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Abstract 

 
Accurate traffic classification is necessary for many administrative networking tasks like security 
monitoring, providing Quality of Service and network design or planning. In this paper we illustrate 
the accuracy of 18 different machine learning algorithms with different statistical parameter 
combinations. Additionally, we divide the statistical parameters into upstream and downstream to 
observe the influence of the protocol inherent differences of client and server behaviour for traffic 
classification. Our results show that this differentiation can increase the protocol detection rate 
and decrement the processing time. 
 
Keywords: flow classification, Internet traffic, traffic identification. 
 

 
 
1. INTRODUCTION 
For operation, management and design of communication networks, advanced knowledge of 
transmitted protocols and applications as well as their behaviour are necessary. This detailed 
information can be provided by traffic classification. Network traffic classification, or classification 
of applications, is the process of identifying the type of protocols or applications which generate 
particular network flows. Scope of applications for traffic classification are, for example, the 
providing of information about future traffic evolution (trend analysis), traffic engineering, intrusion 
detection and prevention, content control/filtering, monitoring and lawful interception. 
 
In general, there are four kinds of traffic classification methods. The oldest and most commonly 
used method is the port based approach. This uses the well-known port numbers of the 
TCP/UDP protocols assigned by the IANA. Another method used is protocol decoding. It is based 
on stateful reconstruction of sessions and application information from packet content. It identifies 
protocols by their characteristic protocol headers (magic numbers, incrementing counters, 
session identifiers, etc.), packet sequences, etc. so it avoids needing to trust in port numbers. 
This method is often used only for dedicated popular protocols, e.g., HTTP and mail protocols like 
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in Cisco's Network Based Application Recognition (NBAR) [1]. The third method is the pattern or 
signature based approach [2]. This method uses application specific signatures and searches for 
those in the protocol header and content to identify the application. 
 
The fourth method is based on the machine learning approach. This method uses machine 
learning algorithms as used in data mining to identify applications by characteristic packet or flow 
statistics. The advantage of this approach is that the algorithms can be trained with real network 
traffic. If a protocol changed or a new protocol appeared, it is easy to repeat the training to update 
the protocol identifier. It can possibly be used to identify some encrypted protocols. A problem of 
this method is to find the proper parameters and effective machine learning algorithms. 
 
In this paper we evaluate the impact of the network protocols asymmetry behaviour of Internet 
traffic for classification with a large set of machine learning algorithms and parameters. In our 
investigations we define asymmetry behaviour as the different behaviour of the protocols in their 
downstream and upstream directions. The machine learning approach has been discussed in 
numerous papers [3, 4, 5, 6, 7, 8], but with focus on just one algorithm. Furthermore, these 
approaches are mostly used for non real-time or offline network traffic analysis [3, 4, 6]. Besides 
the evaluation of how parameter reduction can influence the accuracy of classification, we aim to 
evaluate the influence of the classification runtime. These results may reveal an opportunity for 
using machine learning algorithms in future real-time classification. 
 
The remainder of this paper is structured as follows: Section 2 contains a description of the 
experimental setup of our research, and Section 3 focus on the results of the traffic classification. 
In the following Section 4, we are describing the influence of parameter reduction according to the 
classification accuracy and the time consumption. Section 5 compares our results with the results 
of other studies. Finally, Section 6 provides a conclusion and the direction for future work. 
 

2. EXPERIMENTAL SETUP 
We used different network traffic traces in PCAP (packet capture library) format [9] to test and 
train the investigated machine learning algorithms of this study. To extract the necessary detailed 
protocol information and the required statistical parameters of these traces, we used our own 
developed tool described in [10], because available tools like GTVS (Ground Truth Verification 
System) [11] do not fulfil our constraints for the automatic traffic labelling. To describe the 
protocol characteristics, we used 40 different parameters, which are a subset of the six parameter 
classes: packet count, interarrival time, payload size, flow duration, bulk mode and idle mode. 
Some of these parameters characterize the whole flow, while the remaining parameters 
characterize the flow separately for upstream and downstream. This separation is done to 
observe the impact of the asymmetric behaviour of the network protocols for the classification. 
More detailed description of the 40 parameters can be found in [10]. 
 
