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Abstract 

 
Selecting the appropriate traffic model can lead to successful design of computer networks. The 
more accurate the traffic model is the better the system quantified in terms of its performance. 
Successful design leads to enhancement the overall performance of the whole of network. In 
literature, there is innumerous traffic models proposed for understanding and analyzing the traffic 
characteristics of computer networks. Consequently, the study of traffic models to understand the 
features of the models and identify eventually the best traffic model, for a concerned environment 
has become a crucial and lucrative task. Good traffic modeling is also a basic requirement for 
accurate capacity planning. This paper provides an overview of some of the widely used network 
traffic models, highlighting the core features of these models and traffic characteristics. Finally we 
found that the N_BURST traffic model can capture the traffic characteristics of most types of 
computer networks. 
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1.INTRODUCTION 

Why modeling traffic? In general, traffic modeling aims to provide the computer network designer 
with relatively simple means to characterize traffic load on a computer network. Ideally, such 
means can be used to estimate performance and to enable efficient provisioning of network 
resources. Modeling a traffic stream emitted from source or traffic stream that represents a 
multiplexing of many Internet traffic streams is part of traffic modeling. It is normally reduced to 
finding a stochastic process that behaves like the real traffic stream from the point of view of the 
way it affects computer network performance. The more accurate the traffic model is the better 
the system quantified in terms of its performance. Traffic modeling should focus on capturing the 
aspects of the application which posts special demand on the system performance in the traffic 
model case, the long rang dependency (LRD) is the key characteristic that needs to be captured, 
because high burstiness resulting from LRD posts high demand on both transport and buffering 
capability in the system. Some network applications are real-time and some are non-real-time 
applications. In this paper, we are interested in real–time computer network applications. Some 
real time network applications are bursty and dynamically change their bandwidth demands 
overtime (e.g., compressed video), while others require constant bandwidth (e.g., uncompressed 
video). Bursty applications produce VBR (Variable Bit Rate) traffic streams, while constant 
applications produce CBR (Constant Bit Rate)traffic streams. In the literature there are many 
research in traffic model classification in [1,2] the authors divided traffic models into stationary 
and non stationary. Stationary traffic models can be classified into two classes: short range and 
long-range dependent. Traffic can be as above VBR or CBR. CBR (smooth) traffic is easy to 
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model and predict its impact on the performance of the network. VBR (bursty) traffic models can 
be classify as packet level traffic models and burst (customer) level traffic model [3], where 
individual customers represented by individual packets rather than packet level where individual 
customers represent complete bursts rather than individual packets. In this paper, we classify 
VBR traffic models into two main categories the first category is bound (envelope) based source 
model, these models provide a bound or an envelope on the volume of source traffic 
characteristics, the bounding characterization can be deterministic or stochastic bound interval 
independent, bound interval dependent(BIND). The second category is unbound (exact) source 
model, these models characterize source behavior by describing their stochastic properties 
through suitable distribution functions and this category is divided into many subcategory, the last 
recent type of traffic model is models that use chaotic map to generate bursty traffic. We insert 
this type as a subcategory of the unbound category. The characteristics of chaotic map present 
the researchers with a method to model the non-linear nature of network traffic and make chaotic 
map to be a main way to generate network traffic. An overview of the progress made using 
chaotic maps to model individual and aggregated self-similar traffic is presented by Mondragón 
[6]. The organization of the rest of paper is as follows, section 2 describes traffic models and its 
need in design of computer network and section 3 is the conclusion. 

