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Abstract 

 
Network clustering is an important technique used in many large-scale distributed 
systems. Given good design and implementation, network clustering can 
significantly enhance the system's scalability and efficiency. However, it is very 
challenging to design a good clustering protocol for networks that scale fast and 
change continuously. In this paper, we propose a distributed network clustering 
protocol SDC targeting large-scale decentralized systems. In SDC, clusters are 
dynamically formed and adjusted based on SCM, a practical clustering accuracy 
measure. Based on SCM, each node can join or leave a cluster such that the 
clustering accuracy of the whole network can be improved. One big advantage of 
SDC is it can recover accurate clusters from node dynamics with very low 
message overhead. Through extensive simulations, we conclude that SDC is 
able to discover good quality clusters very efficiently. 
 
Keywords: network clustering, distributed algorithm, Scaled Coverage Measure, SDC, dynamic network 

 
 
1. INTRODUCTION 
Clustering is an important technique studied in various areas, such as biology, chemistry, 
linguistics, physics, and sociology. The basic goal of clustering is to group data in such a way that 
data in the same cluster shares certain similarity. In this paper, we study one interesting type of 
clustering: network clustering, which partitions a network topology into clusters so that nodes in 
the same clusters are highly connected and between clusters are sparsely connected. 
  
Network clustering has become an important technique in different networking research areas. 
With a good network clustering algorithm, we can design scalable and efficient routing protocols 
[13] [3] [1] [23], enhance scalability and efficiency of large-scale distributed systems [16] [2] [21] 
[9], and resolve many critical networking issues such as virus spreading [26] [15] [32], QoS [19] 
[18], network robustness [6] [4] [12] [25], to name a few. In [22], network clustering is used to 
study the clustering features of the AS-level Internet topology and a realistic topology model is 
designed based on the observed clustering features. 
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Network clustering can be performed in both centralized and distributed ways. Centralized 
network clustering is an off-line procedure, in which complete network topology information is 
required. Thus, centralized clustering is usually used for small networks or off-line data analysis. 
In our work, we focus on distributed clustering techniques, which are designed for large-scale 
distributed systems. 
 
To design a good network clustering protocol, we must consider the following design criteria. First 
of all, as a natural requirement of network clustering, nodes in the same clusters should be highly 
connected, and less connected between clusters. Secondly, a good clustering protocol should 
control cluster size (or cluster diameter) well. Thirdly, the number of “orphan” nodes should be 
minimized. Lastly, a good distributed clustering protocol should take node dynamics into account, 
especially when the clustering targets are highly dynamic with frequent node entry and exit. We 
provide a detailed discussion on clustering criteria in Section 2. 
 
In the literature, there has been considerable research effort addressing the problem of network 
clustering, but very few of them studied the problem in the scenario of large-scale distributed 
networks. Among the existing approaches, MCL [28] is well accepted as an efficient and accurate 
network clustering algorithm. However, this approach assumes that complete network topology is 
available at one central point, which makes it difficult to apply MCL into distributed systems. CDC 
[27], on the other hand, is a distributed algorithm. It forms clusters based on node connectivity. 
The main issue with this algorithm is that it can not handle node dynamics in a decent way: a 
large number of messages must be exchanged to keep accurate clusters. 
 
With these problems in mind, we design a novel network clustering protocol: SCM-based 
Distributed Clustering (SDC), which satisfies all the design criteria mentioned above. In SDC, 
clusters are dynamically formed and adjusted based on a practical clustering accuracy metric, 
Scaled Coverage Measure (SCM) [29]. In SDC, each network node makes its own decision to 
join or leave a cluster whenever clustering accuracy can be improved. To control cluster size, TTL 
(Time-To-Live) is piggybacked in exchanged messages to guarantee cluster diameter does not 
exceed a predefined threshold. SDC is a fully decentralized protocol which requires only neighbor 
information, and it can handle node dynamics with small message overhead while keeping good 
quality of clusters. Besides the basic protocol design, we also address some difficulties in 
scenarios of distributed networks. A common and critical issue addressed in this paper is 
deadlock, which is caused by simultaneous node actions. We provide some strategies to avoid 
and resolve deadlock conditions and analyze their effects on the performance of the protocol. 
Through extensive simulations, we can conclude that our proposed protocol, SDC, is able to 
discover high quality clusters in a very efficient way. 
 
The rest of this paper is structured as follows. In Section 2, we introduce the background of 
network clustering and review some related work. In Section 3, we discuss an important concept, 
SCM which is the basis of our design. Then in Section 4, we present our clustering protocol SDC 
in detail. We show the performance of SDC by extensive simulations in Section 5. At the end of 
this paper, we conclude our work in Section 6. 

 
2. BACKGROUND AND RELATED WORK 
In this section, we formulate the network clustering problem and introduce a set of criteria for 
desired clustering approach. Then we review several existing clustering methods.  
 
