
Padmaraj M. V. Nair, Suku V. S. Nair, F. Marco Marchetti, Maher Ali & Girish Chiruvolu

International Journal of Computer Networks (IJCN), Volume (2): Issue (2) 101

Traffic Engineering in Metro Ethernet

Padmaraj M. V. Nair mpadmara@lyle.smu.edu

Suku V. S. Nair nair@lyle.smu.edu

F. Marco Marchetti marco@lyle.smu.edu
HACNet Lab, Southern Methodist University,
Dallas, TX, USA

Girish Chiruvolu
Maher Ali
Alcatel-Lucent
Plano TX, USA

Abstract

Traffic engineering is one of the major issues that has to be addressed in Metro
Ethernet networks for quality of service and efficient resource utilization. This
paper aims at understanding the relevant issues and outlines novel algorithms for
multipoint traffic engineering in Metro Ethernet. We present an algorithmic
solution for traffic engineering in Metro Ethernet using optimal multiple spanning
trees. This iterative approach distributes traffic across the network uniformly
without overloading network resources. We also introduce a new traffic
specification model for Metro Ethernet, which is a hybrid of two widely used traffic
specification models, the pipe and hose models.

Keywords: Metro Ethernet, Traffic Engineering, Multiple Spanning Trees

1. INTRODUCTION
Ethernet has evolved over the past decade from a simple CSMA/CD shared medium access
protocol to a full-duplex, switched network. Ethernet dominates the current LAN realizations and it
has been estimated that more than 90% of IP traffic originates from an Ethernet LAN. Inherent
simplicity of Ethernet brings nice properties like cost effectiveness, rapid provisioning on demand,
ease of interworking, simple packet based technology and ubiquitous adoption [6]. It promises
relatively inexpensive high-speed access, which can then be combined with new networking
services from the enterprise domain. With the latest enhancements, it has turned out to be a
feasible technology even beyond the LAN. Switching, Fast Ethernet and Gigabit Ethernet have
brought more bandwidth to the technology.

However Ethernet lacks end-to-end QoS guarantees, protection mechanisms and service
performance monitoring [6]. Present Ethernet connectivity is largely restricted to the fast-growing
but relatively small niche of the Internet access. In order to enter the metro domain, Ethernet
must prove that it is a carrier-grade technology. Deploying Ethernet in the MAN will require many
different upgrades. First, it requires the port-folio of Ethernet physical layers to be extended for
the local loop and for interoffice connection within the MAN. Second, there is a need to upgrade

Padmaraj M. V. Nair, Suku V. S. Nair, F. Marco Marchetti, Maher Ali & Girish Chiruvolu

International Journal of Computer Networks (IJCN), Volume (2): Issue (2) 102

the Ethernet switching layer. It should be reliable and secure enough to handle mission critical
corporate data.

Current Ethernet protocol relies on the IEEE spanning tree protocol (STP) [2], which provides a
loop-free connectivity across various network nodes. But this protocol has slow re-convergence
time in the case of a failure that typically is 50 seconds. Time critical applications on Ethernet can
only afford a reconfiguration time less than few tens of milliseconds. Further, STP uses a single
spanning tree to carry the entire network traffic, resulting in congestion and resource
underutilization. To improve upon reconstruction time 802.1W [3] standardized its Rapid
Spanning Tree Protocol (RSTP). In both RSTP and STP, after a re-convergence the MAC
address might get associated with an altogether different switch port and makes it difficult to
predetermine the path between a given pair of nodes after a spanning re-convergence.
The Multiple Spanning Tree Protocol (MSTP) [4] defined in IEEE 802.1s standard provides
alternate paths between two nodes within an administrative region such that basic traffic
engineering can be enabled. This standard provides guidelines for better resource utilization,
localization of failures, and faster recovery. MSTP uses multiple spanning trees and VLANs [1]
are mapped onto these trees.

Customers are demanding end-to-end Ethernet solutions in which geographically distant LANs
are connected as if they were one single LAN. This customer virtual LAN(C-VLAN) provides full
connectivity between customer sites (LANs), and allows a station in one LAN to engage in
unicast, multicast, and broad-cast communication with any other station belonging to the C-VLAN
[14]. In this paper we present an algorithmic approach for traffic engineering based on
construction of multiple spanning trees in the metro do-main using customer traffic demands and
given network topology.