 
2. TRAFFIC MODELS 
The design of robust and reliable computer networks and network services is becoming 
increasingly difficult in today's world. The only path to achieve this goal is to develop a detailed 
understanding of the traffic characteristics. An accurate estimation of the computer network 
performance is vital. Networks, whether voice or data, are designed around many different 
variables. Managing the performance of computer networks involves optimizing the way networks 
function in an effort to maximize capacity, minimize latency and offer high reliability regardless of 
bandwidth available and occurrence of failures. Network performance management consists of 
tasks like measuring, modeling, planning and optimizing computer networks to ensure that they 
carry traffic with the speed, capacity and reliability that is expected by the applications using the 
network or required in a particular scenario. The term Quality of Service, in the field of 
networking, refers to control procedures that can provide a guaranteed level of performance to 
data flows in accordance to requests from an application/user using the network. A network that 
provides supports QOS usually agrees on a traffic contract with an application and reserves a 
finite capacity in the network nodes, based on the contract, during the session establishment 
phase. While the session is in progress, the computer network strives to adhere to the contract by 
monitoring and ensuring that the QOS guarantees are met. The reserved capacities are released 
subsequently after the session. There are several factors that might affect such QOS guarantees. 
Hence, to design a network to support QOS is not an easy task. The primary step is to once 
again have a clear understanding of the traffic in the network. Without a clear understanding of 
the traffic and the applications that might be using the network, QOS guarantees cannot be 
provided. Therefore, modeling of traffic becomes a crucial and necessary step. Analysis of the 
traffic provides information like the average load, the bandwidth requirements for different 
applications, and numerous other details. Traffic models enables network designers to make 
assumptions about the networks being designed based on past experience and also enable 
prediction of performance for future requirements. Traffic models are used in two fundamental 
ways: (1) as part of an analytical model or (2) to drive a Discrete Event Simulation (DES). Here 
we describe in details the most common traffic models. 
 
2.1 BOUND (ENVELOPE) SOURCE TRAFFIC MODELS 
These models provide abound or an envelope on the volume of source traffic characteristics, the 
bounding characterization can be deterministic or stochastic bound interval independent, bound 
interval dependent (BIND). As mentioned above this model can be divided into two 
subcategories, bound interval dependent and bound interval independent. Each subcategory can 
be deterministic or stochastic we describe in details here. 
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2.1.1   Deterministic Bound Interval Independent 
Deterministic traffic modals that provide some means of bounding source peak and average 
bandwidth over an averaging interval such models are not only practical but they also result in an 
analysis that doesn't suffer from many of problems of stochastic traffic models. A traffic model for 
a deterministic service has several fundamental requirements. First, the model must be a worst-
case characterization of the source to provide an absolute upper bound on a source’s packet 
arrivals. Second, the model must be parameterized so that a source can efficiently specify its 
traffic Characterization to the network. Next, the model should characterize the traffic as 
accurately as possible so that the admission control algorithms do not overestimate the resources 
required by the connection. A worst-case representation of a traffic source may be described as 
follows. If the actual traffic of a connection is given by a function A such that A[τ , t+τ ] denotes 

the traffic arrivals in the time interval [τ , t+τ ], an upper bound on A can be given by a function 

A* if for all times τ  ≥0  and all t ≥0 the following holds [38, 18]. 

 

                            (1) 
 

We refer to a function A* (t) that satisfies the property in (1) as a traffic constraint function. Note 
that a traffic constraint function provides a time-invariant bound on A, so that a source is bounded 
for every interval of length t. In practice, a source specifies its traffic characterization with a 
parameterized model. The parameterized deterministic traffic model defines a traffic constraint 
function that bounds the Source we list of most common of them here. The model should have a 
traffic constraint function that is as tight as possible so that the admission control algorithms do 
not overestimate the resources required by the connection. While, in general, a model with more 
parameters can achieve a more accurate traffic constraint function, the additional 
parameterization causes an increase in the complexity of poking the traffic model. Thus, the 
selection of an appropriate traffic model for a deterministic service must find a compromise 
between the high accuracy preferred by the admission control tests and the simplicity required for 
the implementation of traffic policers. The policing mechanisms must verify in real-time whether 
the traffic transmitted on an established connection adheres to a specified set of parameters of a 
deterministic traffic model. To ensure that the policing mechanisms can monitor and control traffic 
at high data rates, the complexity of the traffic model is limited. In [36], it was shown that a traffic 
model with a piece-wise linear concave traffic constraint function can be policed by a fixed 
number of leaky buckets. Since a leaky bucket can be implemented with a counter and a single 
timer [l5], concavity of the  model's traffic constraint functions ensures a simple implementation of 
the traffic policer here we give the prosperities of the deterministic traffic model and then  a short 
view of  common deterministic traffic model. 
 