2.1 Network Model 

A targeting network to be clustered can be presented as a connected, undirected graph  = ( , 
), where  is the set of nodes and  is the set of edges connecting network nodes. Let |  | = n 

and |E| = m. Then a partition  of  is named as a clustering  of graph , and   
represents the  cluster. Each cluster must be a non-empty subset of . Clearly, .  

The diameter of a cluster  is defined as the maximum length of the shortest paths between all 



Yan Li, Li Lao & Jun-Hong Cui 

International Journal of Computer Networks, (IJCN), Volume (2): Issue (6) 207 

pairs of nodes in . Accordingly, if a cluster has one node, its diameter is 0. We call the clusters 
with diameter equal to 0 as orphan nodes. 
 
Another metric associated with a cluster is cluster size that is defined as the number of nodes in a 
cluster. Cluster size and cluster diameter are closely related. In most scenarios, “control cluster 
size” is equivalent to “control cluster diameter”. We only differentiate these two metrics in the 
protocol description. 
 
2.2 Criteria of Clustering 

The network clustering problem can be formulated as finding a “good” clustering  in  such that 
 can accurately describe the natural clustering features in the topology. More specifically, in a 

“good” partition , the intra-cluster node connectivity should be maximized and the inter-cluster 
node connectivity should be minimized. Therefore, node connectivity is a basic criterion to be 
considered in network clustering design. In addition to node connectivity, cluster size is another 
important metric. In large-scale distributed networks, due to the lack of knowledge about network 
structure, it is expensive to maintain expanded clusters. In other words, cluster diameters should 
be carefully controlled. A good network clustering algorithm should also take the number of 
orphan nodes into consideration. In most scenarios, orphan nodes are not preferred as they 
violate the goal of clustering and should be eliminated. 
 
As discussed above, node connectivity, cluster diameter, and orphan nodes are important criteria 
for good network clustering algorithms. However, more issues need to be addressed when we 
cluster large-scale distributed systems. In such networks, a node only has the knowledge about 
its neighbors and may join or leave the network at any moment. To obtain a complete view of the 
network structure, a huge number of messages need to be exchanged to collect the topology 
information. Moreover, the obtained topology may expire very soon due to node dynamics. Re-
collecting topology information on each node-entry and node-exit will overload the network with a 
huge amount of exchanged messages. Therefore, it is not feasible to maintain a complete and 
up-to-date topology in such networks. Given these concerns, a good clustering protocol for large-
scale distributed systems should form clusters in a fully distributed fashion, i.e., nodes should 
form clusters automatically without the requirement of complete network topology, and it should 
be able to recover accurate clusters from node dynamics with small overhead in term of the 
number of exchanged messages. 
 
2.3 Related Work 
Significant research efforts have been devoted into design of network clustering methods [5] [10] 
[14] [17] [28] [27]. However, many existing clustering algorithms assume that the complete 
network topology is available at a central point. One typical research line tries to solve the 
MINIMUM k-CLUSTERING problem which is formulated as follows: Given a network topology  
and an integer , find a partition of  into a smallest number of  subsets so that the diameter of 
each subset is at most . The MINIMUM k-CLUSTERING is proved to be NP-Complete in simple 
and undirected graphs [10], so most of research efforts are focused on special types of 
topologies. One representative work is presented in [10], which proposes a polynomial time 
approximation algorithm, DDP, for graphs with dominating diametral path. DDP does not form 
clusters based on node connectivity, so it can not guarantee accurate clustering. 
 
The Markov Cluster (MCL) [28] is a connectivity-based centralized network clustering algorithm. 
The basic idea behind this algorithm is flow simulation. In this algorithm, an input graph  is 
mapped in a generic way onto a Markov matrix. Then the set of transition probabilities are 
iteratively recomputed via matrix expansion and inflation. An infinite sequence consisting of 
repeated alternation of expansion and inflation constitutes a new algebraic process called the 
Markov Cluster (MCL) process. The heuristic behind this algorithm is that a flow between 
sparsely connected dense regions evaporates after MCL process. Therefore, it is easy to detect 
dense regions in the original graph which are the output clusters. MCL algorithm can achieve high 
clustering accuracy. However, due to its centralized feature, it can not be used in distributed 
systems. 
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There have been many proposals for network clustering in large-scale decentralized systems [8, 
11, 20, 30, 31]. Among existing decentralized clustering algorithms, one representative work is 
[27], a connectivity based distributed network clustering algorithm, CDC, which is designed for 
p2p networks. In CDC, a set of peers are selected as “originators” and clusters are discovered 
around these peers by TTL-controlled message flooding. If the “originators” are well distributed in 
the network, clusters with good quality can be formed. The CDC scheme is a fully distributed 
approach and the cluster size can be effectively controlled by TTL. The main issue of CDC is the 
selection of “originators” which can affect the accuracy of clustering significantly. So far, there is 
no good solution to well distribute “originators”. Thus, the clustering accuracy can not be 
guaranteed. Another issue with CDC is it can not efficiently handle node dynamics. To maintain 
good clustering quality, the whole network has to be re-clustered at each node join or leave, 
which introduces a huge amount of message overhead.  
 