The network traffic classification based on the protocol characteristics is done with 18 different 
machine learning algorithms – also called classifiers. These classifiers are provided by the WEKA 
software suite [12] and we treat them as black-box classifiers. The selection of these 18 
classifiers is described in [10]. For the automated supervised training (Phase 1) as well as for 
testing (Phase 2) and protocol classification, respectively, we build a test-suite on top of WEKA.  
The training data contains all statistical parameters and the associated protocol. Therefore, we 
can use the supervised learning approach for the machine learning algorithms. The testing data 
contain only the statistical parameters. During the training the classifiers generate a classifier 
model; this model can be used afterwards for testing in Phase 2 with different traffic. The 
classification accuracy of the classifiers can be validated by comparing the prediction of the 
classifier with the known protocol information. Due to a lack of publicly available network traces 
with full payload, which is necessary to evaluate the exact protocol or application of the traffic, we 
generated different kinds of traffic. More information to the used traffic can be found in [10]. 
 
The process of generating the classifier models is deterministic for our training data and 
classifiers, with the exception of the AttributeSelectedClassifier. Thus, the particular generated 
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classifier models are always the same for a given training set. The test results computed by the 
classifiers with their applied model are deterministic, too. 
 

3. RESULTS 
Table 1 contains the results of this study the filled symbols are the added results from Section 4. 
It shows if it is possible for an algorithm to detect a protocol with an accuracy greater than or 
equal to 90% with our selected parameters. Furthermore, Table 1 differentiates the results into 
three categories to observe the flow-direction asymmetry of the investigated network protocols: 
 

• full: all 40 parameters 

• splitting: parameters which are computed separately for the directions upstream and 
downstream (26 parameters) 

• no splitting: parameters which are calculated for the whole flow (14 parameters) 
 
 

WEKA Classifier Name 
Bittor- 

rent 
eDon- 

key 
Flash HTTP IMAP Oscar POP3 RTP SIP SMTP 

AttributeSelectedClassifier ○ ∆ □  ▲  ○ ∆ □       ○ ∆ □ ○ ∆ ■ ○ ∆ ■ ○ ∆ □ ●  ■ 
Bagging ● ∆ □  ▲ ■ ○ ∆ □  ▲     ○ ∆ □ ○ ∆ □ ○ ∆ ■  ▲ □ ○ ∆ ■ 

