
Avadhesh Kumar, Rajesh Kumar, P.S. Grover

International Journal of Computer Science and Security, Volume (1): Issue (2) 1

An Evaluation of Maintainability of Aspect-Oriented
Systems: a Practical Approach

Avadhesh Kumar avadheshkumar@aiit.amity.edu
Amity Institute of Information Technology
Amity University
Sec-125, Noida, India

Rajesh Kumar rakumar@tiet.ac.in
School of Mathematics & Computer Applications
Thapar University
Patiala, Punjab, India

P.S. Grover groverps@hotmail.com
Guru Tegh Bahadur Institute of Technology
GGS Indraprastha University
Delhi, India

Abstract

Maintenance of software systems is becoming major concern for software
developers and users. In software projects/products, where software
changes/updates are frequently required to improve software quality,
maintainability is an important characteristic of ISO 9126 quality standard to
evaluate. Analyzability, changeability, stability, and testability are sub
attributes/characteristics of maintainability in ISO 9126. In this paper,
changeability is measured by making changes at code level of an Aspect-
Oriented (AO) system. The approach taken to evaluate the changeability of an
AO system is to compute the impact of changes made to modules of the system.
Some projects1 in aspect-oriented programming (AOP) language, AspectJ, have
been taken for testing. The results suggest that the AO system can easily absorb
changes and AO design metrics can be used as indicators of changeability as
well as of maintainability. The results also suggest that a code level change in
AO systems not always cause less change impact to other modules than a code
level change in Object-Oriented (OO) systems.

Keywords: Software quality, maintainability, changeability, AO system, AO metrics, AspectJ.

1
Original three different projects were developed using object-oriented programming language Java/Servlets for a

university with logging facility, chat facility, student result, etc. These projects are having 129 classes. Same projects are
re-engineered to aspect-oriented programming using AspectJ. AO projects are with 149 modules (classes and aspects).

Avadhesh Kumar, Rajesh Kumar, P.S. Grover

International Journal of Computer Science and Security, Volume (1): Issue (2) 2

1. INTRODUCTION

Software quality refers to the conformance of the product to explicitly state functional and
performance requirements, documented development standards, and implicit characteristics.
Quality of software project/product is characterized by certain attributes, which are highlighted by
ISO standards. An example of such standard is ISO 9126.

ISO 9126 is a standard that provides a generic definition of software quality, in terms of six main
desirable characteristics: functionality, maintainability, usability, efficiency, reliability, and
portability [1, 2]. Extensive studies have shown that maintenance is one of the major cost
concerns, as a matter of fact; a growing cost concern [3]. Maintainability has further four sub
attributes, analyzability, changeability, stability, and testability. Out of these, changeability is the
most significant from the point of view of organizations, as most organizations use software,
developed by other organization(s). It need not bother about any other attribute, except
changeability. When we make changes in a program at various levels, such as design, code, and
architecture and so on, then how do these affect the quality of the software? Carrying out the
impact analysis based on the various changes made can evaluate this.
Maintainability of a software system depends on its design [4], which depends on the software
design approach that one uses. Salient design approaches are: Module-Oriented (MO), OO, and
AO [5, 6]. MO and OO paradigms have been used quite commonly and well-accepted in industry.
Each has its own limitations and range of applicability. One of the major constraints has been the
spread of concerns over various modules/classes (cross-cutting concerns). This leads to program
codes, which are difficult to maintain and understand [7].
Aspect-Oriented Programming (AOP) is a new approach for separating concerns into units called
aspects. An aspect is a modular unit of crosscutting concern implementation. It encapsulates
behaviors that affect multiple classes into reusable modules [8, 9]. We implement AOP by OO
language (e.g. Java), and then we deal separately with crosscutting concerns in our code by
implementing aspects. Finally, both the code and aspects are combined into a final executable
form using an aspect weaver. As a result, a single aspect can contribute to the implementation of
a number of methods, modules, or objects, increasing both reusability and maintainability of the
code. The original code need not know about any functionality of the aspect that has been added,
it needs only to be recompiled with the aspect to regain the original functionality. It is being
argued that AOP will lead to better quality software.