In summary, there is no existing clustering method which can satisfy all the criteria for network 
clustering in large-scale distributed systems. In this paper, we propose a novel network clustering 
protocol, SDC. It is fully distributed and can form high quality clusters in highly dynamic systems 
with small message overhead. 

 
3. SCALED COVERAGE MEASURE 
Before introducing our protocol, we first discuss Scaled Coverage Measure (SCM), a practical 
metric to evaluate the accuracy of connectivity-based clustering algorithms proposed by S.Van 
Dangon [28].  
 
We assume  is a clustering on network  = ( , ). Given a node , we have 
the following notations: 
 

• Nbr( ) is the set of neighbors of node ; 

• Clust( ) is the set of nodes in the same cluster as node  (excluding ); 

• FalsePos( , )  is the set of nodes in the same cluster as but not neighbors of ; 

• FalseNeg( , )  is the set of neighbors of but not in the same cluster as ; 
 
Then the Scaled Coverage Measure of node , , is defined as: 
 

 
 

For graph , the SCM value, , is defined as the average of the SCM values of all the 
nodes, that is, , which lies in [0, 1]. 

 
SCM well reflects the significance of clustering features in a given network topology. First of all, it 
is easy to see that the higher the SCM, the smaller the connectivity between clusters and the 
higher the connectivity within clusters. For graphs containing only isolated clusters/subgraphs that 
are themselves fully connected, the SCM value is 1. Secondly, for any graph, there exists a 
highest SCM value which is determined solely by the network structure. If the network does not 
contain significant clustering substructures, this highest “available” SCM value can be very small. 
However, if we evaluate two clustering techniques on the same network, the one which results in 
a higher SCM value discovers more accurate clustering substructures than the one with smaller 
SCM value, although both resultant SCM values could be very small. Lastly, the SCM value of an 
orphan node is 0, which matches our goal of minimizing the number of orphan nodes. 
 
Based on the definition of SCM, the network clustering problem can be simplified as partitioning a 
network topology so that its SCM is maximized. Our proposed SDC protocol exactly follows this 
idea, adaptively forming clusters in an aggressive manner. 
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Simplified Notations To simplify the computation in SDC, we can re-express SCM at node  as 
follows: 

 
Thus, 

 
and 

. 

 
If node  is an orphan node, , where  is the degree of node . These 

two parameters  and  can be easily updated based on neighbor information upon node 

joining and leaving the cluster. 
 
In the next section, we show how SCM is utilized in the SDC protocol to form clusters in a 
distributed fashion. 

 
4. SCM-BASED DISTRIBUTED CLUSTERING: SDC 
SDC is a fully distributed clustering protocol. A node in the network maintains only its own state 
information: 1) the cluster it currently belongs to, identified by a unique id , 2) the current 
number of nodes in its cluster , 3) the two parameters for SCM computation  and . 

 
To cluster a network from scratch, every node is initialized as an orphan node with its own 

(any unique identifier) and that is equal to 1. For any node , the two 
parameters for SCM computation,  and , are initialized as . Then every node starts 

its own clustering procedure independently at a random time by sending requests to its 
neighbors. If the requests are accepted by the neighbors, the clustering procedure continues with 
a few rounds of message exchange until the node joins a cluster. Otherwise, the node can select 
to serve its neighbor’s requests or start a new round of clustering. Clustering of individual node is 
an independent and local procedure. The clustering of the whole network ends when no message 
is exchanged. Next, we describe the protocol in detail. 

 
4.1 Protocol Description 
In SDC, nodes form clusters in a greedy manner based on SCM. Each node tries to cluster with a 
subset of neighbors which leads to a higher SCM value than cluster with the other neighbors. 
When a node is actively involved in a clustering procedure, it is either in “Clustering” mode, i.e. it 
starts the clustering procedure, or in “Serving” mode as it is serving another node’s clustering, but 
not both. The clustering procedure of any node, , involves the exchange of a set of messages 
elaborated as follows. 
 

• . A node  starts its own clustering procedure by broadcast  
message to all the neighbors. Once the message is sent out,  is in the 

“Clustering” mode and waits for the response from its neighbors. A timer is set up to 
control the waiting time. During this waiting period,  can not accept and serve the 
clustering requests from other nodes. It buffers all the received requests and handles 
them after the current clustering. If all the neighbors response before timer expires,  
confirms all the replies and the clustering procedure continues. If the timer expires and no 
response is received,  checks the buffered requests and selects one to serve. If the 
buffer is empty,  restarts its clustering procedure after a small random time period. 

