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Abstract 

 

Information is increasing every day and thousands of documents are produced 
and made available in the Internet. The amount of information available in 
documents exceeds our capacity to read them. We need access to the right 
information without having to go through the whole document. Therefore, 
documents need to be compressed and produce an overview so that these 
documents can be utilized effectively. Thus, we propose a similarity model with 
topic similarity using fuzzy sets and probability theories to extract the most 
representative sentences. Sentences with high weights are extracted to form a 
summary. On average, our model (known as MySum) produces summaries that 
are 60% similar to the manually created summaries, while tf.isf algorithm 
produces summaries that are 30% similar. Two human summarizers, named P1 
and P2, produce summaries that are 70% similar to each other using similar sets 
of documents obtained from TREC. 
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1. INTRODUCTION 

Information is increasing every day and thousands of documents are produced and made 
available in the Internet. The amount of information available in documents exceeds our capacity 
to read them. We need access to the right information without having to go through the whole 
document. Therefore, documents need to be compressed and produce an overview so that these 
documents can be utilized effectively. To generate a summary, we need to identify the most 
important information in the document avoiding the irrelevant or less important ones, [1] 
discussed three phases involved in summarizing text automatically: 1) selection of more salient 
information, 2) aggregation of information, and 3) generalization of specific information to a more 
general concept. 

 
Recently, researchers have tried to extract a summary using various techniques such as word 
frequencies [2; 3; 4] and clustering [5]. The first automated sentence extraction system [6] uses 
term frequencies to weight sentences, which are then extracted to form an abstract. Since then, 
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many approaches have been explored in automatically extracting sentences from a document. 
Most existing text summarization systems use an extract approach. This approach is known to be 
safe because important information is taken or copied from the source text. An abstract approach 
produces a summary at least some of whose material is not available in the source text, but at the 
same time retaining the content originality. A summary can be generic meaning the content is 
broad and not addressed to any specific audience. Nonetheless, it could be tailored or user-
focused in which the content is addressed to a group with specific interests. Further, the content 
of a summary can be indicative or informative. Indicative content provides an indication of the 
main topics. Therefore, it helps the user to decide whether to proceed with reading the source 
text or otherwise, while informative content represents the original document.  
 

The objective of this work is to produce a similarity model with topic similarity using the theories of 
probability and fuzzy sets incorporating mass assignment to find the similarity between two 
words. We compute frequencies of triples of words exist in the document collection and convert 
these frequencies to fuzzy sets. Probability of two words is then computed using the semantic 
unification of two fuzzy sets. Our results show that using asymmetric word similarity with topic 
similarity able to extract the most relevant sentences and produce summaries that are almost 
similar to manually created summaries. The remainder of the paper is organized as follows: In 
section 2 we discuss briefly on common algorithm, tf.isf, and use it to benchmark against our 
algorithm, section 3 explains the methodology used, section 4 discusses in detail on the word 
similarity algorithm, section 5 discusses the similarity model in extracting sentences, section 6 
discusses the results, and finally section 7 concludes the paper. 
 

 

2. tf.isf  

This section outlines related work done in summarization particularly extracting sentences from a 
document. We described a method known as tf.isf (term frequency x inverse sentence frequency) 
[4]. This method is used later in comparing against MySum (our proposed model) and a manually 
created summary. tf.isf is an adaptation of the conventional tf.idf [7]. Sentences are extracted 
using average sentence similarities and those with high weights (above a certain threshold) are 
extracted to form a summary. The computation of tf.isf is similar to the computation of tf.idf.  
 

wik = tfik x idfik       (1) 
 
