOAP. SOAP provides the answer to two
main requirements. More precisely, XML provides a standard way to represent data, and SOAP
provides an extensible message format (“extensible” essentially means you can make up your
own tags; for example, HTML is not extensible). So this helps to create an active packet with
information of the code by extensible message format (see Figure.6), where the binary file can be
carried by the attachment part.

 FIGURE 6: Format for Active packet

--MIME_boundary

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

Content-ID: networkprocessor.xml@annauniv.com

<?xml version='1.0'?>

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

<ME>

<MENO>17</MENO>

<IMAGE>packet5</IMAGE>

 <theAttachment href="cid:packet5.uof@annauniv.com"/>

</ME>

</SOAP-ENV: Body>

</SOAP-ENV: Envelope>

--MIME_boundary

Content-Type: text/plain

Content-Transfer-Encoding:binary

Content-ID: packet5.uof@annauniv.com

Binary Code……………………………………….

--MIME_boundary

Monitor the SRAM

for the flag to be set

Extract the offset

Parse the SOAP

header and Binary

image

Deploy the code

A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

26

5. THE STATE-DIAGRAM

At this stage, we introduce queuing theory as the primary systematic network analysis network
delay. The conventional method of taking transmission delay L/C has been improved in the
present day contexts to Little’s Law N = λT and its infinitesimal modification Nt = λt Tt, which we
follow in our situation (for details see [4]).

Let,
 N(t) = Number of packets in the queue at time t
 α(t) = Number of arrival in the interval (0,t)
 β(t) = Number of departure in the interval (0,t)
So that,
 N (t) = α(t) - β(t) (6)

Let ti and Ti be the time of arrival and the time spent in the system respectively, by the i

th

customer. Using elementary integration theory as a limit of summation, we obtained the following
identity:

 (7)

Dividing throughout by t , we obtained the modified Little’s Law

Nt = λt Tt ,
where,

Nt = = Time average of the number of customers in the system in the interval (0,t)

λt = = Time average of the customer arrival rate in the interval (0,t).

 = Time average of the time a customer spends in the system in the

 interval (0,t)

We explain the situation in the state-diagram Figure.7. Here S1, S2,…,Sc denote the active servers
and Sc+1 and Sc+2 denote respectively the ingress and egress. Since, the total number of servers =
k, we have k = c + 2. Suppose, we use minimum resource (less number of micro-engines) with
high traffic flow, we incur packets loss and this can be represented by dotted lines in the state

diagram. The and are the position of minimum and maximum of queue length. The

packets arrive in Poisson distribution and service of each server is exponential. The mean arrival

rate is λ and mean service rate is . The incoming packets are distributed from the dispatcher in

FCFS discipline. The queuing model is M/M/1/ or in M/M/c as a generalized version.

It is surprising to note that the dotted line representing the ‘critical line’ where the packet loss
occurs (before our innovation of resource optimization) resembles the ‘critical line’ Res = ½ ,

where the zeros of the classical Rieman-zeta function in complex analysis are conjectured

to fall. This emphasis the natural connection between classical mathematics, probability theory
and modern computer analysis.

A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

27

FIGURE.7: State-diagram

We now enter into the actual methodology for the proposed system model.

6. PROPOSED SYSTEM MODEL

In this proposed system we adopt the principles of Adaptive load balancing model. This
application is all about sharing the load directed upon a single server across multiple redundant
severs thereby reducing the per head load. The per-head load is reduced by sharing the load
equally by all the redundant servers. The scenario is as shown in Figure 8.

6.1 Assumptions

It is assumed that the system has only five replicated servers all the time and the service each
provides is identified by the respective port number only. If two different redundant servers
provide a service in the same port number it is assured that the two services are the same i.e. if a
client requests for a service providing a port number all redundant servers (if they have such
a service) have the same service at that requested port number. All the packets that flow through
the NP are assumed to be TCP packets running on IP.