BayesNet ○ ∆ □    ○ ∆ □  ▲     ○ ∆ □ ○ ∆ ■ ● ▲ □ ○ ∆ □ ○ ∆ □ 

DataNearBalancedND ○ ∆ □  ▲ ■ ● ∆ □ ● ▲ □ ●   ○ ∆ □ ○ ▲ ■ ○ ▲ ■ ○ ∆ □ ● ∆ □ 

DecisionTable ○ ∆ ■    ○ ∆ □        ▲  ●  ■ ○ ∆ ■ ●  ■    

FilteredClassifier ○ ∆ ■ ● ▲ ■ ○ ∆ ■  ▲ □    ○ ∆ □    ● ▲ ■ ○ ∆ ■    

J48 ● ∆ □ ● ▲  ● ∆ □ ● ▲ ■    ○ ∆ □ ○ ∆ □ ○ ▲ □ ○ ∆ □ ○ ▲ ■ 

J48graft ○ ∆ □ ● ▲ ■ ○ ∆ □ ● ▲ ■    ● ∆ □ ○ ∆ ■ ○ ∆ □ ○ ∆ □ ● ▲ ■ 

NaiveBayes ○ ∆ □    ○ ∆ ■ ●  ■   ■    ● ▲ ■ ● ▲ □ ○ ▲ ■ ●   

NaiveBayesUpdateable ○ ∆ □    ○ ∆ ■ ●  ■   ■    ● ▲ ■ ● ▲ □ ○ ▲ ■ ●   

nestedDichotomies.ND ○ ▲ ■  ▲ ■ ● ▲ □ ● ▲ ■    ● ∆ ■ ○ ∆ ■ ○ ▲ □ ● ▲ ■ ● ∆ ■ 

OneR ○ ∆ ■ ● ▲  ○ ∆ □             ● ▲ □ ○ ∆ ■    

PART ○ ∆ □  ▲  ○ ∆ □ ● ▲ □    ○ ∆ □ ○ ∆ □ ○ ∆ □ ○ ∆ □ ○ ∆ ■ 

RandomCommittee ○ ∆ □ ● ▲ ■ ○ ∆ □ ○ ∆ □    ○ ∆ □ ○ ∆ □ ○ ∆ □ ○ ∆ □ ○ ∆ □ 

RandomForest ○ ∆ □  ▲ ■ ○ ∆ □ ○ ∆ □    ○ ∆ □ ○ ∆ □ ○ ∆ □ ○ ∆ □ ○ ∆ □ 

RandomSubSpace ○ ∆ □ ● ▲ ■ ○ ∆ □ ○ ∆ □    ○ ∆ □ ○ ∆ □ ○ ∆ □ ○ ∆ □ ○ ∆ □ 

RandomTree ○ ∆ □  ▲ ■ ○ ∆ □ ● ∆ □ ●   ● ▲ □ ○ ▲ ■ ○ ∆ □ ○ ▲ □ ○ ▲ □ 

REPTree ● ∆ □  ▲  ○ ∆ □  ▲ □    ○ ∆ □ ○ ∆ □ ○ ∆ ■  ▲ □ ○ ∆ ■ 

 

TABLE 1: Protocol classification with greater than or equal to 90% accuracy (○ full, ∆ no splitting, □ splitting 

upstream/downstream; ●▲■ additional from parameter reduction). 

 
 
3.1 Classification Accuracy 
It can be seen from Table 1 that not all algorithms used are suitable for protocol classification with 
our selected statistical parameters. The classifiers DecisionTable, nestedDichotomies.ND, OneR, 
NaiveBayes and NaiveBayesUpdateable have low classification accuracy over all protocols. In 
contrast, the classifiers RandomCommittee, RandomForest and RandomSubSpace have a high 
classification accuracy on all protocols, except the two protocols eDonkey and IMAP, which were 
classified by all algorithms with low accuracy. 
 
Also, the results in Table 1 show that the observed protocols have different characteristics, so 
that some could be detected with high accuracy (Bittorrent, Flash) while others (eDonkey, IMAP) 
are hard to detect. Because of the specific characteristics, there are also differences in the 
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classification accuracy for the three parameter categories. For example, the HTTP protocol has 
the best classification results when using the parameters which are computed for the flow 
(“splitting“) with differentiation between upstream and downstream. In contrast, for the protocol 
POP3 the classification results have a higher accuracy with the combination of all parameters 
(“full”). 
 
3.2 Training and Testing Effort 
Table 2 contains the time needed for training and testing. These times are measured by using the 
HPROF [13] tool for heap and CPU profiling. We measured the CPU usage time for every 
algorithm and applied the fastest algorithm (REPTree with parameter category “no splitting”) as 
reference to scale the timing results.  
 
As we can see in Table 2, the amount of time spent for training is much higher than for testing, 
but this is not a problem in general. Training is done only once, while testing is done on an 
ongoing basis for protocol classification. All algorithms have very similar CPU time consumption, 
but four algorithms (BayesNet, NaiveBayes, NaiveBayesUpdateble and ND) have a significantly 
higher CPU time consumption. This could make these four algorithms unusable for real-time 
traffic classification. 
 