The only difference is the notion of document that is being replaced by sentence. Each sentence 
is represented as a vector of tf.isf weights. Sentences with high values of tf.isf are selected to 
produce a summary of the source text. Hence, the tf.isf measure of a word w in a sentence s, is 
computed using the following 
 

tf.isf(w,s) = tf (w,s) × isf(w)     (2) 
 
where tf(w, s) is the number of times the word w occurs in sentence s. isf(w) is the inverse 
sentence frequency of word w in sentence s given by 
 

isf(w) = log S  / sf(w)      (3) 
 
where sf(w) is the number of sentences in which the word w occurs and S is the total number of 
sentences in the document. For each sentence s, the average tf.isf of the sentence is computed 
by calculating the average of the tf.isf(w, s) weight over all of the words w in the sentence, as 
shown in the following formula  
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where W(s) is the number of words in the sentence s. Sentences with the largest values of 
average tf.isf are selected as the most relevant sentences and will be produced as a summary. 
Using tf.isf is simple and fast. Further, tf.isf only relies on the frequency of words in documents, 
therefore, it’s possible to use tf.isf in summarizing texts other than English. However, tf.isf may 
not be a good algorithm in extracting sentences. For example, tf.isf cannot reflect similarity of 
words and only count the number of overlapping words. The algorithm does not consider any 
synonymy and syntactic information. In addition, there could be some relevant or important 
sentences missing, as they use different words to express the same interests. 
 
 

3. FUZZY SETS AND MASS ASSIGNMENT 

This section outlines the theory of fuzzy sets and mass assignment that are used extensively in 
our work. A fuzzy set is an extension to a classical set theory, which has a problem of defining the 
border of the set and non-set [8]. Unlike a classical set, a fuzzy set does not have a clearly 
defined boundary by having elements with only a partial degree of membership [9]. For example, 
consider a weight of a person with labels such as thin, average, and fat. These labels are 
considered fuzzy because not everyone will agree with the same subset of the value domain as 
satisfying a given label. Nevertheless, if everyone agrees, we could write precise definitions of 
thin, average, and fat in this context.  
 
A mass assignment theory was proposed by Baldwin in 1991 as a general theory for evidential 
reasoning under uncertainty [9; 10]. This theory is used to provide a formal framework for 
manipulating both probabilistic and fuzzy uncertainties [9]. Consider the following example taken 
from [10], suppose we have a set of people labeled 1 to 10 who are asked to accept or reject a 
dice value of x as small. Suppose everyone accepts 1 as small, 80% accept 2 as small and 20% 
accept 3 as small. Therefore, the fuzzy set for small is defined as 
 

small = 1 / 1 + 2 / 0.8 + 3 / 0.2       (5) 
 
where the membership value for a given element is the proportion of people who accept this 
element as satisfying the fuzzy set. The probability mass on the sets is calculated by subtracting 
one membership from the next, giving MAsmall as 
 

MAsmall = {1} : 0.2, {1, 2} : 0.6, {1, 2, 3} : 0.2     (6) 
 
The mass assignments above correspond to families of distribution. In order to get a single 
distribution, the masses are distributed evenly between elements in a set. This distribution is 
known as least prejudiced distribution (LPD) [11] since it is unbiased towards any of the 
elements. Thus, in the example above, the mass of 0.6 is distributed equally among 1 and 2 and 
the mass 0.2 is distributed equally among 1, 2 and 3. Therefore, the least prejudiced distribution 
for small is 
 

LPDsmall =  1 : 0.2+0.3+0.0667=0.5667, 
     2 : 0.3+0.0667=0.3667, 
     3 : 0.0667        (7) 
 

 

3.1 Semantic Unification 
Semantic Unification is a concept in Fril [12] proposed by Baldwin in 1992 that is used to unify 
vague terms by finding a support for the conditional probability of the match. Unification is 
possible if two terms have the same meaning, however, if they only have similar meaning, then 
the match will not be perfect and can be supported with a support pair. A mass assignment with 
the least prejudiced distribution is used to determine the unification of two fuzzy sets. For 
example, suppose the fuzzy set for medium in the voting model is 
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medium = 2 / 0.2 + 3 / 1 + 4 / 1 + 5 / 0.2     (8) 
 
and the mass assignment would be 
 

MAmedium = {3, 4} : 0.8, {2, 3, 4, 5} : 0.2     (9) 
 
Thus, the least prejudiced distribution is 
 

LPDmedium = 2 : 0.05, 3 : 0.45, 4 : 0.45, 5 : 0.05     (10) 
 
Suppose we want to determine the Pr (about_3 | medium), and the fuzzy set is 
 

about_3 = 2 / 0.4 + 3 / 1 + 4 / 0.4      (11) 
 

with mass assignment as 
 

MAabout_3 = {3} : 0.6, {2, 3, 4} : 0.4     (12) 
 

We use the point semantic unification algorithm [11] to determine the conditional probability. 
Thus, 
 

Pr (dice is about_3 | dice is medium) 
 = 0.6Pr (dice is 3 | dice is medium) + 0.4Pr (dice is {2, 3, 4} | dice is medium) 
 = 0.6 (0.45) + 0.4(0.05 + 0.45 + 0.45) 
 = 0.65 
 
The point semantic unification can be calculated using the following tableau.  
 