Most research work on change impact assessment has been carried out on MO and OO software
[10, 11, 12, 13, 14], whereas AO approach has not been studied to that extent. Zhao [15] did
some work in this area based on program slicing technique, but has not applied to realistic
systems. Avadhesh et, al.[16] have measured changeability characteristics only for operation
signature change, not for other members of the module and changes at system level. We have
explored this problem incorporating code–level changes for all types of members inside module
as well as at system level of AOP. Our technique to assess change impact for AO systems is
different. We have used new terminologies for class(s) and aspect(s) as modules and for
method(s) of class and advice(s)/introduction(s) of aspect as operations. A change in access
scope, data types, operation signature etc. will impact other modules. We evaluated change
impact on modules occurred due to a syntax change in code. We have taken projects developed
in AspectJ, as a case study.

2. RELATED WORK

Characterization of design is mostly done through metrics. According to Rombach, architecture is
more influencing than algorithmic design on maintainability [17]. For AO design, many design
metrics has been proposed and published. Ceccato and Tonella [18] have proposed metrics,
which include ten different metrics for AOP: Weighted Operations in Module (WOM), Depth of
Inheritance Tree (DIT), Number of Children (NOC), Coupling on Advice Execution (CAE),
Coupling on Intercepted Modules (CIM), Coupling on Method Call (CMC), Coupling on Field
Access (CFA), Response for a Module (RFM), Lack of Cohesion in Operations (LCO) and
Crosscutting Degree of an Aspect (CDA). Zakaria and Hosny [19], proposed the effects of AO on

Avadhesh Kumar, Rajesh Kumar, P.S. Grover

International Journal of Computer Science and Security, Volume (1): Issue (2) 3

the C&K metric suite, which are: Weighted Methods per Class (WMC), Depth of Inheritance Tree
(DIT), Number of Children (NOC), Lack of Cohesion in Methods (LCOM), Coupling Between
Objects (CBO), and Response For a Class (RFC). Zhao [20] has defined another set of
complexity metrics in terms of program dependence relations to measure the complexity of an
aspect-oriented program from various viewpoints. Once the dependence graph of aspect-oriented
program is constructed, the metrics can be easily computed in terms of dependence graph.
According to Zhao, following are some salient metrics type designed to measure complexity from
various viewpoints:

Module-Level Metrics: Module-level metrics are designed based on advice dependence
graph (ADG), Introduction dependence graph (IDG) and method dependence graph (MDG).

 Aspect-Level Metrics: Aspect level metrics can be defined for an individual aspect
based on its aspect inter-procedural dependence graph (AIDG).

System-Level Metrics: System-level metrics can be defined at the whole system level
based on aspect-oriented system dependence graph (ASDG).

Li and Offut [21] proposed algorithms for calculating the complete impact of changes made in a
given class. They explored the effects of encapsulation, inheritance, and polymorphism. Hsia et al
[22] studied the effect of architecture on maintainability. They measured maintainability and its
relationship to architecture, especially broadness of the architecture trees. As a result, they found,
that maintainability is better for systems with broader trees. Chaumun et al [23]’s change impact
model for changeability assessment in object-oriented software systems is applied to programs in
C++. In this work, for each of the possible changes identified in C++, the impact is calculated so
that necessary actions may be taken to ensure a successful system compilation after change
implementation.

Jingyue Li et al [24] have studied how AOP eases the adding and replacing the components in
COTS-based development. When adding or replacing a COTS component, the main benefit of
using AOP in a COTS-based system is that fewer classes need to be changed that using Object-
Oriented Programming (OOP). However, using AOP does not ensure that less Lines Of Code
(LOC) need to be modified when adding or replacing COTS components. It depends on whether
the crosscutting concerns in the glue-code are homogeneous. Using AOP when crosscutting
concerns are heterogeneous may not be benificial.