(Xmin, Xav, I, Smax) Deterministic Traffic Model [39] 
Is proposed for providing real time service over real time channel where clients declare their 
traffic characteristics and performance requirement at the time of channel establishment in this 
model. It characterizes the traffic (offered load) by the minimum packet interarrival time on the 
channel Xmin the minimum value, Xav of the average packet interarrival time over an interval of 
duration I,s maximum packet size Smax and the maximum service time t in the node for the 
channel's packets. For the performance bounds, the source-to-destination delay bound (or 
bounds) for the channel's packets, and the maximum loss rate. Note that Xav is the average 
interarrival time during the channel's busiest interval of duration I. Note also that specifying Xmin 
and Xav together with Smax corresponds to requesting that the network provide a certain peak 
bandwidth and a certain long-term average bandwidth, respectively. If the channel request is 
accepted, i.e., if the desired bandwidths are allocated to the channel, the client is expected to 
satisfy by the offered load parameters, whereas the delay bounds are to be guaranteed by the 
provider, i.e., by the network. A traffic constraint function 
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2.1.2     Stochastic Bound Traffic Models 
 In this model the traffic generated by a source , i ,is said to be bounded over an interval of time 
of length t by a discrete random variable ,Rt. If  Rt is stochastically larger than a random variable 
,x is said to be stochastically larger than a random variable ,y, (denoted by X ≥ st  Y). If and only if 
prob(X>x) ≥prob(Y>x) for all x. A source can bounded by different random variable, each of which 
bounds the source over a different length of time as the characterization of the source. In [12], is 
the first bounding stochastic model. It is proposed for computing upper bounds on the distribution 
of individual per session performance measures such as delay and buffer occupancy for networks 
in which sessions may be routed over several hops. Other stochastic bounds traffic modeled are 
proposed in [13] [16].  
 
2.1.3    BIND Traffic Model 
In[39], a deterministic traffic model(xmin,xav,I,smax) is proposed ,the author in [20] proposed the 
extension of this deterministic model to a probabilistic model within kurose's framework[12] 
,further he extended kurose's model to make bounding random variables explicit functions of the 
interval length (BIND)in order to better characterize the properties of the source there are two 
general requirements for the stochastic BIND model: 
 

Rt +Rs ≥st   Rt+s 
E(Rt)\t ≤ E(Rs)/s  ,if t>s 

 
Where R is a random variable stochastically bounds the total number of packets that can arrive 
on connection during any interval and E[R] is the mean bounding rate over any interval. The first 
property is stochastic subadditivity. The second property requires that the mean bounding rate 
over smaller time intervals is greater than the mean bounding rate over large time intervals. The 
author in [8] gave two examples of bounding model the first with discrete random variables and 
the second with continuous random variable . In discrete example the author used binomial 
random variables to bound the number of packets that can be generated by a source in intervals 
of different length. by choosing different parameters for each of the family's random variables, it is 
possible to bound different processes with complicated distribution. For the family of binomial 
bounding random variables let the j source denoted by S be described by {( R t,j,t), t≥0} where Rt 
stochastically bounds the total number of packets that can arrive on connection j during any 
interval of length t. the binomial distribution parameters is Mt and Pt  which is given by the 
following equations: 
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 and 
γ

≥0 is a client  specified parameter that controls how rapidly 

how rapidly the mean bounding rate over an interval approaches the long term average rate avλ  

as the interval gets larger. A larger 
γ

 means that the speed with which avλ  is approached is 
faster. This is illustrated in figure 1.1 for I=133 ms .the figure show the mean bounding rate over 