 0.8 : {3,4}  0.2 : {2,3,4,5} 

0.6 : {3} 1/2 x 0.8 x 0.6 1/4 x 0.2 x 0.6 

0.4 : {2,3,4} 0.8 x 0.4 3/4 x 0.2 x 0.4 

 
TABLE 1: Tabular Form of the Pr (about_3 | medium). 

 
The entries in the cells are the supports from the individual terms of the mass assignments. Each 
entry has an associated probability. Thus, the Pr (about_3 | medium) is 0.65. The computation of 
the probability above can be shown using the following formula. Consider two fuzzy sets f1 and f2 
defined on a discrete universe X. Let 
 

(x) f1 be the membership of element x in the fuzzy set f1. 
MAf1(S) be the mass associated with set S. 
LPDf1(x) be the probability associated with element x in the LPD. 

 
(and similarly for f2). Therefore 
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4. ASYMMETRIC WORD SIMILARITY  
 
In this section, we propose a novel algorithm in computing word similarities asymmetrically using 
mass assignment based on fuzzy sets of words. We concentrate on how sentences use a word, 
and not on their meaning. Words in documents are considered to be similar if they appear in 
similar contexts. Therefore, these similar words do not have to be synonyms or belong to the 
same lexical category. Further, this algorithm is incremental such that any addition or subtraction 
of words (and documents) will only require minor re-computation. 
 
 
4.1 Document Preprocessing and Similarity Algorithm 
Before the measurement of the similarity algorithm is implemented, documents need to go 
through preprocessing stage so that only meaningful keywords are obtained from those 
documents. The first step is to remove common words, for example, a, the, or, and all using a list 
of stop words. If a word in a document matches a word in the list, then the word will not be 
included as part of the query processing. The second step is to stem a word to become a root 
word, for example, subtraction becomes subtract. In this work, we applied the process of Porter 
stemmer [13] to every word in the document. 
 
The underlying objective of our method is the automatic computation of similar words. The 
method is based on the observation that it is frequently possible to guess the meaning of an 
unknown word from its context. The method assumes that similar words appear in similar 
contexts and therefore, these words do not have to be synonyms or belong to the same lexical 
category. A key feature of the algorithm is that it is incremental, i.e. words and documents can be 
added or subtracted without extensive re-computation. Our method is based on finding the 
frequencies of n-tuples of context words in a set of documents where frequencies are converted 
to fuzzy sets, which represent a family of distributions, and find their conditional probabilities. 
Consider the following example, taken from [14] 
 

A bottle of tezgüno is on the table. 
Everyone likes tezgüno. 
Tezgüno makes you drunk. 
We make tezgüno out of corn. 

   
From the sentences above, we could infer that tezgüno may be a kind of an alcoholic beverage. 
This is because other alcoholic beverages, for example, beer tends to occur in the same contexts 
as tezgüno. The idea that words occurring in documents in similar contexts tend to have similar 
meanings is based on a principle known as the Distributional Hypothesis [15]. We use this idea to 
produce a set of related words, which can be used as the basis for taxonomy, or to cluster 
documents. In this experiment, we use Fril to compute asymmetric similarities such that the 
similarity between <w1> and <w2> is not necessarily the same as between <w2> and <w1> 
expressed as  
 

ws(<w1>,<w2>) ≠  ws(<w2>,<w1>) 
 