Traffic specification is another important factor in traffic engineering. Current Metro Ethernet uses
pipe and hose models. In our multiple spanning tree algorithm we use the pipe model. The pipe
model provides the most efficient interface for the provider in terms of bandwidth allocation.
However, it suffers from being complex and it requires pair-wise traffic information from the
customer. The hose model, on the other hand, does not require knowledge of pair-wise traffic, but
only aggregates. In addition, it is easy to specify by the customer. However, the lack of exact
traffic distributions makes it least efficient in terms of bandwidth allocation. To take advantage of
both these methods we introduce a hybrid model (Augmented Hose) in the future directions. The
idea is to enhance our multiple spanning tree construction method with this new traffic
specification model in the future.

The rest of the paper is organized as follows. Next section provides an overview of the IEEE
Ethernet standards and the kind of network in consideration is described in section 3. Section 4
discusses the related work in this area. Section 5 proposes an algorithmic approach to multiple
spanning tree construction. In section 6 we provide examples showing the performance of our
approach. Future directions are discussed in section 7. Finally, section 8 concludes with a
summary of our work.

2. OVERVIEW OF THE ETHERNET

This section elaborates on some of the relevant IEEE standards for Ethernet.

2.1 IEEE Spanning Tree
Ethernet traditionally relies on spanning tree defined in IEEE 802.1D, which inherently provides
loop-free communication among all the nodes. Basically the construction of the spanning tree
through the exchange of node ids and link costs (a.k.a. Port vectors). The algorithm terminates
upon the discovery of the root node with the lowest id number and the lowest cost paths between
every node and the root node. Each port of a switch assumes one of the three roles, namely, a)

Padmaraj M. V. Nair, Suku V. S. Nair, F. Marco Marchetti, Maher Ali & Girish Chiruvolu

International Journal of Computer Networks (IJCN), Volume (2): Issue (2) 103

Root port b) Designated port c) Disabled port. The port that leads to the Root Bridge with least
path cost is the Root port for that non-root bridge. All the other ports (links) are either designated
ports which forward frames on behalf of a LAN segment or blocked ports. Blocked ports lead to
the underutilization of the links. The blocked ports/links serve as backups in the event of a
change in topology due to link/node failure. However, the spanning tree reconstruction after a link
failure has slow convergence as the default timers associated with STP are based on worst-case
behavior of the network in terms of size (diameter) and response. Typically the worst-case
reconvergence of the STP for a stable spanning tree after an event of link failure is around 50
seconds which is not acceptable for real time mission critical applications.

2.2 The Rapid Spanning Tree
The blocking port role in STP is split into two in RSTP, backup and alternate port roles. These
ports do not forward user data. If the port is considered for immediate forwarding state in the
event of root port failure then it is an alternate port. A port is backup port if it is for immediate
forwarding in the case of a designated port failure. This is due to the fact that the alternate and
the backup ports also do the learning even before they are promoted to the forwarding state. This
significantly reduces the convergence time of RSTP, but still in the order of few seconds (~1-2
seconds) as the flush message (broadcast by the switch that gains in the subtree, rooted by itself,
topology) takes time to propagate across the nodes as a result of (logical) topology change due to
change in port status. Moreover, RSTP suffers from the same drawback as STP: both standards
use a single tree to carry all the network traffic causing resource overloading and resource under
utilization.

2.3 The Multiple Spanning Trees
IEEE 802.1s deals with defining Multiple Spanning Trees (MSTs) wherein each VLAN can be
uniquely mapped onto a single spanning tree among the set of spanning trees. One can have a
spanning tree per VLAN or multiple VLANs can be mapped onto a single spanning tree.
Collection of MSTs in a VLAN-aware network is defined as a Spanning Forest (SF). The SF
allows the utilization of all links that would otherwise be idled by the standard ST and thereby
eliminating the wastage of bandwidth. However, the complexity of management increases with
the number of spanning trees, switches must maintain port state information for each spanning
tree of the SF, and the set of VLANs mapped on to them. The MSTP also allows a set of regions
to be defined whose union spans the entire network. Within a region one or more MSTs can be
defined. MSTP ensures that the frames of a given VLAN are assigned to only one of the span-
ning tree instances within a region. A common spanning tree (CST) spans across all the regions.
The key advantage of such segmentation of the network into regions is the localization of any
failure while having minimum/no impact on the non-local VLAN traffic. However, in order to have
alternate paths between any pair of nodes with different VLAN segments attached, multiple
regions have to be defined. This is due to the fact that each of the regions binds a given VLAN
traffic with a unique instance of spanning tree, which in turn translates into a single but unique
path. Moreover, spanning trees constructed in a region essentially follow RSTP and thus
inherently carry the weakness of RSTP.