{E(Rt)/t= MtPt/t} vs. interval length t for various values of 
γ

. In the figure 1.2 we show the effect of 
the peak rate (burstiness) on the mean bounding rate. It shows that if two connections have the 

same long term average rate avλ (with interval length no less than I), the mean bounding rate 
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over any interval is greater for the connection with the higher peak rate pkλ .the same property 

hold in the deterministic model with a fixed avλ , a larger pkλ means burstier traffic. 
 

  
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1.1 

 
 
 

 
 
 

 
 
 
 
 
 
 

 
FIGURE 1.2 

 
 

There are some researchers developed  the BIND traffic model to overcome the multiplexing 
problem and low utilization. One of them extended this model with deterministic model [40] called 
(D-BIND) which can achieve 15-30% utilization with delay bound 30 ms. Other one introduced in [ 
16 ] called (H-BIND) which achieve average utilization up to 86% ,  recently the author in [41 ] 
presented a( S-BIND ) traffic model to on-line traffic.  By using the S-BIND as input, Gamma H-
BIND algorithm can achieve the maximum valid network utilization higher than the achievable 
network utilization under D-BIND traffic for both low-bursty and high-bursty on-line traffic, which is 
50%~70 % model 
  

2.2 Unbound (exact) Source Models 
Unbound (exact) source models characterize source behavior by describing their stochastic 
properties through suitable distribution function and this category is divided into many 
subcategory, we describe each here. 
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2.2.1 Poisson Distribution Model 
One of the most widely used and oldest traffic models is the Poisson Model. The memoryless 
Poisson distribution is the predominant model used for analyzing traffic in traditional telephony 
networks [2]. The Poisson process is characterized as a renewal process. In a Poisson process 
the inter-arrival times are exponentially distributed with a rate parameter µ: p{An≤t} = 1-exp(-µt). 
The Poisson distribution is appropriate if the arrivals are from a large number of independent 
sources, referred to as Poisson sources. The distribution has a mean and variance equal to the 
parameter µ. The Poisson distribution can be visualized as a limiting form of the binomial 
distribution, and is also used widely in queuing models. There are a number of interesting 
mathematical properties exhibited by Poisson processes. Primarily, superposition of independent 
Poisson processes results in a new Poisson process whose rate is the sum of the rates of the 
independent Poisson processes. Further, the independent increment property renders a Poisson 
process memoryless. Poisson processes are common in traffic applications scenarios that 
comprise of a large number of independent traffic streams. The reason behind the usage stems 
from Palm's Theorem which states that under suitable conditions, such large number of 
independent multiplexed streams approach a Poisson process as the number of processes 
grows, but the individual rates decrease in order to keep the aggregate rate constant. 
Nevertheless, it is to be noted that traffic aggregation need not always result in a Poisson 
process.  The two primary assumptions that the Poisson model makes are:  
 

1. The number of sources is infinite  
2. The traffic arrival pattern is random. 
 

The probability distribution function and density function of the model are given as:   
       

F(t) = 1 – exp(-µ t) 
f(t) = µ exp(-µ t)    
 

There are also other variations of the Poisson distributed process that are widely used. There are 
for example, the Homogeneous Poisson process and Non-Homogeneous Poisson process that 
are used to represent traffic characteristics. An interesting observation in case of Poisson models 
is that as the mean increases, the properties of the Poisson distribution approach those of the 
normal distribution. 
 