Arrival (λ)

Sc

S1

S2 Queue

Sc+2 Sc+1

A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

28

FIGURE 8: Adaptive Load Sharing- Context diagram

6.2 Runtime Mapping

6.2.1 Mapping I: Min_service_upon_less_traffic

First, we consider the minimum traffic in the system. At that time, the system uses only single
ALS instance. This is a basic pipeline consisting of Ingress, processing ALS operations (i.e., ALS
instance) and egress as shown in Figure 9.

 FIGURE 9: Base line Configuration

6.2.2 Mapping II: Min_service_upon_moderate_traffic

Second, we consider the moderate traffic flow. A copy of the previous instance is replicated in
order to accommodate the moderate traffic as shown in Figure 10.

 FIGURE10. Replication of the same instance

Load
balancing
NP

S2

S3

S4

S5

S6

Client Request
S1

S8

S7

Ingress

ALS Instance

Egress

ME0 ME1 ME2

ALS

Instance1
Egress

ME0 ME1 ME2

ME3

Ingress

Replicated

ALS

Instance2

A Set of 5
Redundant
Servers
S3,S4,S5,S6,S7

A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

29

6.2.3 Mapping III: Max_service_upon_high_traffic

In order to overcome the heavy traffic, a new ‘substituted’ instance of the ALS application is
deployed (Figure. 11). In the substituted new instance, the ALS function is split to different micro-
engines, whereas in the replicated instance all the functions are carried out in a single micro-
engine.

FIGURE 11: Substituting new instances

We use the following setup to evaluate the runtime systems

7. IMPLEMENTATION - HARDWARE PLATFORM

Our setup contains a PC hosting the Radisys ENP-2611 board with Intel® 600MHZ network
processor. IXP2400 contains one XScale

TM
 core and eight micro-engines. Each micro-engine has

an instruction store to hold 4K-40 bit instructions that are optimized for fast-path packet
processing. In Intel IXP2400 Developers Workbench, Microcode Assembly language is used to
implement the system and X-scale implementation incorporated Embedded C programming
language for implementation. Intel IXP2400 Developers Workbench in a simulation tool which
helps us to execute the micro engine code on it and give the performance measures for the
application program. Later the same application is ported onto the hardware. The execution of the
code can be traced on an instruction-by-instruction basis using the simulation tool. This helps in
debugging the code as well as in providing means to validate the code. There are provisions to
watch the runtime values getting stored in various memory storage units like SDRAM, SRAM,
Scratch Pad Memory, Local Memory and Micro -engine Registers.

8. RESULT ANALYSIS

The following section details the manner in which the baseline configurations (a) and (b) are
compared to the dynamic configuration (c) described by us so far.

a. Traffic from outside Network:

The Traffic trace taken from the network are classified into low (250 pkts/sec), moderate

(450 pkts/sec) and high (950 pkts/sec) and the traffic mixture taken are low, moderate and high.
In Figure.12, the traffic mixture with low traffic was maintained for the first 10 seconds and then
the traffic was increased to moderate for the next 10 seconds and finally the traffic was
increased to high profile.

ME3

Ingress

ALS

Instance1

Egress

Replicated

ALS

Instance1

Substituted ALS

Instance2

ME0 ME1
ME2

ME4,

ME5,ME6

A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

30

FIGURE 12: Snapshot of Traffic from outside network FIGURE 13: Arrival rate and lagging packet in
 Mapping I

b. NP without Dynamic Reconfiguration:

 Mapping I

At the initial stage, the system uses minimum resources so that (3 micro-engines) have been
provisioned for NP. And the monitoring interval is 0.5 second. In Figure 13., the traffic mixture
taken is low, moderate and high. So, when the workload gets increased (moderate traffic), the
micro engine will not be able to process all the incoming packets, hence the queue size increases
abruptly and queue overflow takes place, because in this mapping-I, the system uses only three
micro-engines, which are ingress and egress. Hence the system itself with a single micro-engine,
so it will tolerate only moderate traffic.

Mapping II

In the second level, the system is in moderate traffic. The Figure.14 shows the mapping of
second level. At this moderate traffic, four micro engines have been used. And the monitoring
interval is 0.5 second. The traffic mixture taken is low, moderate and high. So when the workload
is increased (high traffic), the micro engine will not be able to process all the incoming packets,
hence the queue size increases abruptly and as before queue overflow takes place.