• . Upon receiving  from the neighbor , node  sends back a 

 message if it is not actively involved in any clustering procedure. Otherwise, 
it refuses the clustering request by sending a  message back to  as 
explained next. By sending out a ,  claims its willingness to serve the 

clustering request of  and waits for confirmation from . The  message 
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carries the current cluster information of  such as ,  and  that 

shows the gain in  assuming node  joins the cluster of  if it is not in  

or leaves  otherwise. The computation of  only requires the knowledge 

of whether  and  are directed connected. Specifically, let us consider the case that  

is in a different cluster from . If is a neighbor of , 

 
 

On the other hand, if is not directly connected with , 

 

 
The gain in SCM for nodes in the same cluster of  is computed in a slightly different 
way and can be easily derived. 

• . After receives replies from its neighbors, a requesting node needs to 
confirm the acceptance of the service provided by the neighbors. A  is 
sent back to the neighbor for this purpose. Once receives , a node can 
not serve others or request clustering for itself. 

• . A node that decides to serve a neighbor’s clustering may receive 
 from its neighbors for its previous requests. This situation happens if a node 

requests for clustering service but none of it’s neighbors are available to serve it at the 
moment. Those neighbors will buffer the request as mentioned above. After a while, 
some of the neighbors may become available again and try to serve the buffered 
requests. When a node that is in the serving mode receives a  for its previous 
requests, it replies with a  message which indicates it is serving others and 
can not accept the service offer. 

• . If a node is in either “Clustering” or ”Serving” mode when it receives a 
 message, it informs the requester its unavailability for the request by 

sending a  message. If a node is refused by all the neighbors, it either 
serves one buffered request if there is any or re-starts a new round of clustering 
procedure after a small random time interval. 

• . If node  receives a  from neighbor  during the waiting 

period after it broadcasts a request, it confirms the service offer by sending back  a 

 message and starts waiting for more  messages from the 
other nodes in . When node receives the , it enters the 

“Serving” mode and forwards the request message to all the other nodes in its current 
cluster through flooding. When another node in  receives the request, it 

sends a  with its own  back to the request node . 

• . To control the cluster granularity and the number of exchanged messages, 
every  message carries a TTL field. Based on the value of TTL, a node can 
determine whether the cluster diameter will exceed a predefined threshold after  joins. If 
the TTL expires,  stops forwarding  and sends a  message 

to . Once receiving ,  does not take  as a potential cluster to 

join. 

• . After node  receives  from all the nodes in its current cluster 

and the neighbor cluster  (in the case that no  is received from ), it 
computes the overall gain based on the received information. We use  
and for the gain in SCM as if  leaves its original cluster and joins . Then the 

overall is computed as: 
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where is the sum of the gain in SCM received from all the nodes in  current 

cluster and  is the sum of the received gain in SCM from all the nodes in the 
neighbor cluster . If ,  should join . There might be multiple clusters for 
which  are positive,  should join the one corresponding to the maximum . 
Once  determines which cluster to join, a  message containing ’s node 
id and its original  is flooded in its original cluster and the new cluster it is joining. 
Then,  and every node receiving  need to update the clustering 
information. 

 
After  joins the new cluster, its neighbors in the other clusters are affected. These nodes will 
check whether they should move to ’s cluster for a higher SCM in the same way as node  
does. The whole clustering procedure ends if there is no exchanged message. 
 
4.2 Handling Deadlocks 
A critical issue that distributed network protocols must handle is how to detect and resolve 
deadlocks. In SDC, nodes may enter deadlock conditions if they start the clustering request 
simultaneous as their neighbors. When deadlock occurs, none of them can get served as they 
are all waiting for each other’s replies. Deadlocks can cause the involved nodes to be in a busy 
waiting state infinitely, so those nodes will never get clustered. 
 
We using the following two methods to avoid and resolve deadlocks. 
 

• State Reset: If a node is in a waiting state which can be waiting for clustering reply, 
service confirm, etc., it will enter the next state automatically after a certain amount of 
time whether or not it receives replies from its neighbors. For example, a node sends 

 to its neighbors. It starts a timer right after the requests are sent. When 
the timer times out, the node enters the corresponding next state based on whether or 
not it receives any . The length of the timer can be estimated based on RTT 
and the predefined TTL. 

• Randomization: A direct reason for the deadlock scenario is the simultaneous node 
actions. Therefore, we introduce a randomized delay for each node before it takes 
actions. This randomization can affect the performance of SDC significantly. A short 
randomized delay may not be effective to resolve the deadlock condition while long 
delays are more effective but can slow down the whole clustering procedure. To analyze 
the effects, we provide simulation evaluations in the next section. 
 