2.2.2    Pareto Distribution Process 
The Pareto distribution process produces independent and identically distributed (IID) inter-arrival 
times [1]. In general if X is a random variable with a Pareto distribution, then the probability that X 
is greater than some number x is given by 
 

( ) ( / )
k

mP X x x x
−> =    For all x ≥ xm 

Where k is a positive parameter and xm is the minimum possible value of Xi , The probability 
distribution and the density functions are represented as   
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The parameters ß and α are the shape and location parameters, respectively. The Pareto 
distribution is applied to model self-similar arrival in packet traffic. It is also referred to as double 
exponential, power law distribution. Other important characteristics of the model are that the 
Pareto distribution has infinite variance, when ß≥ 2 and achieves infinite mean, when ß ≤ 1. 
 
2.2.3    Markov Modulated Poisson Process 
 Markov models attempt to model the activities of a traffic source on a network, by a finite number 
of states. The accuracy of the model increases linearly with the number of states used in the 
model. However, the complexity of the model also increases proportionally with increasing 
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number of states. An important aspect of the Markov model - the Markov property- states that the 
next (future) state depends only on the current state. In other words the probability of the next 
state, denoted by some random variable Xn+1, depends only on the current state, indicated by Xn, 
and not on any other state Xi, where i<n.  The set of random variables referring to different states 
{X} is referred to as a Discrete Markov Chain. If the state transitions of the system under study 
happens only at integral values 0,1,2,3...n, then the Markov chain (MC) is discrete time and the 
random variable X follows a geometric distribution; otherwise, it is continuous time, with the 
random variable taking an exponential distribution. In a simple Markov traffic model, each of the 
state transition represents a new arrival process on the network. For modeling a continuous time 
system, the inter-arrival times are A Semi-Markov model is one that is obtained by allowing the 
time between state transitions to follow an arbitrary probability distribution. The time distribution 
between state transitions can also be ignored. In this model, the state transitions are then 
modeled as discontinuous entities with respect to time. The MC developed under such an 
assumption, is also referred to as an embedded or discrete Markov chain. Traffic models based 
on MMPP have been used to model bursty traffic. Due to its Markovian structure together with its 
versatility, the MMPP can capture bursty traffic statistics better than the Poisson process and still 
be amenable to queuing analysis. The simplest MMPP model is MMPP(2) with only four 
parameters: λo ,λ1 ,δo and δ1 Queuing models involving MMPP input have been analyzed in the 
70s and 80s using Z-transform [26, 27, 28, 29]. Neuts developed matrix methods to analyze such 
queues [34]. For applications of these matrix methods for Queuing models involving MMPP and 
the use of MPP in traffic modeling and its related parameter fitting of MMPP the reader is referred 
to [30, 31, 32, 33] 
 
2.2.4    Markov Modulated Fluid Models 
Fluid flow models are conceptually simple. For instance, event simulation for an ATM multiplexer 
has several advantages, when fluid flow models are used for the simulation. Models other than 
the fluid flow models that distinguish between the cells and consider the arrival of each cell as a 
separate event, typically consume huge amounts of memory and CPU time for the simulation. On 
the contrary, a fluid flow model that characterizes the incoming cells by a finite flow rate, require 
comparatively less resources [1]. This is because in a fluid flow model, an event is generated only 
when the flow rate changes; and changes in flow rates are less frequent compared to the arrivals 
of cells. A fluid flow model as a consequence, utilizes lesser computing power and memory 
resources, compared to simulation using other models.The basic feature of a fluid model is to 
characterize the traffic on a network as a continuous stream of input with a finite flow/stream rate. 
In other words, the incoming traffic rate is represented as a stream with a finite rate. By capturing 
the rate changes at the input, the models analyze the different events that occur in the network. 
Because of the simple method of characterization of traffic, the fluid modes are analytically 
tractable and easier to simulate. Like any other Markov modulated process the Markov Modulated 
Fluid Model (MMFM), uses an underlying MC that determines the rate of the sources. At any 
instant, the current state of the underlying MC determines the flow rate of the inputs. 
 