3. ASPECTJ

AspectJ [25] is simple general-purpose extension to Java that provides, through the definition of
new constructors, support for modular implementation of crosscutting concerns. It enables plug-
and-play implementations of crosscutting concerns [26]. AspectJ has been successfully used for
modularizing the crosscutting concerns such as synchronization, consistency checking, protocol
management and others. AspectJ supports the definition of aspects’ join points, pointcuts, advice
and introduction [27].

Join points: Join points represent well-defined points in a program's execution. Typical join
points in AspectJ include method calls, access to class members, and the execution of exception
handler blocks. Join points may contain other join points. For example, one method call may
result in several other method calls before it returns.

 Pointcuts: Pointcut is a language construct that picks out a set of join points based on
defined criteria. The criteria can be explicit function names, or function names specified by
wildcards.

Advice: Advice is code that executes before, after, or around a join point. You define advice
relative to a pointcut, saying something like "run this code before every method call I want to log."
Introduction: introduction allows aspects to modify the static structure of a program. Using
introduction, aspects can add new methods and variables to a class, declare that a class
implements an interface, or convert checked to unchecked exceptions.

Avadhesh Kumar, Rajesh Kumar, P.S. Grover

International Journal of Computer Science and Security, Volume (1): Issue (2) 4

4. CHANGE IMPACT ANALYSIS

Change impact analysis is the task through which the programmers can assess the extent of the
change, i.e. the software component that will impact the change, or be impacted by the change.
Change impact analysis provides techniques to address the problem by identifying the likely
ripple effect of software changes and using this information to re-engineer the software system
design [28].

From the viewpoint of separation of concerns in software development, change impact analysis
can be performed at many levels of software systems during software evolution, at the
specification level, design level, architecture level, code level etc. Our work is focused on code
level change impact for AOP and the language for this work we have chosen is AspectJ.

4.1 Code Level Changes in AspectJ

Following are possible code level changes in AspectJ:
4.1.1 System level change

• Add super module

• Delete super module

• Add sub module

• Delete sub module

• Add a module reference

• Delete a module reference

• Add an aggregated module

• Delete an aggregated module

4.1.2 Module level change

• Add member
• Delete member
• Define/Redefine member
• Change member

o Change member access
scope

o Change operation signature
o Change data member
o Operation implementation

change
• Change pointcut

o Add pointcut
o Delete pointcut
o Signature change of a

pointcut

With a single change, we are interested in knowing which other parts (operations) in the rest of
the system will be affected by this change. A specific part may be affected, in case it is
‘connected’ to the changed component via some link(s) between them. Following are four types
of links:

Association (S): One module is referencing data variables of another module.
Aggregation (G): It is established between two modules when a module definition is based on
objects of another module.
Inheritance (H): inheritance between two modules means that the derived module can benefit
from whatever has already been defined in the base module.
Invocation (I): When operations defined in one module are being invoked by operations in
another module.
We have also considered for impact with in the changed module itself. This type link could be
represented as ‘Local’ (L) link.

4.2 Change impact evaluation
Module change impact is a numeric value used to express the impact level of one module to
others. It considers the factor of contaminates type and relationships among impacted module.
For example consider a change in the scope of an attribute from public to default. Modules, which
are accessing this attribute from different package, will be impacted but modules, which are
accessing from the same package, will not. Similarly, a change in the signature of a pointcut in
any module will impact all those modules, which have a join point with matching signature of
pointcut. And modules having advice for this pointcut will not be impacted. Adding a new advice,

Avadhesh Kumar, Rajesh Kumar, P.S. Grover

International Journal of Computer Science and Security, Volume (1): Issue (2) 5

for which there are no join points, will cause no impact to any of the modules and change impact
will be zero.