4.3 An Example 
A simple example is shown in Fig. 1 to illustrate the SDC clustering procedure. In this example, 
TTL is set to 2, so the diameter of any cluster will not exceed 2. In Fig. 1a, node 0 wants to be 
clustered with other nodes. It first sends  messages to all of its neighbors. Each 
neighbor node upon receiving the  sends its ,  and SCM gain back 
to node 0 as shown in Fig. 1b. After receiving replies from all the neighbor, node 0 sends 

 to accept the service offer so that its requests are forwarded to every node in the 
clusters of A and B via flooding, as shown in Fig. 1c. At the same time, node 7 also starts its 
clustering procedure by sending a  to its neighbor 2. Since node 2 is in the 
“Serving” mode, the request from node 7 is refused. Thus node 7 waits for a small period of time 
before the next clustering attempt. In clusters A and B, every node which receives  
computes its SCM gain and sends  back to 0 (Fig. 1d). Node 0 then computes 

 based on the received information and joins Cluster A at the end (Fig. 1e). Since node 
4 is affected by node 0’s clustering, it starts its own clustering procedure in the way as node 0 
does (Fig. 1f). 
 
4.4 Handling Node Dynamics 
In large-scale distributed systems, node entry and exit can occur at arbitrary time and the network 
structure may change continuously. Node dynamics can degrade the existing clusters and must 
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be handled by the clustering protocol. Re-do the whole clustering procedure may recover good 
clustering accuracy. However, it is very inefficient and the procedure may never stabilize if node 
entry and exit happens frequently. Therefore, designing an effective and efficient scheme to 
handle node dynamics is a critical demand for distributed clustering. 
 
Our SDC protocol can naturally handle node dynamics in a decent way. Whenever a new node  
joins the system, it is first initialized as an orphan node and gets its own  and  
(which is 1). Since the network structure between node  and its neighbors is changed, a Join 
message carrying ’s  is issued by  to all of the neighbors so that they can update their 
SCM. As ’s joining changes its neighbors’ connectivity, the affected neighbor nodes should 
perform a new round of clustering procedure. When a node wants to leave, it sends a Leave 
message to each of its neighbors as well as every other node in its cluster through flooding so 
that the  and SCM values of the affected nodes can be updated. This will also activate a 
new round of clustering procedures at these affected nodes. The logic behind this scheme comes 
from the fact that node entry and exit are localized events and only a few nodes are affected and 
need to be re-clustered. 
 
Some overhead is introduced when SDC handles node dynamics. Nevertheless, this overhead is 
very small since only neighbors and/or the nodes in the same cluster are directly affected. In next 
section, we will show that SDC can achieve good clustering accuracy with low overhead in the 
presence of node dynamics. In contrast, CDC has to re-do the complete clustering procedure for 
any node join or leave in order to maintain good clustering accuracy, which introduces a lot of 
overhead. 
 

5. SIMULATION EVALUATIONS 
In this section, we conduct simulations to evaluate the performance of SDC, comparing it with the 
decentralized clustering scheme, CDC. 
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Figure 1: A simple example of SDC protocol (TTL = 2). 

 
5.1 Experiment Settings 
To test the applicability of our clustering protocol to different network structures, we use two types 
of topologies: Waxman topologies from GT-ITM topology generator [7] and power-law topologies 
from the BRITE generator [24]. 
 
We implement both the SDC and CDC algorithms and evaluate their performance on different 
types of topologies. There are several configurable parameters for the CDC scheme: Vicinity, 
TwoHopThreshold, WeightThreshold and MinWeight. These parameters affect the performance 
of CDC significantly: increasing the values of these parameters reduces the number of 
discovered clusters and causes more orphan nodes. We tune these parameters carefully towards 
the best clustering accuracy of CDC. Specifically, we set the values of Vicinity, TwoHopThreshold, 
WeightThreshold, MinWeight as: 1, 0.1, 0.0001, 0.0001 respectively. Besides these parameters, 
TTL is also critical to CDC as it affects the clustering accuracy by controlling he granularity of 
discovered clusters. Based on [27] and our observations, higher TTL values correspond to more 
accurate clusters with the tradeoff of increased number of messages. A TTL of 2 is used as the 
accuracy of CDC is not affected significantly by higher TTL values while the message overhead is 
much smaller than the overhead caused by higher TTL values. 
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We simulate the fully distributed systems in which a node only knows its directly connected 
neighbors. The one way 1-hop delay of any exchanged message is set to 1 simulated time. 
 
The performance of SDC is evaluated in two network scenarios: 
 

1. Static system where network nodes form a fixed topology throughout the whole simulation. 
In the beginning, every node shows up as an orphan node and starts its own clustering 
procedure independently at a random time . The simulation ends until every node 
is clustered and no message is exchanged. 

2. Dynamic system in which the topology is changed by adding X new nodes to or removing 
X existing nodes from the system. 
 