3. SYSTEM DESCRIPTION
Several architectural options have been proposed and deployed to carry Ethernet frames across
metro area.

 Extending the native Ethernet protocol which is standardized under 802.1 committee.
 Using MPLS as the transport technology.
 Using SONET/SDH as the transport technology via General Frame via Generic Framing

Procedure (GFP) encapsulation and Link Capacity Adjustment Scheme (LCAS) rate
adaptation.

 Using generalized MPLS (GMPLS) to control Ethernet switches in the metro network.

Padmaraj M. V. Nair, Suku V. S. Nair, F. Marco Marchetti, Maher Ali & Girish Chiruvolu

International Journal of Computer Networks (IJCN), Volume (2): Issue (2) 104

Our research is based on the first architecture in conformance with the 802.1 standards. Fig 1
depicts the typical architecture for Metro Ethernet [14]. The metro domain consists of core
switches/nodes and edge nodes (ingress/egress nodes). The goal is to transport end user
Ethernet frames across the metro domain in a transparent manner. Since the Ethernet MAC
addresses are flat, ingress nodes encapsulate the user frames with the proposed extension
fields. The edge node identifiers are inserted appropriately such that the core nodes learn only
about the edge nodes of the metro domain and not the end user MAC addresses. The edge
nodes in turn learn about the MAC addresses of the end user frames belonging to the VLAN
attached to them [10]. Another approach would be to use the labels that uniquely identify the
edge nodes. Thus, encapsulation of end user frames can address the MAC address table
explosion issue in the Metro domain.

The edge nodes of a metro region are access points (AP). Customer virtual LANs (C-VLAN)
connect to different APs. A C-VLAN route is basically a tree that spans all locations of a given
customer. A C-VLAN must use exactly one spanning tree for communication. A 12-bit VLAN
identifier (VID), inserted into the end-user Ethernet frames, identifies each of the VLANs. The
tagged frames belonging to a given VLAN will be forwarded across the network only to the end-
hosts of the VLAN. This provides an implicit VLAN segregation and optimal network resource
utilization. The traffic requirement of a customer is represented as a demand matrix (or access
point matrix), which shows the traffic between AP pairs of a particular C-VLAN.

FIGURE 1: Metro Network.

4. RELATED WORK
Traffic engineering of Ethernet using spanning tree is a widely researched topic because of
performance issues. QoS-aware Multiple Spanning Tree Mechanism [9] was proposed to address
problems related to IEEE 802.1 standards and its extensions to the Spanning Tree protocol. They
have proposed a simple and highly effective enhancement to the MST protocol to achieve high
degree of QoS by keeping in perspective the different characteristics of the various traffic types.
They use the traffic priorities defined in 802.1d standard for mapping VLANs to STs. For example
the STs for best effort traffic is built based on the inter-face speed and end-to-end delay is the
most important factor for building STs for multimedia traffic.

A fault tolerant multiple spanning tree protocol is proposed in Viking [12]. The Viking system
provides at least two switching paths between any pair of end-nodes in two different STs, primary
and backup switching paths. The path selection is based on cost assigned to each link. These

Padmaraj M. V. Nair, Suku V. S. Nair, F. Marco Marchetti, Maher Ali & Girish Chiruvolu

International Journal of Computer Networks (IJCN), Volume (2): Issue (2) 105

links are combined to form STs using path aggregation algorithm. The aggregation algorithm
starts with an empty spanning tree set and select each path in the list to add to a spanning tree
which does not form a loop. If there is no such tree then form a new spanning tree. One issue
with this loop avoiding path selection procedure is that avoiding loops might leave out some paths
which could have resulted in a better optimal tree. Viking relies on per-VLAN-spanning tree
implementation of Cisco where there is a separate spanning tree running on every switch for
every VLAN. This has the limitation on the number of VLANs the metro Ethernet can support due
to the maximum VLAN tag size and the number of spanning trees a switch can support.

The article in [11] looks into the basic problems of traffic engineering in Metro Ethernet, such as
load balancing, QoS-based protection, label-space management, evolving trends in traffic
management at standard bodies and their implications. This proposed a grouping scheme that
extends the current label space in the provider domain and allows for a large number of VLANs to
be provisioned efficiently. Further, the issues of load balancing, multiple spanning trees, and
interaction between grouping and bandwidth provisioning are discussed. It also addressed
differentiated survivability in next-generation Ethernet and provided a novel scheme based on
multiple spanning trees. The traffic engineering method we are proposing in this paper can use
the C-VLAN grouping scheme described in this article to save VLAN tag space.