At this point, we are emphasizing on the type of impact and we are looking for some code level in
AspectJ systems. A given change is characterized by a transformation of the code somewhere in
the system. If the system is successfully re-compiled, then there is no impact. Otherwise, we are
faced with an impact, i.e., code modifications that must be done elsewhere in the system to
obtain a syntactically correct code that will re-compile. Semantic issues relating to the code
transformation are overlooked at this point because they cannot be inferred from the source code
alone. For example, if a variable is added but not used later, we may feel that this addition is
useless. But, from a syntactic point of view, we are indeed certain that the system will stand good
after re-compiling. Furthermore, since our focus is only on system compilation after a change, the
appropriate measures we have to apply are based on impact that is only dependent on the static
nature of the source code.

To calculate the impact of each identified change, a truth table is set up for that change with the
five links appearing in section 4.1. For each row, representing one configuration of these five
links, we investigate whether there is impact or not, and the row is marked accordingly. In some
cases, it may happen that the state underlying the row cannot exist, and the row is left unmarked.
For example, when there is a change in the return type of an abstract method, the rows in which
G or I appear cannot be investigated since neither the abstract class can be instantiated as an
object (G) nor the abstract method can be invoked (I). For each row, the appropriate Boolean
expression is derived and reduced, if possible, and the term “L” is appended if there is local
impact. For example, the change impact formulae for a change to each component type are as
follows: (i) Impact (Attribute deletion) = S+L, means impacted modules will be modules
associated with attribute or local impact (ii) Impact (operation scope change from public to
protected) = IH’, means impacted modules will be the modules invoking this operation and not
inherited modules from the module having this operation. (iii) Impact (Class deletion) = H+G+S+I,
means impacted modules will be inherited or aggregated or associated or due to invocation.

In this paper, we have considered changes at system level as well as at module level. The
primary goal of the experiment is to analyze empirically whether an AO design metric has any
relationship with the impact of a change for the test system. The change considered is the
operation signature change; the Boolean expression of its impact is I, meaning there is impact in
modules where the operation is invoked. The impact is calculated for the operation signature
change on every operation defined in a targeted module, summed for all the operations defined in
that module, and divided by the number of operations of that module. We will call this average
value “change- impact” of the module. The metric chosen to correlate is the WOM metric, which
in our experiment, is equal to the number of operations defined in a module.

5. AOP CHANGE IMPACT: A CASE STUDY

5.1 System tested
AOP projects that we have taken for testing, having 149 modules, are re-engineered using
AspectJ, which originally were university projects developed using Java/Servlets having 129
modules. We extracted the Ceccato and Tonella metrics [15] with the help of the tool developed
and provided by Ceccato and Tonella, for AOP metrics, which computes all the proposed
measures for code written in the AspectJ language. The tool exploits a static analyzer developed
in TXL [29]. The descriptive statistics of the metrics distribution is given in table-I. Waited
Operations per Module (WOM) metric refers to the sum of the complexities of all the operations
defined in a module. We have assumed operation complexity to be one for all the operations or
we can say WOM have been taken as Number of Operations per Module (NOM).

Avadhesh Kumar, Rajesh Kumar, P.S. Grover

International Journal of Computer Science and Security, Volume (1): Issue (2) 6

Table-I: Summary of AOP metrics for the tested systems

 Min Max Mean Median Std. Dev.

WOM 0.0 17.0 3.2 2.0 0.33
DIT 0.0 2.0 0.36 0.0 0.048
NOC 0.0 26.0 0.31 0.0 0.25
CAE 0.0 3.0 0.45 0.0 0.046
CIM 0.0 1.0 0.34 0.0 0.046
CMC 0.0 6.0 1.39 1.0 0.144
CFA 0.0 3.0 0.22 0.0 0.592
RFM 0.0 4.0 1.06 1.0 1.131
LCO 0.0 7.0 1.04 1.0 0.56
CDA 0.0 39.0 1.0 0.0 0.381

 Table-I cont..