 

WEKA Classifier Name 
full splitting no splitting 

Train Test Train Test Train Test 

AttributeSelectedClassifier 48.3 3.6 32.0 3.3 20.7 3.4 

Bagging 180.1 2.1 112.5 2.0 70.6 1.9 

BayesNet 62.1 74.9 37.3 46.4 21.4 25.7 

DataNearBalancedND 144.2 7.7 74.2 7.4 43.3 6.5 

DecisionTable 631.5 2.6 386.3 2.1 199.0 1.7 

FilteredClassifier 32.2 3.3 20.7 2.5 12.5 2.3 

J48 59.9 3.1 38.4 2.9 25.8 2.9 

J48graft 85.8 4.0 54.7 4.2 38.1 3.2 

NaiveBayes 86.9 200.7 57.1 133.3 31.3 73.7 

NaiveBayesUpdateable 86.7 200.3 57.8 133.5 31.7 73.9 

nestedDichotomies.ND 198.5 66.8 139.3 66.6 87.4 64.0 

OneR 7.2 1.6 4.8 1.3 3.2 1.1 

PART 111.5 2.9 61.9 2.6 51.3 2.5 

RandomCommittee 53.3 3.5 40.9 3.0 29.8 .2.6 

RandomForest 47.8 3.6 38.1 3.1 31.3 2.6 

RandomSubSpace 100.9 2.9 65.7 2.4 38.6 2.3 

RandomTree 6.9 1.7 4.8 1.5 4.1 1.3 

REPTree 19.6 1.7 11.9 1.4 8.1 1.0 

 
TABLE 2: Classifier time factors. 

 
 
In Table 2, the time factor for training as well as for testing indicates a relation between the 
number of parameters and the time consumption of the classifiers. Thus, the time consumption is 
reduced by using fewer parameters for the protocol classification. Because of these results, we 
supposed a linear relation between the number of parameters and the time consumption of the 
classifiers. To verify this supposition, the following Section 4 includes further tests with reduced 
parameters for the protocol classification. 
 

4. PARAMETER REDUCTION 
Because of the test results of the previous Section 3, we decided to evaluate the influence of 
parameter reduction according to the time consumption of the classifiers and the accuracy of the 
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protocol classification. For the parameter reduction, we divided the parameters of each parameter 
category (“full”, “splitting” and “no splitting”) into six different parameter classes. Furthermore, we 
tested each classifier with all possible 63 combinations of these parameter classes – the 64th 
combination (all parameter classes removed) was omitted. 
 
4.1 Classification Accuracy 
The filled symbols in Table 1 represent the additional classification results of the parameter 
reduction. In contrast to the results of Section 3, the classification accuracy in the results were 
increased for all protocols and some classifiers. The improvement of eDonkey and HTTP is 
significant when comparing all protocols. The classification results of eDonkey show differences 
in the classification accuracy for the three parameter categories. The best classification results 
were reached with the parameters which are computed for the whole flow (“no splitting”). In 
addition, the classification accuracy of the classifier NaiveBayes, NaiveBayesUpdateable and 
nestedDichotomies.ND could be proliferated. However, Table 1 does not show which parameter 
combinations were suitable for the best classification results. 
 
Despised the improvement of the classification accuracy by the parameter reduction, the 
classification accuracy of IMAP is still low. Only the four classifiers DataNearBalancedND, 
NaiveBayes, NaiveBayesUpdateable and RandomTree are able to classify this protocol with an 
accuracy of greater than or equal to 90%. We can see the same results on the two classifiers 
DecisionTable and OneR, having still the lowest classification accuracies according to all ten 
protocols. Even they show some improvements of the classification while using parameter 
reduction. 
 
4.2 Classification of eDonkey 
In fact, the classification accuracy of eDonkey reached in most cases values of only about 25%, 
and in some cases up to 80%. The reduction of the statistical parameters could increase the 
classification for all protocols, but the improvement of eDonkey was significant. Fig. 1 shows the 
results of the classification for eDonkey with all combinations of the six parameter classes. Every 
combination consists of one or more parameter classes, and every parameter class is referenced 
by a number (see Fig. 1). The sum of the reference numbers is assigned to those combinations 
that consist of more than one class. 
 

 
 

FIGURE 1: The number of classifiers that match eDonkey with a particular parameter combination with an 
accuracy of 90%. 
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Fig. 1 shows the number of classifiers that reach an accuracy of 90% or more for the different 
parameter combinations. We can see that some parameter combinations of the parameter 
category “no splitting” gain significantly more classification accuracy than the other parameter 
combinations. These parameter combinations are 16 (bulk), 17 (bulk + packet count), 24 (bulk, 
duration), 25 (bulk, duration, packet count), 48 (bulk, idle), 49 (bulk, idle, packet count), 56 (bulk, 
idle, duration) and 57 (bulk, idle, duration, packet count). 
 