2.2.5    Autoregressive Models 
The Autoregressive model is one of a group of linear prediction formulas that attempt to predict 
an output yn of a system based on previous set of outputs {yk} where k < n and inputs xn and {xk} 
where k < n. There exist minor changes in the way the predictions are computed based on which, 
Several variations of the model are developed. Basically, when the model depends only on the 
previous outputs of the system, it is referred to as an auto-regressive model. It is referred to as a 
Moving Average Model (MAM), if it depends on only the inputs to the system [1]. Finally, 
Autoregressive-Moving Average models are those that depend both on the inputs and the 
outputs, for prediction of current output.Autoregressive model of order p, denoted as AR(p), has 
the following form 
 

1 1 2 2 ...Xt R Xt R Xt RpXt p Wt= − + − + + − +  
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where Wt is the white noise, Ri are real numbers and Xt are prescribed correlated random 
numbers. The auto-correlation function of the AR(p) process consists of damped sine waves 
depending on whether the roots (solutions) of the model are real or imaginary. Discrete 
Autoregressive Model of order p, denoted as DAR(p), generates a stationary sequence of 
discrete random variables with a probability distribution and with an auto-correlation structure 
similar to that of the Autoregressive model of order p 
 
2.2.6 Wavelet-based Models 
These models use wavelet transform function to model long-rang dependence(LRD) traffic such 
as traffic measured on Ethernet. Note that long-rang dependence refers to degree of dependence 
of samples taken at one time on those taken at an earlier time. This dependence is measured by 
the autocorrelation function. Long-rang dependence (LRD) traffic has its autocorrelation function 
slowly decrease with time .anew multi scale tool for synthesis of non Gaussian LRD traffic called 
multifractal wavelet model (MWM) is presented in [10]. In [10], a sequence of the hear scaling 
coefficients and wavelet coefficients of different scale are recursively computed. Finally synthesis 
traffic in the time domain is reproduced. The study shows that the correlation structure of traffic is 
not the only factor on queuing network, but marginal and higher order moments of traffic captured 
by the MWM also have a tremendous impact on the queuing traffic behavior. In [9], an estimator 
of the Hurst parameter H from wavelet analysis is introduced 
 
2.2.7 Traffic Models Using Chaotic Maps 
Chaotic maps are low dimensional nonlinear systems whose time evolution is described by 
knowledge of an initial state and a set of dynamical laws. The chaos (irregular or seemingly 
stochastic behavior) exhibited by such systems arises from a property known as Sensitive 
dependence on Initial Conditions (SIC). In [5], the author illustrates traffic characteristics that can 
be modeled by considering several sample maps such The Intermittency map, Piecewise Linear 
Maps, The Intermittency map can be heavy tailed interarrival time densities, 1/f Noise, Fractal 
Dimensions, here we describe Piecewise Linear Maps in details. 
 
Piecewise Linear Maps 
As the name implies, for this class of maps f(.) consists of a number of piecewise linear 
segments. The Bernoulli Shift is a particularly simple example, and is defined as follows: 

\ . . . . . . . . . . . . . . 0
1

/ 1 . . . . . . 1

x n d x n d
X n

x n d d d x n

≤ 
+ =  

− − 

p

p p
 

 
 