DiffPause [5] is a scheme for congestion control that is highly scalable, robust, and compatible
with the assured forwarding of the differentiated services model for high-speed Metro Ethernet.
The DiffPause introduces an Early Warning Threshold such that the upstream nodes can reduce
the outgoing rate and throttle the aggressive traffic aggregates, thereby providing fair bandwidth
allocation. This scheme takes advantage of per link-based back-pressure mechanism without any
bandwidth reservation and is independent of the number of ongoing individual sessions, thus
leading to high scalability.

In [13] we introduced a multiple spanning tree region construction algorithm which provides basic
traffic engineering of Ethernet in the Enterprise domain. The proposed method supports dynamic
nature of VLANs where the VLAN nodes can be added, moved, or removed without much effort.
This method provides enough resources in the region to support protection from at least single
failures. These multiple spanning tree regions are carefully engineered to provide better
convergence time, reusability of VLAN tags, protection from failures, and optimal broadcast
domain size.

A distributed scheme for fast restoration of Metro Ethernets, a fast failure recovery spanning tree
scheme is proposed in [7]. This method restores lost facilities within 50 milliseconds irrespective
of the network size.

5. TRAFFIC ENGINEERING USING OPTIMAL MULTIPLE SPANNING TREES
This optimal multiple spanning tree (OMST) method primarily uses customer traffic demands and
network capacity to generate spanning trees. The approach complies with IEEE 802.1s MSTP
and addresses six major components in constructing spanning trees. These are:

 How to assign weights to links in the network
 Root node selection for a spanning tree
 Parameters determining weight of the spanning tree
 How to map customers on to the tree
 Effectively distributing traffic across the network
 Avoid resource overloading

A C-VLAN is mapped to a spanning tree and frames forwarded to a tree can be identified by the
VLAN ID. The C-VLAN grouping method suggested in [11] can used to save VLAN tags and limit
the number of trees. Then the demand matrix for a group of C-VLANs will be the sum of all
demand matrices. Thus, when spanning trees are constructed using our method, each customer

Padmaraj M. V. Nair, Suku V. S. Nair, F. Marco Marchetti, Maher Ali & Girish Chiruvolu

International Journal of Computer Networks (IJCN), Volume (2): Issue (2) 106

group is mapped to a single spanning tree. However, in this proposal we are not considering the
grouping method and spanning trees are constructed for individual C-VLANs. The spanning trees
are constructed such that the traffic is well distributed and no link or node is overloaded. Links for
the spanning tree needs to be selected in such a way that it can handle the traffic demand
generated by end nodes.

Dijkstra’s algorithm can be a simple solution to this problem: build a spanning tree for each C-
VLAN and then update weight on the links to reflect the new traffic. Since a customer is not using
all the APs, we may not get the best path between C-VLAN’s APs for the given traffic, even
though the spanning tree is minimum weight. Further, the order in which links are selected,
location of the root node and the order of spanning tree construction can affect the final solution.
So our proposed solution considers all these requirements to build spanning trees. Though our
approach might not deal with sudden load changes in the network, constant monitoring and
simple reconfigurations can increase performance.

5.1 Dynamic Link Weight
Link weight is a function of the given link capacity and other parameters such as delay. To
simplify the problem we are assuming that capacity and delay are the only parameters used in
finding the link weights. However, this linear function can be extended with more parameters in
the future. The delay itself can be divided into propagation delay and queuing delay. Queuing
delay would increase as the traffic increases. Here we are using propagation delay which
depends on the distance.

 Link weight is directly proportional to Delay.
 Link weight is inversely proportional to Capacity.

So a simple function is,
Wij = Dij/Cij

Where Wij is weight of the link between nodes i & j, Cij is capacity of the link between node i & j,
and Dij is the delay between nodes i & j. Since we are trying to find the shortest possible paths
(tree) between APs and equally utilize available resources (such as capacity), delay and link
capacity are valid parameters. When the algorithm progresses available capacity on links will
change, thus the link weight would also change. Hence adding more parameters to the function
might need updating more variables during the course of algorithm execution.

5.2 Algorithm
The algorithm first sorts C-VLANs based on their traffic demand and builds a spanning tree for
each customer starting from the customer with the highest demand. We use the highest-demand-
first technique because inserting lower traffic demand into the network can be done without loss
of much performance. Construction of each spanning tree is followed by calculating its
aggregated weight. Aggregated weight is calculated using the formula given below, which is
similar to the method suggested in [8].