We have categorized 149 modules in three groups.
• Group 1: Modules contain 1 to 2 operations (51 modules).
• Group 2: Modules contain 3 to 7 operations (62 modules).
• Group 3: Modules contain at least 8 operations (36 modules).

In our sample projects, Inheritance level is not too high. It is maximum 3 and average inheritance
level is less than 1. Average numbers of operations per module are 3.2, which indicates, proper
decomposition has been taken care.

We have tested 44 modules from Group 1, 40 modules from Group 2, and 20 modules from
group 3 randomly. Most of the changes performed are at module level and few changes are at
system level. Total numbers of tested modules that we have performed randomly in this case
study are 104. On these 104 tested modules, we have evaluated change impact.

5.2 Impact Results
In all 104 tested modules, the change impact numeric value is given in fig. 1. Minimum change
impact is 0.0 and maximum is 7.50. Average change- impact with a single change is 0.77 for all
three projects. Table-II summarized descriptive statistics of the impact results for the modules.
The mean value of module impact increases from group 1 to group 3. In group 1, majority of the
programs are with aj extension (Aspects) and in group 3, majority of the programs are with java
extension (classes). We have calculated statistically values like mean, median and standard
deviation of the change impact values for the modules.

Table-II: Descriptive statistics of the impact results for the three groups

 Group1
(1-2 operations)

Group2
(3-7 operations)

Group3
(7+ operations)

Total Module Present 51 62 36
Total Module Tested 44 40 20
Impact Module Module Module
Min 0.00 0.00 0.50
Max 7.50 3.00 5.33
Mean 0.53 0.64 1.56

Median 0.00 0.00 1.50
Std.Dev. 0.20 0.13 0.28

We have also evaluated correlation factor between metric WOM and change impact, which is
0.41.

Similarly we tested original OO projects, which were developed with Java/Servlets. Out of 129
modules (classes), we tested 104 modules randomly and evaluated average change impact as a
whole for all three projects, and it was found to be 0.87. We also separated above change impact
data project wise and evaluated average value of change impact for OO and AO systems.
Descriptive statistics of the average impact results for the three projects are given in table-III. In

Avadhesh Kumar, Rajesh Kumar, P.S. Grover

International Journal of Computer Science and Security, Volume (1): Issue (2) 7

OO systems, project 1, project 2 and project 3 are with 29, 64 and 36 classes respectively and
out of these 20, 52 and 32 classes are tested .In AO systems, project 1, project 2 and project 3
are with 34, 72 and 43 modules respectively and tested modules are same as in OO systems i.e.
20, 52 and 32 respectively.

Table-III: Descriptive statistics of the impact results for the three projects

 Project 1
(20 modules tested)

Project 2
(52 modules tested)

Project 3
(32 modules tested)

 OO AO OO AO OO AO
Average change
impact

0.89 0.75 0.76 0.81 0.91 0.78

6. RESULTS

Interpretation of the result is as follows:
I. Since mean value of change impact is 0.77 for whole systems which is less than 1, which

means a single change at code level will impact, on average, not more than one module.
II. Mean value of change impact increases from group 1 to group 3 that means change impact

increases with increase in number of operations in the module i.e. in AO systems, if number
of operations per module are increasing then such systems’ maintainability will increase.
Thus such systems are required to decompose properly.

III. Average change impact in AO systems is less than the average change impact in OO
systems as a whole that means AO systems are easily maintainable than OO systems. But
when we evaluated it project wise, we found that in project 2, OO system mean change
impact is less than that of AO system, that means a code level change in AO systems not
always cause less change impact to other modules than a code level change in OO system
or in other words in some cases OO system is easily maintainable than AO system. This
empirical result may be because of aspect mining has not been taken care properly.

IV. Correlation factor with change impact and WOM is found to be 0.41, which is not too high,
which means there is not too strong relationship between WOM and change impact. So,
WOM metric can be used as an indicator for changeability analysis, but not too strong
indicator for changeability characteristic.