Mapping III

At the third level, the system is in high traffic; here all the eight micro engines have been
provisioned for NP. And the monitoring interval is 0.5 second. The traffic mixture taken is low,
moderate and high. So when the workload increases, the micro engine will be able to process all
the incoming packets, hence the queue overflow will not take place (see Figure. 15). So, in this
mapping-III the system used, maximum capacity in high level traffic.

Packet from outside Network

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60

Time in Sec

Arrival Rate

W
o

rk
 l

o
a

d
 (

N
o

.
o

f
P

a
ck

e
ts

)

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time(Sec)

Arrival Rate Queue Length

W
o

rk
 l

o
a

d
 (

N
o

.
o

f
P

a
ck

e
ts

)

A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

31

FIGURE 14: Arrival rate and lagging packet in Mapping II FIGURE 15: Arrival rate and lagging packet
 in Mapping III

c. NP with Dynamic Reconfiguration

In this dynamic reconfiguration, at initial stage minimum resource will be provisioned for NP.
When the traffic get increased from low to medium, the minimum resource will not be able to
manage the workload, so the queue length get increases in time for example 10-12 sec and 20-
22 sec (see Figure.16) .In this stage, the system will balance this situation to activate additional
resources. The monitoring module which monitors the packet rate from X-scale core, deploy the
code using runtime environment module in order to tolerate the moderate workload. Once again
the heavy traffic is injected into the NP and the maximum resource will be provisioned in order to
overcome the network traffic.

FIGURE 16: Arrival rate and lagging packet in Dynamic Reconfiguration

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time(Sec)

Arrival Rate Queue Length

Dynamic

Deployment

W
o

rk
 l

o
a

d
 (

N
o

.
o

f
P

a
ck

et
s)

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time(Sec)

Arrival Rate Queue Length

W
o

rk
 l

o
a

d
 (

N
o

.
o

f
P

a
ck

e
ts

)
W

o
rk

 l
o

a
d

 (
N

o
.

o
f

P
a

ck
e

ts
)

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time(Sec)

Arrival Rate Queue Length

W
o

rk
 l

o
a

d
 (

N
o

.
o

f
P

a
ck

e
ts

)

A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

32

9. CONCLUSION AND FUTURE PLAN

To summarize, we have described the design and implementation of a dynamic reconfigurable
system for Intel IXP2400 NP that can perform resource allocation at runtime. This allows
maximum utilization of resources whenever possible in the steady state. In the baseline
experiments (using the three mappings), the Micro-engine pipelines were not reconfigurable. The
comparison of the baseline configuration over dynamically reconfigurable NP as described in the
earlier sections shows the superior performance of Self-Configurable NPs over baseline NPs.
Our future work is to develop an adaptive system for IPV6 services. We propose to implement an
adaptive system that automatically changes the mapping of IPV6 services to processors, and
handles migration of services between different processor core types to match the needs.

10. REFERENCES

1. A.Kind, R.Pletka, and M.Waldvogel “The role of network processors in active networks”

In Proceedings of IWAN 2003, pages 18-29, Kyoto, Japan, December 2003.

2. Arun Raghunath, Aaron Kunze, Erik J. Johnson, Vinod Balakrishnan “Framework For
Supporting Multi-Service Edge Packet Processing On Network Processors”. Architecture for
networking and communications systems. 26-28 Oct. 2005 Page(s):163 – 171.

3. Bill Carlson, “Intel® Internet Exchange Architecture & Applications A Practical Guide to Intel's
Network Processors”, Intel Press.

4. Dimitri Bertsekas, Robert Gallager , “Data Networks” , pp.115, PHI-1987.

5. Douglas E. Comer ”Network Systems Design using Network Processors”, Prentice Hall,
Jan 2003.

6. A. Troxel, A. D. George, S. Oral, "Design and Analysis of a Dynamically Reconfigurable
Network Processor," 27th Annual IEEE International Conference on Local Computer
Networks (LCN'02), 2002, pp.0483.