STAW = ∑ Wi,j x Ti,j.
Where, STAW = Aggregated weight of the spanning tree. Ti,j = Traffic flowing through the link
connecting nodes i and j. If this link is used in more than one path (that is more than one pair of
access points are using the link) then Ti,j is the sum of traffic on the link. Wi,j = Weight of the link
between nodes i & j.

Once the tree is constructed for a C-VLAN, the link weights on the graph are updated to reflect
the new traffic. This process is continued for each C-VLAN in descending order of their demands.
The solution steps are described in Fig. 2 and a detailed description follows it.

Padmaraj M. V. Nair, Suku V. S. Nair, F. Marco Marchetti, Maher Ali & Girish Chiruvolu

International Journal of Computer Networks (IJCN), Volume (2): Issue (2) 107

1. Sort C-VLANs in descending order, based on traffic demand.
2. For each C-VLAN in the sorted list do {

a) Select an AP as the root node from the list of APs that this C-VLAN is using.
b) Create the parent tree with the root.
c) Calculate aggregate weight of the parent tree.
d) For all APs the C-VLAN is using {

i. Find the path with minimum weight between each pair of APs in the graph
ii. Sort these paths in descending order of their aggregate weights

iii. For each path do {
1) Select the unprocessed path with highest weight and map on to the tree
2) If (loops exist), then break loops
}

iv. Calculate the aggregated weight of the tree and we now have the final tree.
v. Update the weights of links in master graph.

 }
 }

FIGURE 2: Algorithm for constructing spanning trees

Sort the C-VLANs based on the demand and set the index to highest demand C-VLAN: C-VLANs
are sorted in descending order of their demand. The aim is to construct spanning trees for C-
VLANs in the order of their traffic demands. This way more demand would be satisfied using best
optimal trees and the traffic would be well distributed on the network resulting in better
performance.

Take next C-VLAN with the AP matrix and find a root node for the tree: The next selected C-
VLAN will have the next highest demand requirement. After selecting a C-VLAN an access point
is selected as the root for the tree. This can be done in three different ways:

 Select an AP from the list of APs the C-VLAN is using, which carries the lowest traffic.
 Select an AP from the list of APs the C-VLAN is using, which carries the highest traffic.
 Select a random AP.

We prefer the first option since there is a higher possibility that more traffic will flow through the
root node of a spanning tree.

Create a spanning tree rooted at the root node: Create a minimum spanning tree rooted at the
above selected node from the given graph. Let us call this the parent tree.

Calculate the aggregated weight of the tree: Aggregated weight of the tree is calculated using the
previously defined function which considers both link weight and the traffic flowing on the link.

Find the shortest path between all APs of the C-VLAN and sort them in descending order of
weights: Find the shortest path between each pair of APs (only for APs the C-VLAN is using)
which satisfies the demand and assign weights to the path. A simple method like Dijkstra's
algorithm can be used. Assign weights to each link in the path using the formula,

 W i,j x Ti,j.
Where Ti,j is the traffic flowing through the link and Wi,j is the weight of the link. These paths

represent the best routes the C-VLAN can have based on the traffic demand. Now list these
paths in the descending order of their weights. For example:

AP1   AP2, AP3   AP1, AP2   AP4

Take next path & map to the tree: Selection of the next path from the list can be done in two
different ways:

Padmaraj M. V. Nair, Suku V. S. Nair, F. Marco Marchetti, Maher Ali & Girish Chiruvolu

International Journal of Computer Networks (IJCN), Volume (2): Issue (2) 108

 Select the path with the lowest weight first.
 Select the path with the highest weight first. This is a better choice because shorter paths

would be applied towards the end of mapping.

Once we select a path, add its links to the tree. Since adding new links to the tree generate loops,
the next task is to break loops.

Break loops: This step involves detecting the loop which is a very complex problem when looking
for multiple loops. So to make this method simple, after adding each link from the above given
path, algorithm breaks the loop. Adding one link to the spanning tree means a loop and this loop
can be easily located. Finding multiple loops and breaking them in an optimal way is part of the
future work. Now breaking loop can be done in two different ways. A simple approach would be to
delete one of the links other than the newly added link. However this may not result in an optimal
solution because some links may cause an increase in weight of the tree killing the whole
purpose of mapping paths onto the tree. An optimal solution is described in Fig.3.

1) Delete the link which contributes more weight to the tree.
a) For the loop {

i) Determine the links which formed the loop.
ii) For each link check {

(1) If this link is removed, do other links in the loop have enough capacity to
handle the excess traffic? Then this link is a candidate, otherwise this link
cannot be removed.