The associated indicator variable yn, representing the packet generation process, is as before 
equal to 1 when xn exceeds the threshold d, and is 0 otherwise. It is shown in [7] that the invariant 
density for this map is uniform and with every iteration, it generates a packet with probability with 
the arrivals forming an independent, identically distributed process. It follows that the active and 
passive periods are geometrically distributed.Burstier arrivals can be generated using additional 
piecewise linear segments. For example, it is shown in [7,8] that a three segment, two parameter 
map can generate a discrete analog of the Interrupted Poisson Process. More generally, it is 
shown in [7] that one can generate geometrically distributed dwell times in any segment by using 
piecewise linear segments with a uniform reinjection probability. One can then view this 
combination as a building block of geometrically distributed dwell times, analogous to the notion 
of an exponential stage in phase type processes. While it would be interesting to pursue this 
analogy, and investigate ways of combining piecewise linear segments, the chaotic map 
formulation may not offer any particular advantages in this regard. The real power of the chaotic 
map approach may lie in using nonlinear segments, which is illustrated next. In [9] the author use 
time Bernoulli Shift map to generate 100 second packet traffic by using chaotic map, Bernoulli 
shift map. And the characteristics of packet traffic such as packet rate, HURST exponent and 
Lyapunov characteristic exponent can be adjusted by the parameters of the Bernoulli shift map. 
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2.2.8 N- BURST TRAFFIC MODEL 
The N-Burst introduced in [21][23] is a variant of the many  ON/OFF models described in 
literature. The N-Burst arrival processes superposition of traffic streams from N independent, 
identical sources of  ON/OFF type during its ON-time each source generates packets  at rate λb 
and  is quiet during  its OFF time. This arrival process, with arbitrary ON and OFF time 
distributions (having Matrix-Exponential (ME) representations, see [19]) is analytically modeled as 
a Semi-Markov process of the Markov Modulated (MMPP) type. The details of this model Poisson 
Process can be found in [21] and [23]. When using Power-Tail Distributions for the duration of the 
ON periods, self-similar properties, which are critical for understanding teletraffic. Accommodating  
both  burstiness  and  self-similarity in  an  analytic  point-process model  is  not  easy,  and thus  
many  approximations  have been  used  by  various researchers  to  understand  buffer  overflow  
problems  and  packet delay Some examples include  the M/G/1 queue where the service time 
has infinite variance [15], continuous flow models during bursts [17, 25], and batch  arrivals.  The 
burst models are also known as ON-OFF models. For very low intra burst packet rates, the N-
Burst/G/l model reduces to an M/G/l queue. For λb→∞ all packets in a burst arrive simultaneously 
and the model becomes a Bulk arrival, or M(X)/G/l, queue.  In. the same limit, the packet-based 
model can be compared to a model on the burst level, an M/G/l queue where the individual 
customers represent complete bursts rather than individual packets.  Thus the for the last mean 
system time describes the mean delay packet in a burst rather than the average over all packets 
The continuous flow model is also shown to be a limiting case of the N-Burst model by letting the 
number of packets in a burst n, and the router's packet service rate, v, go to infinity while holding 
their ratio constant. The author in [11] gave Numerical results comparing the steady-state results 
for Mean Packet Delay (mPD) and for Buffer Over flow Probabilities (BOP) of the different 
analytic models.  They collectively show the critical importance of the Burstiness Parameter (the 
fraction of time that a source is OFF). The self similar N-burst /M/1 shows drastically changing 
steady-state performance for specific values of the Burstiness Parameter. The limiting models are 
incapable of describing the detailed structure of the performance in this transition region. In [11] 
the author defines the model by these parameters: 
K: = the mean rate for each source (the average for ON- and OFF-times together),  
λ := Overall arrival rate (packets per time unit)that generated by N-source 
Where λ =KN 
np: = Mean number of packets during a burst; 
λp:= peak transmission rate during a burst (packets per time unit);  
ON: =np/ λp =Mean ON time for a burst (time units);  
OFF: = Mean OFF time between bursts (time units);  
v := Mean packet service rate of  router (packets per Time unit); 
λb:= λ/np= Mean burst arrival rate (bursts per time unit); 
vb:=v/np = Mean burst service rate (bursts per time unit); 
xb:= np/v=1/vb= Mean time to service a burst (time unit); 
ρ:= λ/v=router utilization 
In addition, the author introduce the Burstiness Parameter, b, defined as 

1
p

o f f k
b

o f f o n λ
= = −

+  
This parameter can be thought of as a shape parameter, since  
λ, or the amount of data sent per unit time, and ρ can be held constant as b is varied over its 
range, [0, 1].  
 