7. Intel IXP2400/IXP2800 Network Processors, “Intel XScale Core Support Libraries Reference

Manual” November 2003.

8. Intel® IXP2400 and IXP2800, Network Processor Programmer’s Reference Manual, July
2005.

9. "IXP2400 Hardware Reference Manual", June 2001, Intel Corporation,

10. “IXP 2400 Development Tools User’s Guide”, June 2001, Intel Corporation.

11. J. Allen, B. Bass, C.Basso, R. Boivi, J.Calvignac, G.Davis, L.Frelechoux, M.Hedds,
A. Herkersdorf, A.Kind, J.Logan, M.Peyravian, M.Rinaldi, R.Sabhikhi, M.Siegel, and
M. Waldvogel, “IBM PowerNP Network processor: Hardware, software, and applications”,
IBM Journal of Research and Development , Volume (47), nos. 2/3 , pp.177-194,2003.

12. Kevin Lee, Geoff Coulson, Gordon Blair, Ackbar Joolia, Jo Ueyama “Towards a Generic
Programming Model for Network Processors” In Proc IEEE International Conference on
Networks (ICON04), Singapore, November 2004.

A.Satheesh, D.Kumar, A.Vincent Jeyakumar

International Journal of Computer Networks (IJCN) Volume (2): Issue (1)

33

13. Kevin Lee, Geoffrey Coulson “Supporting Runtime Reconfiguration on Network
Processors”, Proceedings of the 20th International IEEE Conference on Advanced
Information Networking and Applications (AINA’06) Volume 1, 18-20 April 2006 Page(s):
721 – 726.

14. L.Thiele, S.Chakraborty, M.Gries, and S.K¨unzli, “Design Space Exploration of Network
Processor Architectures”, Proc. First Network Processor Workshop/Eighth IEEE Int’l symp.
High Performance Computer Architecture (NP/HPCA’02), pp.30-41, Feb.2002.

15. Ravi Kokku, T.Rich´e, A. Kunze , J.Mudigonda , J.Jason and H.Vin, “A Case for Run-
time Adaptation in Packet Processing Systems” Proc.Second Workshop Hot Topics in
Networks (HOTNETS’03), Nov.2003.

16. Ravi Kokku, Upendra Shevade, Nishit Shah, Harrick M. Vin, Mike Dahlin “Adaptive
Processor Allocation in Packet Processing Systems” University of Texas at Austin Technical
Report # TR04-04.

17. A.Satheesh, S.Krishnaveni, S.Ponkarthick “Self-Configurable Environment for the Intel IXP
2400 Network Processor” International Journal of Computers and Applications,
31(4):268-273, 2009.

18. Tilman Wolf, “Network Processors - Flexibility and Performance for Next-Generation
Networks”, ACM SIGCOMM Computer Communication Review, Volume 32 , Issue 1
 (January 2002) Pages: 65.

19. T.Wolf and M.Franklin, “Performance Models for Network Processor Design”, IEEE Trans.
on Parallel and Distributed Systems, vol. 17, no.6, Pages: 548 – 561, June 2006.

20. Tilman Wolf, Ning Weng, Chia-Hui Tai, “Runtime Support for Multicore packet processing
systems”, IEEE Network, Page(s).29-37, July/August-2007.

21. Vinod Balakrishnan, Ravi Kokku, Aaron Kunze, Harrick Vin, Erik J. Johnson “Supporting
Run-Time Adaptation in Packet Processing System” Intel Research and Development
University of Texas at Austin 2004, Technical Report.

22. Xin Huang, Tilman Wolf, “A Methodology for Evaluating Runtime Support in Network
Processors”, Architecture for Networking and Communications systems, ACM/IEEE
Symposium on Volume , Issue , 3-5 Dec. 2006 Page(s):113 – 122.

23. Xin Huang, Tilman Wolf, “Evaluating Dynamic Task Mapping in Network Processor Runtime
Systems” IEEE Transactions on Parallel and Distributed systems, vol. 19, no. 8, August
2008, Page(s).1086-1098.