7. CONSLUSION & FUTURE WORK

In this paper, we measured the changeability characteristic of AO software projects. We
evaluated the change impact with real system. Projects that we have considered for testing are
AspectJ projects. The change impact is evaluated for each of the possible code level changes so
that required changes should be made to ensure a successful system compilation after change
implementation.

Result shows that a single change at code level will cause impact to other modules.On an
average change impact value is less than one; this implies that not more than one module is
impacted with a single change or we can say a change is easily absorbable in AO system. By
increasing in WOM metric value, change impact is also increasing. It indicates that with increase
in WOM value, will cause increase in maintainability. Correlation factor between WOM and
change impact is found to be 0.41, which is week. It indicates that WOM can be used as an
indicator for changeability or maintainability but not as a strong indicator.

Average change impact in AO system was found less than that in OO system, which suggests
that AO system can absorb more changes compare to OO system. In other words, AOP are
easily maintainable than OOP. But if at the time of reengineering OO system to AO system,
concerns which are not crosscutting, are mined to aspect, may cause resultant system more

Avadhesh Kumar, Rajesh Kumar, P.S. Grover

International Journal of Computer Science and Security, Volume (1): Issue (2) 8

complex. In such cases AO systems maintainability will be more difficult than that of OO systems.
In future, this technique may be used to compare maintainability of different AO Systems.

8. REFERENCES

[1]. Jorgen Boegh, Stefano Depanfilis, Barbara Kitchenham, Alberto Pasquini, “A Method for
Software Quality Planning, Control, and Evaluation” IEEE Journal, pp-69-77, March-1999.

[2]. Ho-Won Jung; Seung-Gweon Kim; Chang-Shin Chung, “Measuring software product quality:

a survey of ISO/IEC 9126”, Software, IEEE,Volume 21, Issue 5, pp-88-92, Sep-Oct-2004.

[3]. T. M. Pigoski. Practical Software Maintenance. John Wiley & Sons, New York, pp-384, 1997.

[4]. H.D. Rombach. “Design measurement: Some Lessons Learned”. In IEEE Software, Vol. 7,

No. 2, pp- 17-25, 1990.

[5]. Tzilla Elrad, Robert E. Filman, Atef Bader, “Aspect-oriented programming: Introduction”,

Communication of the ACM Volume 44, Issue 10, pp-29-32, October 2001.

[6]. K. Lieberher, D. Orleans, and J. Ovlinger, “Aspect- Oriented Programming with Adaptive

Methods,” Communications of the ACM, Vol.44, No.10, pp.39-41, October 2001.

[7]. Avadhesh Kumar, Rajesh Kumar, P.S. Grover, “A Comparative Study of Aspect-Oriented

Methodology with Module-Oriented and Object-Oriented Methodologies”, ICFAI Journal of
Information Technology, Vol IV, pp- 7-15, Dec 2006.

[8]. Aldrich, J., Open Modules: “A Proposal for Modular Reasoning in Aspect-Oriented

Programming”, Carnegie Mellon Technical Report CMU-ISRI-04-108, 2004 (Earlier version
appeared in Workshop on Foundations of Aspect-Oriented Languages.).

[9]. M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, & T. Tourw, “A qualitative

comparison of three aspect mining techniques”, Proc. of the International Workshop on
Program Comprehension (IWPC), 2005. Proceedings. 13th International Workshop on 15-16,
pp-13-22, May 2005.

[10]. S. Iorwitz, T. Reps and D. Binkley, " Interprocedural Slicing Using Dependence Graphs",

ACM 7~ransoction on Programming Language and System, Vol.12, No.l, pp.25-fiO, 1990.

[11]. D. Hung, J. Gao, P. Hsia, F. Wen, Y. Yoyoshima, and C. Chen, "Change Impact

Identification in Object-Oriented Software Maintenance," Prec. lutervmtional Conference on
Software Mointenonce~ pp.202-211, 1994.