The main metrics used to evaluate the performance of the two algorithms are: SCM, Message 
Overhead and Convergence Time. SCM is used to evaluate the accuracy of the algorithm.  
Message Overhead is defined as the number of exchanged messages among nodes. 
Convergence time is the amount of simulated time from the first clustering operation until the end 
of the simulation. We also study the influence of node degree and TTL on the performance of 
SDC. 
 
5.2 Performance of SDC in Static Systems 
We first simulate the performance of SDC in clustering static systems, i.e., no node enters or 
exits the network. We are interested in the performance of SDC on different topology structures 
and topology sizes. 
 
5.2.1 Affect of Clustering Time Span T 
In SDC, a node may receive multiple clustering requests simultaneously especially when all the 
nodes start clustering in a short period of time, i.e. T is small. When receiving multiple requests, a 
node randomly picks one to serve and rejects the others. The smaller the value of T, the more 
rejected requests and control messages. Therefore, the value of T is a factor that can influence 
the performance of SDC significantly. We conduct simulations for different value of T, starting 
from 1 to 100 using a power law topology with 1000 nodes. The clustering accuracy, message 
overhead and convergence time are shown in the Fig. 2  �  4. 
 
As shown in Fig.2, increasing the value of T can improve SDC’s clustering accuracy. The reason 
is straightforward. In the scenario of large T, a node can get service from more neighboring 
clusters due to the less competitions and thus is more likely to choose the best cluster to join. 
With the increase of T, the SCM keeps raising towards the maximum SCM value of the topology 
with a slower rate. 
 
Fig.3 shows the message overhead under different value of T. When T is small (less than 10 for 
our simulation), the message overhead shows an increasing trend with the value of T. The reason 
can be explained as follows: When T is small, there are a lot of simultaneous clustering requests 
in the same area of the topology. Based on the SDC algorithm, only 1 request can be served at a 
time and the others have to be rejected and served later. Therefore, when T is small, a lot of 
clustering requests must be rejected which results in high control message overhead and many 
requests must be re-sent which also increases the message overhead. With the increase of T, 
the number of simultaneous requests in the same area is reduced, which contributes to the 
decreased message overhead. We can also observe a point in the value of T after which the 
message overhead shows an increasing trend. When T is large, although the overhead caused 
by simultaneous requests in the same area is reduced, the clustering operations are less 
aggregated. For example, a node may postpone its moving attempt to a cluster  due to its 

neighbor’s current clustering operation. If its neighbor also joins the cluster , node  should 

perform another moving attempt that can be aggregated with the previous postponed moving 
operation. With the increase of T, clustering operations are less aggregated which increases the 
exchanged messages. When T is large enough, the increased number of messages due to the 
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less clustering aggregation becomes more significant than the reduced number of messages due 
to the less simultaneous clustering requests and the overall message overhead shows an 
increasing trend. 
 
The last metric we are interested in is the convergence time under different value of T. With the 
increase of T, the convergence time grows slowly. When T is larger than 30, the convergence 
time shows a rough linear correlation with the value of T. We can observe that the clustering 
procedure is more time consuming when T is small. The reason is small T causes simultaneous 
clustering attempt at more nodes, which further results in more time for handling the simultaneous 
requests and re-clustering. 
 

 
Figure 2: Clustering accuracy on power laws                 Figure 3: Message overhead on power law 
topology of 1000 nodes                                                   topology of 1000 nodes 

 
Figure 4: Convergence time on power law topology 

                                                     of 1000 nodes 
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5.2.2 Performance in Different Topology Size 
In this set of simulations, we want to evaluate the performance of SDC in handling different size 
of topologies. Two types of topologies are used: random topologies from the Waxman topology 
model and power law topologies from the BA model. Both sets of topologies scale from 1000 
nodes to 6000 nodes. We use the existing distributed clustering algorithm CDC as the reference 
point of our evaluation.  
 
We first evaluate the performance of SDC on Waxman topologies. In this type of topologies, 
nodes are connected in a random way: only the distance information is considered. The average 
node degree is controlled to around 4 for all topologies. 
 
The performance of both algorithms are shown in the Fig.5 � 7. Since the topology structure is 
unchanged with the topology size, both algorithms have very stable clustering accuracy as shown 
in Fig.5. When compare the accuracy of the two algorithms, it is obvious that SDC performs a lot 
better than CDC. Recall that the range T for SDC is set to 2, so we expect even better 
performance of SDC in the scenario of larger T. 
 
Fig.6 shows the message overhead of both algorithms. With the increase of topology size, the 
message overhead of SDC and CDC has a linear growing trend. Compared with CDC, SDC 
generates much lower message overhead which increases with topology size slowly. On the 
other hand, the message overhead of CDC is very high and increases rapidly with topology size 
as it is a flooding-based method. 
 