This is because to compute similarity between two fuzzy sets, i.e. ws(<w1>,<w2>),  we multiply 
the memberships of fuzzy sets of <w1> with the corresponding frequencies in frequency 
distributions of <w2>. In order to calculate ws(<w2>,<w1>), we multiply the memberships of fuzzy 
sets of <w2> with the corresponding frequencies in frequency distributions of <w1>. In most 
cases, the values for two fuzzy sets are different; therefore, the similarity measures will be 
different. In the next phases, we present the algorithms used in finding the similarity between 
words. AWS consists of two phases. In Phase I [16], we compute the frequency distributions of 
words to fuzzy sets. In Phase II [16], we find the conditional probabilities of the fuzzy sets using 
the semantic unification algorithm and show the creation of AWS matrix. 
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Phase I – Computation of frequency distributions to fuzzy sets 
 
Each document is described by a set of all words called vocabulary. We run a pre-processing 
procedure by removing inappropriate words and stemming words. Removing inappropriate words 
allow us to save space for storing document contents and at the same time reduce the time taken 
during the search process. We define a document Dj that is represented by a set of an ordered 
sequence of  nj words as the following 
 

Dj = {w0, w1, w2, ..., wnj} 
 
with w being the sub-sequence of document Dj. The ordering of words in the document is 
preserved. We calculate the frequency distributions of every word available in the document. For 
any sub-sequence Wn(x) = {wx, wx+1, ..., wx+n}, let p(x) be a word that precedes word x such that 
 

p(x) = {wx-k, wx-k+1, ..., wx-1} 
 
and s(x) be a word that succeeds word x such that 
 

s(x) = {wx+l+1, wx+l+2 ..., wx+l+k} 
   
where k and l are a given block of k words preceded and succeeded by blocks of l words, and  n 
is the total number of words in the document. We give a value of 1 to k and l as we need to 
consider the start and end of the document. Consider a document Dj containing sentences as the 
following. 
 

The quick brown fox jumps over the lazy dog. 
The quick brown cat jumps onto the active dog. 
The slow brown fox jumps onto the quick brown cat. 
The quick brown cat leaps over the quick brown fox. 

 
TABLE 2: Example of Sentences in Document Dj 

 
From the sentences, we obtain 
 

W(1)=quick, p(1)=the, s(1)=brown 
W(2)=brown, p(2)=quick, s(2)=fox 

 
using 
 

p(x) = W(x-1)   
s(x) = W(x+1) 
 

The computation of frequency distributions of words in the document will be built up 
incrementally. Hence, for each word x, we incrementally build up a set <context-of-x> containing 
pairs of words that surround x, with a corresponding frequency. Let 
 
   pre(x) be the set of words that precedes word x 
   suc(x) be the set of words that succeeds word x 
   N = {pre(x), x, suc(x)} being the total number of times the  
    sequence of {pre(x), x, suc(x)} occurs in document Dj 

 
Thus, the frequency of each <context-of-x> is given by the following 
 
     fcw = {pre(x), x, suc(x)} / N 
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Once we computed the frequency distributions of each word, we convert the frequencies to 
memberships as shown in the following algorithm. 
 

Input: 
 

fcw : array of frequency counts. 
T : total frequency count for this word = ∑

SP

cw SPf
,

),(  where P and S are 

precedence and successor respectively. 

 
 

Output:   
 

mcw: array of memberships 

1. Sort frequency counts into decreasing order, fcw[0] ... fcw[n-1] such that  

fcwi  ≥  fcwj  iff i > j 

2. Set the membership corresponding to maximum count, mcw[0] = 1 

3. for i=1 ... n-1, i.e., for each remaining frequency count 
 mcw[i] = mcw[i-1] - (fcw[i-1] - fcw[i]) * i / T 

 
FIGURE 1: Algorithm for Converting Frequencies to Memberships 

 
 
The complexity of the above algorithm lies in its sorting step, nevertheless, the remaining steps 
are linear in the size of the array. Using the example of sentences in Table 2, we obtain the 
frequencies for word brown with N=6 
 

quick - brown - cat occurs three times 
quick - brown - fox occurs two times  
slow - brown - fox occurs once  

 
We use mass assignment theory to convert these frequencies to fuzzy sets (as described in 
Figure 1), and obtain the fuzzy set for word brown as  
 
  (quick, cat):1, (quick, fox):0.833, (slow, fox):0.5  
 
In the next phase, we use the fuzzy sets to compute the probability of any two words. 