It is evident that the classes interarrival and payload size are not in any parameter combination 
that has a high accuracy. This can be explained with the nature of eDonkey's Peer-to-Peer (P2P) 
protocol behaviour. The eDonkey network packets differ in size because the configuration and 
management packets contain less data, whereas packets for data transfer can contain more data. 
Due to the P2P behaviour of eDonkey, many connections to peers spread over the whole world 
can be established. Thus, the parameter classes payload size and interarrival are not good 
criteria for eDonkey classification. 
 
In contrast, the parameter class “bulk” is very important for detecting eDonkey. All parameter 
combinations with high accuracy contain bulk. The bulk transfer mode is a typical characteristic of 
data transfer protocols without application level acknowledgements. The parameter ``bulk" may 
also be able to increase the detection accuracy for other protocols used for  data transfer like 
FTP, HTTP, other P2P file-sharing protocols or file-sharing integrated in instant messaging or 
VoIP protocols/applications. 
 
4.3 Testing effort 
As seen in Table 2, the time needed for training and testing seems to be correlated with the 
number of parameters used for classification. In this section, we want to have a closer look at the 
connection of runtime and the number of parameters. The diagrams of Fig. 2, Fig. 3 and Fig. 4 
show the runtime of the different classifiers and the number of parameters used for testing. The 
timing results were split into three diagrams because of different scaling and different correlations 
between parameter count and runtime. 
 

 
 

FIGURE 2: Linear time factor growth of slow classifiers. 
 
 
Fig. 2 shows the runtime of the classifiers BayesNet, NaiveBayes, NaiveBayesUpdateable and 
ND. These classifiers are the slowest of all determined classifiers. All four classifiers rise linearly 
with growing parameter count. The increase of runtime for the three Bayes classifiers is 
significantly higher than on all other classifiers. ND has an increase similar to the classifiers in 
Fig. 3, but it has a huge offset. That means ND is per se very slow – independent of the 
parameter count. 
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The classifiers in Fig. 3 also increase linearly too, but they grow much slower. OneR, 
RandomForest and REPTree are the fastest classifiers with lowest increase. The classifiers in 
Fig. 4 do not show a linear increase as well. The parameter count is not the only factor for the 
growing runtime. The lower and upper bounds of the scatter plots in Fig. 4 are linearly increasing. 
 
As a result, we can say that the runtime for the most classifiers is correlated to the amount of 
parameters. So, the reduction of parameters – with equal classification accuracy – is desirable. 
The Bayes classifiers are very slow and should only be used with combinations having few 
parameters. A prediction of the runtime of the classifiers of Fig. 4 is not possible, but the lower 
and upper bounds of the scatter plots give an indication. Furthermore, the ND classifier is very 
slow in all cases and is not suitable for real-time classification. 
 

 
 

FIGURE 3: Linear time factor growth of fast classifiers. 
 
 

5. Related Work 
As described in the introduction, the machine learning approach has been discussed in numerous 
papers [3, 4, 5, 6, 7, 8] before. In this section we want to compare our findings with the results of 
previous papers and expose the differences. First, all previous papers used only one algorithm to 
classify the traffic. In some papers, however, different methods to improve the algorithms were 
used additionally [7, 8]. 
 
A big issue in all related work is the data pool of network traffic. There are no up to date full 
payload internet traffic traces available. All public available traces are truncated after the transport 
layer header. So, a responsible estimation of the included payload and the used upper layer 
protocols is not possible. Therefore, port numbers are often used to classify the truncated packets 
[6]. For this paper we classified and verified all traffic flows by hand to give the machine learning 
algorithms reliable information for the learning phase. In addition, the knowledge of the available 
protocols and applications is important for validating the results. 
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FIGURE 4: Classifiers without determinable time factor behaviour. 
 