}
iii) Once we get a list of candidate links for removal, remove the link which

contributes the highest weight to the tree. In other words, after breaking each link
in the loop we will get a different tree. Now keep the tree with the lowest weight.

}
FIGURE 3: Algorithm for breaking loops.

Update weights on the graph: Once all the paths mapped on to the tree, the C-VLAN gets the
final tree. Next step is to update weights on the links of the graph based on the traffic through the
links of the tree. Now the capacity of each link in the graph will change to,

Cij = Cij – Tij
Where, Cij is the capacity of link (i, j) in the graph and Tij is the traffic of link (i, j) in the tree. This
update will occur only for the links shared between the tree and graph. Once the capacity is
updated, we need to recalculate the weight on each link in the graph using the weight formula
defined in subsection 5.1.

This algorithm completes with optimal multiple spanning trees for C-VLANs. Now the spanning
tree assigned to each C-VLAN can be further tuned by blocking ports which are leading to access
points that are not used by this C-VLAN. This avoids traffic leakage and thus prevents
unnecessary wastage of resources.

6. PERFORMANCE ANALYSIS
Performance evaluation of this algorithm is based on complexity analysis and simulation studies.
This section describes results of our experiments.

6.1 Complexity Analysis
Since Dijkstra’s algorithm is used in OMST, the complexity analysis is basically based on the
complexity of Dijkstra. The complexity of sorting C-VLANs is simply the complexity of sorting
algorithm we use, which is O(n logn) for n C-VLANs. The part which generates the initial
spanning tree, the parent tree, is the first complex operation on the graph. The source based
spanning tree algorithm on graph with V vertices and E edge has complexity O(E + V log V) using

Padmaraj M. V. Nair, Suku V. S. Nair, F. Marco Marchetti, Maher Ali & Girish Chiruvolu

International Journal of Computer Networks (IJCN), Volume (2): Issue (2) 109

the Fibonacci heap. Calculating aggregate weight of the spanning tree is simple and involves a
smaller part of the graph and hence does not contribute much to the complexity.

Finding shortest paths between access points of a C-VLAN in the original graph is the next
complex part of the algorithm. Since mapping of paths onto a spanning tree is done one link at a
time, this process is less complex compared to finding shortest paths. Shortest paths from one
node to all other nodes in the graph can be derived using Dijkstra’s method. This algorithm has
the same complexity as the spanning tree construction method, which is O(E + V log V) using
Fibonacci heap. Though we need only paths between access points, the algorithm may end up
finding shortest paths to all nodes in the graph. Since we need to find the shortest path from
each access point to all other access points, the total running time is O((A-1)(E + V log V)) ,
which is O(A(E + V log V)). The number of access points used by the client is represented using
the variable A. So the overall complexity of this algorithm to generate a spanning tree can be
represented using O(A (E + V log V)).

6.2 Experimental Results
Inputs to the simulation are the network topology in matrix format and traffic demands for each C-
VLAN. Network topologies and traffic demands are randomly generated based on probability
functions. For every topology we used, the bandwidth of links was set to 100 Mbps. Propagation
delay is randomly selected between 0.2 and 1.0 milliseconds. Output of the simulation is in the
form of spanning trees. Then we analyze the performance of these trees with trees constructed
using Dijkstra’s method.

Fig. 4 shows the performance of a 22 node network. Two parameters are selected to show the
performance, aggregated weight (Ag_W) of spanning tree and average weighted length (Av_WL)
of paths within the tree. To calculate average weighted length, we first find the weighted length of
all paths between AP pairs for this particular C-VLAN. The average of these values gives us the
final average weighted length. This parameter gives us a clear idea about the delay involved and
broadcast domain size. These parameters are compared with spanning trees generated using
simple tree construction methods. The resulting network has 13 access points and a
performance matrix is collected for 5 C-VLANs. Fig. 5 shows the performance matrix for different
networks. Parameters are selected as the average for each network type.

Fig. 6 shows the traffic distribution on a heavily connected 12 node (40 links) network with 100
Mbps bandwidth based on the following approaches:

1. Single spanning tree for connecting all the nodes in the network. This spanning tree will

be used by all C-VLANs in the network.
2. MSTs for C-VLANs. However the link capacities are not updated after constructing trees,

resulting in almost similar trees.
3. MSTs are constructed and link capacities are updated after building a tree for the C-VLAN.

This is very much similar to our approach, except that finding shortest paths and mapping
onto the tree is not applied. Even though we haven’t seen this kind of an approach in any
literature for Metro Ethernet, we used this to prove the efficiency of our technique.