 
 
 
 
 
 
 

 
FIGURE 3: Diagram of 1-Burst traffic model 
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N-Burst model depends on four separate distributions, with random variables denoted by XSV, 
XoF, XON and XIN, respectively. They are:  
 
SV: Packet Service Time Distribution with mean1/v  (distribution depends  on packet-size 
distribution, service rate v depends  upon  router  speed  and  size of packets) 
  
OFF:  OFF-Time distribution with mean OFF (depends on how bursts are generated, and how 
often);  
 
ON: ON-Time distribution with mean ON causing a mean number of np=λp ON a packets in a 
burst (e.g. . . ON-Time distribution depends on file size distribution, np depends on mean size of 
files, and on packet size);  
 
IN: Inter-packet Time Distribution during a burst, with mean l/ λp. 
 
   Recall that for b = 0 the SM /M /l queue reduces to the Mλ/Mv/l queue, in which case, the mean 
packet delay is given by the elementary formula: 

1/v
mPD(b=0) =  

1 ρ

 
 

− 
 

Where 
ρ

= /λ ν .  At the other extreme (b = 1) is the bulk arrival 

[ ]ON

bM λ / Mv /l queue.  This 
behavior is also well known (see, [9]), and can be written as: 
 

1/v
mPD(b=1) =  

1
D

ρ

 
 

− 
 

Where 
 

( 1)

2

( )

L L
E

D
E L

 +  
  
  =

 
 
 

 

 
 

3. CONSLUSION  
The different traffic models each have its own advantages and disadvantages and each can be 
suitable for special or general type of network .consequently, the type of network under study and 
the traffic characteristics strictly influence the choice of the traffic model used for analysis. Traffic 
models that cannot capture or describe the statistical characteristics of the actual traffic on the 
network are to be avoided, since the choice of such models will result in under-estimation or over-
estimation of network performance. There is no one single model that can be used effectively for 
modeling traffic in all kinds of networks. For heavy-tailed traffic, it can be shown that Poisson 
model under-estimates the traffic [37]. In case of high speed networks with unexpected demand 
on packet transfers, Pareto based traffic models are excellent candidates since the model takes 
into the consideration the long-term correlation in packet arrival times[1].Similarly, with Markov 
models, though they are mathematically tractable, they fail to fit actual traffic of high-speed 
networks. All this model traffic describes by a random process such Poisson process or other 
have the following limitation: 
 

• model fitting  some sources cannot fit the model (no analytical model then no statistical 
guarantee can be made ) 
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• homogeneous traffic sources and this not suitable for various service provide by 
network(mean heterogeneous source) 

• need per connection analysis to provide different service to different application (don't 
take the effect of network element) 

• limiting result 

• single switch analysis 

• at last stochastic process traffic models is suitable to characterize the one type data or for 
network that support one type of traffic 

• does not scale the bursty traffic properly  
The bound traffic models solve a lot of problem of stochastic process traffic model. bound traffic 
models are a good model to achieve  hard QOS in real time application on the account of 
resource utilization in case of internet traffic the chaotic traffic model may be a good model since 
it describe the traffic self  similarity characteristic and chaotic characteristic in a packet level .but 
this model does not capture the bursty characteristic well .it shown that N-BURST traffic model is 
general traffic model where model traffic in a burst level rather than all model  where the 
individual customers represent complete bursts rather than individual packets, Accommodate self 
similar ,bursty, and long rang dependency property for the traffic, Can describe the performance 
of the system under various critical points, and describe various application with it’s rich 
parameters (λ , λp , ν , ON , OFF ,….e.g.).as mention above we can see many traffic models as 
special case of N-BURST model (b→0,b→1).A number of factors come into play while evaluating 
the efficiency of a traffic model. In general, the factor that differentiates one model from the other 
is the ability to model various correlation patterns and marginal distributions.  Traffic models 
should have a manageable number of parameters, and parameter estimation should be simple; 
and, models that are not analytically tractable are preferred only for generating traffic traces. 
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