The only metric in which CDC outperforms SDC is the convergence time. For CDC, clusters are 
formed right after message flooding. Therefore, the convergence time of CDC is determined only 
by the TTL of flooding and is unchanged with topology size. For SDC, since a node can serve 
only 1 clustering request at a time, the convergence time increases with the number of nodes. As 
multiple clustering requests at different areas of the topology can be served simultaneously, 
SDC’s convergence time has a sublinear correlation with topology size. 
 
Fig.8 � 10 shows the performance of both algorithms on power law topologies. This type of  
topologies have very skewed degree distributions. For a BA topology with 5000 nodes, the 
highest degree is more than 100 while the average degree is only 4. The clustering accuracy of 
SDC on the power law topologies is slightly lower than on the Waxman topologies. The reason is 
the power law topologies have less significant clustering features that result in lower SCM values. 
Compared to CDC, the performance of SDC is consistently better in terms of clustering accuracy 
and message overhead. The convergence time is reduced on power law topologies but still 
higher than CDC. 
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        Figure 5: Clustering accuracy on Waxman topolo-     Figure 6: Message overhead on Waxman topolo- 
        gies                                                                               gies 

 
Figure 7: Convergence time on Waxman topologies 
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       Figure 8: Clustering accuracy on BA topologies            Figure 9: Message overhead on BA topologies 

 
Figure 10: Convergence time on BA topologies 

 
 
5.3 Performance of SDC in Dynamic Systems 
This set of simulations are conducted to evaluate the performance of SDC in handling node 
dynamics. The topologies used in this section are power law and Waxman topologies with 1000 
nodes. To simulate the Join event, we first cluster the initial topology using the SDC algorithm 
and then we add X new nodes simultaneously to the network. Each of the new nodes connects 
with the existing nodes independently based on the topology model so that the topology structure 
can be maintained. For the Leave event, we randomly remove X existing nodes simultaneously 
from the topology. The simulations end when there is no message exchanged. We change the 
value of X from 1 to 50 and measure the clustering accuracy after node dynamics, message 
overhead and convergence time since the first Join/Leave event takes place. 
 
Fig.11 � 16 show the performance of SDC on handling node dynamics in a power law topology. 
The clustering accuracy after the simultaneous Join/Leave events is slightly changed, which 
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indicates SDC is able to maintain accurate clustering from simultaneous node dynamics. The 
logic is that the topology structure is not changed significantly and therefore, accurate clustering 
must result in an SCM value that is close to the initial SCM before node dynamics. We also 
observe the SCM value after the Leave events increases slightly with the number of removed 
nodes. This performance is reasonable because removing a few existing edges makes the 
clustering features of the topology clearer. Since SDC can accurately form clusters, an increased 
SCM value that is consistent with the more significant clustering features can be observed. 
Following the same logic, when adding new nodes to the topology, the clustering features 
become less significant, which results in the slightly reduced SCM value. 
 
Fig.12 shows the message overhead for node dynamics in the power law topology. For both Join 
and Leave events, the message overhead shows a linear correlation with the number of dynamic 
nodes. Moreover, the Leave events cause more exchanged messages than the Join events. This 
is because more nodes are affected and need to re-cluster after a Leave event than after a Join 
event. After a node leaves, all of its previous neighbors and all the nodes in its original cluster 
should re-cluster but after a new node joins the topology, only its neighbors are affected and re-
cluster. 
 
Fig.13 shows the convergence time of SDC for node dynamics. With the increase of Join/Leave 
events, the convergence time increases slowly. We can also observe that Leave events take 
longer to converge than Join events because more nodes are affected by a Leave event and 
need to re-cluster. 
 
The performance on the Waxman topology is consistent with the performance on the BA topology. 
We can see the advantage of SDC in handling dynamic systems: With low message overhead, 
accurate clusters can be maintained after a different number of simultaneous Join and Leave 
events. This performance is especially suitable for a system with continuous node entry and exit. 
To maintain an acceptable clustering accuracy, the existing algorithm CDC must re-cluster the 
whole network after a certain number of node entry and exit, which causes a high message 
overhead and is not scalable for large networks. 
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   Figure 11: Clustering accuracy for node dynamics        Figure 12: Message overhead for node dynamics 
   on BA topology with 1000 nodes                                     on BA topology with 1000 nodes 

 
                                          Figure 13: Convergence time for node dynamics on BA  
                                          topology with 1000 nodes 
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Figure 14: Clustering accuracy for node dynamics        Figure 15: Message overhead for node dynamics on 
on Waxman topology with 1000 nodes                           Waxman topology with 1000 nodes 

 
                                           Figure 16: Convergence time for node dynamics on 
                                           Waxman topology with 1000 nodes 
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Figure 17: Effect of node degree on clustering ac-          Figure 18: Effect of node degree on message over- 
curacy                                                                               head 

 
Figure 19: Effect of node degree on convergence time 

 
 

5.4 Influence of Node Degree 
Node degree is an important factor to the performance of SDC since the clustering procedure is 
based on node connectivity. In this set of simulations, we study how different average node 
degree can affect the performance of the algorithm. 
 