4. The optimal multiple spanning tree approach.

From the graph it is clear that algorithm 1 and 2 caused some links to overload and used less
than 30% of links. Even though we used multiple spanning trees in the second approach, the
result is close to the single spanning tree. Since traffic is not reflected in the graph after building
spanning trees, choosing different root nodes for each C-VLAN will not make much difference to
the structure of spanning trees. However, the third technique and our approach are very much
similar. In our algorithm the maximum traffic on a link was less than 50% of link capacity, and
less than 10% of links with no traffic. In the third technique (MST with traffic updates) 25% of
links were not used and up to 80% capacity of some links was used. In conclusion our approach

Padmaraj M. V. Nair, Suku V. S. Nair, F. Marco Marchetti, Maher Ali & Girish Chiruvolu

International Journal of Computer Networks (IJCN), Volume (2): Issue (2) 110

can indeed increase the performance of spanning trees and keep traffic distributed efficiently in a
metro domain.

FIGURE 4: Performance of a 22 node network.

 # of
nodes

of
access
points

of C-
VLANs Ag_W Av_WL

10 6 4 24.5 21.5
15 10 6 32.8 27.2
20 12 8 30.3 24.4
25 14 10 32.1 26.9
30 17 13 34.4 27.9

FIGURE 5: Performance matrix for 5 different networks.

Tr
af

fi
c

on
 li

nk
s

0

50

100

150

2 00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Links(1 to 40)

Single ST MST with no traffic update
MST with traffic update Our Approach

FIGURE 6: Traffic distribution in a 40 link network.

% of decrease in C-VLANs Ag_W Av_WL
1 32 20
2 46 39
3 32 29
4 39 32
5 38 39
Average 37.4 31.8

Padmaraj M. V. Nair, Suku V. S. Nair, F. Marco Marchetti, Maher Ali & Girish Chiruvolu

International Journal of Computer Networks (IJCN), Volume (2): Issue (2) 111

7. FUTURE DIRECTIONS
In this section we introduce a new traffic demand specification model that will be used in the
future to evaluate the method presented in the previous section and other traffic engineering
models for Metro Ethernet.

7.1 The Augmented Hose Model

This new model for traffic specification in Metro Ethernet is based on the observation that the
customer sites for some of C-VLANs are usually clustered into components. As a result, the traffic
can be classified as inter and/or intra-component traffic. The cases where the distribution of traffic
is dominated by intra-component traffic are of interest for further optimization. In the case that
there is no inter-component traffic, these components can be implemented as separate C-VLANs.
However, if there is a percentage of the traffic that is to be delivered in the native technology
(e.g., Ethernet) between these components, the hose model suffers from over-provisioning the
bandwidth for the C-VLAN. Augmented hose model uses measurements obtained from the
customer to greatly enhance bandwidth utilization in the provider network.

Consider for example the following hose model specification for the network in Fig. 7.Consider
the bandwidth reservation for directed link (1, 2). Using the hose model, the bandwidth reserved
is minimum value of: 1) the aggregate ingress bandwidth from A, B, and C, and 2) the aggregate
egress bandwidth for D, E, and F. This value is computed to be min (222, 211) = 211.

Suppose now that measurements at customer points A, B, and C indicate that:
 At site A 85% of traffic goes to {B, C}
 At site B 80% of traffic goes to {A, C}
 At site C 65% of traffic goes to {A, B}

FIGURE 7: Sample network illustrating the benefits of hose augmentation.

This information can be communicated to the provider at the time of provisioning bandwidth for
the C-VLAN in order to reduce the bandwidth reservation. For the directed link (1, 2), the
bandwidth reserved is now equal to (1-.85)*75+ (1-.8)* 73 + (1-.65)*74 = 51.75.

Consider Fig. 8, where we show a C-VLAN A = {0, 1, 2, 3, 4, 5, 15, 16, 17, 18, 19, 20}. The C-
VLAN is partitioned into two components: North and South.

Padmaraj M. V. Nair, Suku V. S. Nair, F. Marco Marchetti, Maher Ali & Girish Chiruvolu

International Journal of Computer Networks (IJCN), Volume (2): Issue (2) 112

FIGURE 8: Network with a C-VALN composed of two components.

Fig. 9 shows the benefits of hose augmentation as a function of the inter-component traffic and
using one ST. We notice that as the traffic increases between these components, the bandwidth
savings using hose augmentation decreases. As expected, when the inter-component traffic
reaches 50% of the traffic, the augmented hose model performance approaches to that of a
regular hose model. However, under our assumption of non-zero inter-component traffic, we
observe gains of about 25% in the case of 20% inter-component traffic. As Fig. 10 shows, these
savings even increase when the number of STs is increased. The figure shows for example, that
we have 36% savings in bandwidth in the case of 20% inter-component traffic and using 21STs.