[12]. L. D. Larsen and M. J. Harrotd, "Slicing Object-Oriented Software," Proceeding of the 18th

International Conference on Software Engineering, German, March, 1996.

[13]. J. P. Loyall and S. A. Mathisen, "Using Dependence Analysis to Support the Software

Maintenance Process," Prac. International Conference an SoJimarc Maintenance, 1993.

[14]. J. Zhao, "Slicing Concurrent Java Programs," Prec. Seventh IEEE International Workshop

on Program Comprehension, pp.12fi-133, May 1999.

[15]. Jianjun Zhao, “Change Impact Analysis for Aspect-Oriented Software Evolution”

Proceedings of the International Workshop on Principles of Software Evolution, pp. 108-112,
2002.

Avadhesh Kumar, Rajesh Kumar, P.S. Grover

International Journal of Computer Science and Security, Volume (1): Issue (2) 9

[16]. Avadhesh Kumar, Rajesh Kumar, P.S. Grover, “A Change Impact Assessment in Aspect-
Oriented Software Systems”, International Software Engineering Conference Russia 2006
(SECR-2006), pp-83-87, Dec 2006.

[17]. H.D. Rombach. “Design measurement: Some Lessons Learned”, In IEEE Software, Vol. 7,
No. 2, pp- 17-25, 1990.

[18]. M. Ceccato & P. Tonella, “Measuring the effects of software aspectization” , Proc. 1st

Workshop on Aspect Reverse Engineering in conjunction with the 11th IEEE Working Conf.
on Reverse Engineering, Delft University of Technology, Netherlands, November 9th, 2004.

[19]. A. A. Zakaria and H. Hosny. “Metrics for aspect-oriented software design”. In AOM: Aspect-

Oriented Modeling with UML, AOSD, March 2003.

[20]. J. Zhao. “Towards A Metrics Suite for Aspect-Oriented Software”, Technical-Report SE-

2002, Information Processing Society of Japan (IPSJ), pp. 136-25, 2002.

[21]. L. Li and A. J. Offutt. “Algorithmic Analysis of the Impact of Changes to Object-Oriented

Software”, in ICSM96, pp- 171-184, 1996.

[22]. P. Hsia, A. Gupta, C. Kung, J. Peng and S. Liu. “A Study of the Effect of Architecture on

Maintainability of Object-Oriented Systems”, In ICSM95, Nice, France, pp- 4-11, Oct 17-20,
1995.

[23]. M. Ajmal Chaumun, Hind Kabaili, Rudolf K. Keller, and François Lustman., “A Change

Impact Model for Changeability Assessment in Object-Oriented Systems”, Science of
Computer Programming, vol.45 pp- 155-174, 2002. Elsevier Science Publishers.

[24]. Jingyue Li, Axel Anders Kvale and Reidar Conradi “A Case Study on Improving

Changeability of COTS-Based System Using Aspect-Oriented Programming”, Journal of
Information Science and Engineering, Vol. 22 No. 2, pp- 375-390, March 2006.

[25]. The AspectJ Team. The AspectJ Programming Guide. 2003.

[26] V. C. Garcia, E. K. Piveta, D. Lucrédio, A. Álvaro, E. S. Almeida, L.C. Zancanella, & A.F.

Prado, “Manipulating crosscutting concerns” , Proc. 4th Latin American Conf. on Patterns
Languages of Programming (SugarLoafPLoP), Porto das Dunas, CE, Brazil, 2004.

[27]. Kiczales, G. et al. “Getting Started with AspectJ”. Communication of the ACM, vol. 44, no.10,

pp-59-65, October 2001.

[28]. M. A. Chaumun. “Change Impact Analysis in Object-Oriented Systems: Conceptual Model

and Application to C++”, Master’s thesis, Université de Montréal, Canada, November 1998.

[29]. J. Cordy, T. Dean, A. Malton, and K. Schneider. “Source transformation in software

engineering using tihe TXL transformation system”, Information and Software Technology,
44(13): pp-827–837, 2002.