 
Another key issue is the choice of network protocols to investigate. All studies – this study 
included – are using only a small amount of about ten protocols or applications. For real use the 
50 most used protocols should be observed. This issue is mostly due to the lack of available 
network traces. But this can sophisticate the results. If we use only very heterogeneous protocols, 
the classification is, on the one hand, easier and the machine learning algorithms will work more 
responsibly; on the other hand, the false positive rate is much lower. This effect can be seen in 
the results of Table 1. The protocol IMAP, for example, was falsely predicted as another protocol. 
The same behaviour can be seen in paper [3]. In this paper the detection rate (true positive) is 
80% or more. However, the protocol POP has a classification accuracy of 0%, because it is very 
similar to NNTP and SMTP which results in false classification (false positive). Because of the 
small number of investigated protocols – in all studies – the effect of false positives is not 
considered sufficiently. 
 
Besides the 18 machine learning algorithms, we investigated 40 statistical parameters to 
determine their influence on traffic classification. We only used statistical parameters, whereas 
other studies have also used parameters like IP addresses or port numbers [4, 8], which in effect 
reduces the machine learning approach to absurdity. As discussed in Section 4, the kind of 
statistical parameters and the number of parameters is important for the classification accuracy. 
This result can also be seen in [3, 6, 7]. However, this is dependent on the observed protocol and 
the used machine learning algorithm – a key result which cannot be read out of the other studies  
[3, 4, 5, 6, 7, 8]. 
 

6. CONCLUSION AND FURTHER WORK 
In this paper, we have determined the impact of network protocol asymmetry according to the 
classification accuracy of network traffic. We used 63 combinations of six statistical parameter 
classes in three parameter categories consisting of up to 40 parameters. The three categories 
split the statistical parameters into parameters for the whole flow without differentiation of 
upstream and downstream, parameters that differentiate between upstream and downstream with 
regard to the asymmetry of some protocols, and the third category containing all 40 parameters. 
 
Our test results show that the differentiation of the traffic can increase the classification accuracy 
if the parameters can expose the asymmetry of protocols like HTTP, which has an asymmetric 
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behaviour. This asymmetry can be lost if the statistical parameters are only computed for the 
whole flow. Furthermore, the reduction of parameters can increase the classification accuracy. 
This is significant for the eDonkey protocol. Removing the parameter classes “interarrival” and 
“payload size” enhanced the classification accuracy of 14 of the 18 classifiers to at least 90% 
when the parameter “bulk” was used. This indicates that the parameter ``bulk" can be used to 
detect asymmetric bulk data transfer. 
 
Additionally, the parameter reduction can decrease the runtime of the classifiers. Most classifiers 
have a linearly increasing runtime with reference to the parameter count. This is important for 
real-time traffic classification. The classifier ND showed a low classification accuracy and a high 
runtime, so it can be dismissed for network traffic classification. The Bayes classifiers should only 
be used for a very small number of parameters, because their runtimes increase very fast with 
increasing parameter count. Besides, the NaiveBayes and NaiveBayesUpdateable classifier 
show a similar behaviour and classification accuracy, and therefore, in future work it is sufficient 
to investigate only one of these two algorithms. 
 
6.1 Further Work 
In future we want to investigate if it is possible to train the machine learning algorithms for 
protocol classes such as e-mail, bulk data transfer, P2P, interactive, gaming or multimedia to 
enable the classification of unknown protocols belonging to such a class. 
 
The network traffic used in this study does not reflect network traffic in the Internet. Because 
other studies showed that the accuracy of the classification results can vary by testing network 
traffic from other locations [7, 14, 15, 16], we have to repeat our investigation with other network 
traffic to evaluate our results. 
 
To obtain better classification results, we have to study the best suitable algorithms in detail to 
adapt these generic algorithms for traffic classification. Another result of this study may be an 
answer to the question of why some classifiers are more suitable for traffic classification than 
others. 
 
Finally, to enhance the accuracy of traffic classification, we have to find other parameters. New 
parameters should take the payload characteristics into account. Above all, parameters which 
characterise payload properties of the network protocols can enhance the classification accuracy 
of encrypted protocols. 
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