The multiple spanning tree construction algorithm presented in section 5 will be analyzed in the
future using this new traffic specification model. Further, in our subsequent papers we will study
the performance of Augmented Hose and use this method for analysis of other traffic engineering
methods.

Padmaraj M. V. Nair, Suku V. S. Nair, F. Marco Marchetti, Maher Ali & Girish Chiruvolu

International Journal of Computer Networks (IJCN), Volume (2): Issue (2) 113

FIGURE 9: Enhancements to Bandwidth using 1 tree.

Fig. 9.

 FIGURE 10: Enhancements to Bandwidth using 21 trees

8. CONCLUSIONS
Construction of spanning trees using well-known schemes such as Dijkstra’s algorithm do not
specifically address issues such as load sharing, efficient utilization of resources, QoS and
reliability. For example, using Dijkstra’s method could result in trees sharing a common pool of
links. These links could get overloaded at the same time leaving some links idle. When
considering a network topology such as Metro Ethernet, QoS is an important factor which
depends on customers, their traffic demand and how well the given traffic can be distributed. In
the paper we developed an iterative approach which uses traffic demand and dynamic link weight
characteristics to fine tune the initial spanning tree to ensure that the resulting tree would satisfy
the demand requirements and offer the best possible performance. Through a number of
simulation experiments, we concluded that this approach can indeed increase the performance of
spanning trees and keep traffic distributed efficiently in a metro domain. Further, we introduced a
new traffic specification model, augmented hose, which uses measurements obtained from the
customer to properly utilize bandwidth in the provider network. Through experimental studies we
observed that this method performs better than hose model when inter-component traffic is below
50% of the traffic. In the future we will use this model to study performance of traffic engineering
methods including the algorithm we suggested in this paper.

9. REFERENCES
1. IEEE 802.1q, “Virtual Bridged Local Area Networks”, 1998.

Padmaraj M. V. Nair, Suku V. S. Nair, F. Marco Marchetti, Maher Ali & Girish Chiruvolu

International Journal of Computer Networks (IJCN), Volume (2): Issue (2) 114

2. IEEE 802.1d, “Media access control bridges”, 1998.

3. IEEE 802.1w, “Rapid spanning tree configuration”, 2002.

4. IEEE 802.1s, “Standards for Local and metropolitan area networks”, 2002.

5. A. Ge and G. Chiruvolu: “DiffServ-Compatible Fair Congestion Control through Extended

Pause (DiffPause) for Metro-Ethernet”, IEEE ICC, 2004.

6. “Metro Ethernet networks - A technical overview”. Metro Ethernet Forum white paper,

December 2003.

7. M. Padmaraj, S. Nair, M. Marchetti, G. Chiruvolu, and M. Ali, “Bandwidth sensitive fast failure

recovery scheme for Metro Ethernet”, Computer Networks, Volume 52, Issue 8, 12 June
2008, pp. 1603-1616

8. Y. Li , Y. Bouchebaba, “A New Genetic Algorithm for the Optimal Communication Spanning

Tree Problem”, Selected Papers from the 4th European Conference on Artificial Evolution,
November, 1999, pp.162-173

9. Y. Lim, H. Yu, S. Das, S. Lee, M. Gerla. “QoS-aware multiple spanning tree mechanism over

a bridged LAN environment”. IEEE Global Telecommunications Conference, 2003. pp. 3068-
3072.

10. I. Hadzic,”Hierarchical MAC address Space in Public Ethernet Networks”, IEEE Globecom,

2001, pp.1563-1569.

11. M. Ali, G. Chiruvolu, and A. Ge, "Traffic Engineering in Metro Ethernet", IEEE Network, vol.

19, no. 2, March 2005.

12. S. Sharama, K. Gopalan, S. Nanda, and T. Chiueh, “Viking: A multi-spanning-tree Ethernet

architecture for metropolitan area and cluster networks”, IEEE INFOCOM 2004, March 2004.

13. M. Padmaraj, S. Nair, M. Marchetti, G. Chiruvolu, and M. Ali, “Traffic Engineering in

Enterprise Ethernet with Multiple Spanning Tree Regions”, In proceedings of IEEE/IEE
International Conference on High Speed Networks, August 2005.

14. M. Padmaraj, “Quality of Service in Metro Ethernet”, PhD Thesis, Southern Methodist

University, Dallas, Texas, May 2006