The topologies used in this section are Waxman topologies with 1000 nodes and different  
average degree ranging from 4 to 24. The range T is set to 100. Again, we use CDC as the 
reference point of the evaluation. 
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Fig. 17 shows the clustering accuracy of the two algorithms against different average node 
degrees. Clearly, the SCM values of both SDC and CDC drop with the increase of average 
degree. This decline of SCM is mainly caused by the decrease in clustering features of the 
topology other than the clustering algorithms. Since a connection is determined in a random 
manner by the Waxman model, increasing the average degree adds more randomness to the 
topology as translated to less clustering features. However, SDC can capture the clustering 
features better than CDC as shown by the higher SCM values, especially when the clustering 
features are more significant. 
 
Fig.18 shows the message overhead of both algorithms when clustering topologies with different 
average degrees. It is shown that the increase in average degree leads to higher message 
overhead for SDC. This fact is under our expectation. In SDC, after a node finishes its current 
clustering operation, its neighbors need to start a new round of clustering procedures. If a 
topology has higher average degree, more nodes are involved in each clustering procedure and 
need to take actions after the current clustering, which leads to more message overhead. When 
compare the two algorithms, we claim a better performance of SDC as the generated messages 
in SDC are much less than in CDC. A quick drop in the message overhead of CDC can be 
observed when the average degree exceeds 16, which is caused by the parameter setting. The 
convergence time of SDC also inclines with the increase of average node degree due to the 
same reason. 
 
As a summary, SDC is able to detect accurate clusters in both sparse and dense topologies. The 
message overhead and convergence time do increase with average node degree due to 
increased number of nodes involved by each clustering operation. 
 
5.5 Influence of TTL 
In SDC, a node’s clustering request is rejected if the TTL of the request message expires.  
Therefore, clustering results are affected by the value of TTL. Intuitively, large TTL values do not 
influence clustering accuracy because nodes can always join a cluster that leads to the highest 
SCM value without being rejected due to the expire of TTL. The questions studied in this section 
are how large the TTL should be to guarantee accurate clustering and how the other performance 
metrics are affected by different TTL values. We cluster a 1000 node Waxman topology using 
SDC with TTL varied from 1 to 5 and measure the performance metrics. 
 
Fig.20 shows the clustering accuracy of SDC against different TTL. It is under our expectation 
that the SCM is improved with the increase of TTL. The most significant SCM improvement 
happens when TTL changes from 1 to 2. Obviously, for the Waxman topology in our simulation, 
clusters with 1-hop diameter are not accurate at all. When we further increase TTL, the SCM 
value does not benefit from higher TTLs. Based on the definition of SCM, accurate clusters do not 
have large diameters because the number of non-neighbor nodes should be minimized. Thus, 
clusters do not grow further when their diameter reaches 2, which leads to the stable SCM values 
at TTL of 2 and higher. 
 
When we examine the message overhead, we observe positive effect of increasing TTL as 
shown in Fig.21. The steady decrease of message overhead is a result of reduced  
messages due to higher TTL values. Similar to SCM, the most significant reduction happens 
when TTL increases from 1 to 2 and the message overhead stabilizes when TTL is further 
increased. These results can be explained as follows: When TTL is 1, many clustering requests 
are rejected due to TTL expiration, which results in high message overhead. When we increase 
TTL from 1 to 2, the  messages are reduced significantly and the clusters are able to 
grow towards the highest accuracy, which results in the significant drop in message overhead. 
Further increase in TTL has little effect on message overhead because most clusters stop 
growing when diameter reaches 2 and TTL no longer expires. The convergence time under 
different TTL values is shown in Fig.22 that can be explained in the same way as we do for 
message overhead. 
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Figure 20: Effect of TTL on clustering accuracy           Figure 21: Effect of TTL on message overhead 

 
Figure 22: Effect of TTL on convergence time 

 
6. CONCLUSIONS 
In this paper, we target the challenging problem of clustering large-scale distributed systems such 
as P2P networks. We identify the main issues in the existing clustering algorithms: First, many 
existing algorithms are centralized methods and therefore they are not scalable and efficient in 
handling large-scale distributed systems. Second, although several distributed clustering 
algorithms have been proposed, they can not guarantee accurate clustering and low message 
overhead especially when handling dynamic systems. Therefore, we propose a novel distributed 
clustering protocol SDC for large-scale distributed systems. We conduct extensive simulations to 
evaluate the performance of SDC under various scenarios. The simulation results show the 
promising performance of SDC: it is a scalable and accurate clustering approach with small 
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message overhead on various topologies. The most attractive feature of SDC is that it can 
reserve high clustering accuracy from multiple simultaneous node entry and exit with small 
message overhead. 
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