 
 
Phase II – Computation of Word Probabilities 
 
To compute a point semantic unification for two frequency distributions fcw1 and fcw2, we calculate 
membership for fcw1 and multiply by the frequency for the corresponding element in fcw2. 
 

Input: 
 

mcw1 : array of memberships. 

fcw2 : array of frequency counts. 
Tcw2 : total frequency counts for w2 = ∑

SP

cw SPf
,

2
),(  where P and S are 

precedence and successor respectively. 
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Output: 
  Semantic Unification Value - Pr (w1|w2) , Pr (w2|w1) 
 

1. Convert fcw1 to mcw1 using steps in Algorithm I. 

 
2. Calculate the sum of mcw1 multiply by fcw2 for the common elements 

giving the point semantic unification for two frequency distributions. 

3. To compute the asymmetric probability, simply reverse the calculation 
in steps 1 and 2. 

 
FIGURE 2: Point Semantic Unification Algorithm 
 

 
Hence, for any two words <w1> and <w2>, the value  
 

Pr (<context-of-w1>|<context-of-w2>) 
  
measures the degree to which <w1> could replace <w2>, and is calculated by semantic 
unification of the two fuzzy sets characterizing their contexts. For example, suppose there is 
sentences in the document that give the fuzzy context set of grey as 
 

(quick, cat):1, (slow, fox):0.75 
  
We calculate the asymmetric word similarity of the two fuzzy sets of brown and grey using point 
semantic unification algorithm, giving the conditional probabilities as 
 

Pr (brown | grey) = 0.8125        
Pr (grey | brown) = 0.625 

 
By semantic unification of the fuzzy context sets of each pair, we obtain an asymmetric word 
similarity matrix. For any word, we can extract a fuzzy set of similar words from a row of the 
matrix. We also note that there are important efficiency considerations in making this a totally 
incremental process, i.e. words (and documents) can be added or subtracted without having to 
recalculate the whole matrix of values as opposed to a straightforward implementation that 
requires O(na x nb) operations per semantic unification, where nb is the cardinality of the fuzzy 
context set that requires O(n

2
) semantic unification and n is the size of the vocabulary. Therefore, 

any addition of a new word or a new document using a straightforward implementation would 
require the whole re-computation of the matrix. Figure 3 below shows the creation of AWS matrix 
with elements described in the algorithm as having non-zero values. 
 
 

1.
  

Store each word with a list of its context pairs with number of times 
each context pair has been observed. 

2. Calculation of the corresponding memberships and elements are not 
done until needed. Otherwise, 
       if a word W is read, then mark elements Pr(W|wi) and Pr(wi|W) as 

needing recalculation. 

3. If a new context, P-W-S is read, 
       search for other words wj which have the same context P-wj-S. 
       mark the elements Pr(W|wj) and Pr(wj|W) as needing calculation. 

 
FIGURE 3: Algorithm for Creating AWS Matrix 

 



Masrah Azrifah Azmi Murad and Trevor Martin 

International Journal of Computer Science and Security, Volume (1) : Issue (4) 9 

This process creates an asymmetric word similarity matrix Sim, whose rows and columns are 
labeled by all the words encountered in the document collection. Each cell Sim(wi, wj) holds a 
value between 0 and 1, indicating to which extent a word i is contextually similar to word j. For 
any word we can extract a fuzzy set of similar words from a row of the matrix. Many of the 
elements are zero. As would be expected, this process gives both sense and nonsense. Related 
words appear in the same context (as with brown and grey in the illustration above), however, 
unrelated words may also appear, for example, the phrase {slow fat fox} would lead to a non-zero 
similarity between fat and brown. 

 

 

5. THE SIMILARITY MODEL 

Recall the AWS algorithm we have described in Section 4 above 

Sim(wi,wj)       (14) 
 
We now introduce the sentence similarity measures sim(Si, Sj) to find the similarities between 
sentences available in a document using AWS. Hence 
 

∑ ∑
∈ ∈1 2

),(
sentencei sentencej

jjii fwwSimf      (15) 

 
where f is the relative frequency of a word in a sentence and Sim(wi,wj) is the similarity matrix 
developed in Section 4. We also compute the asymmetric sentence similarity, which would 
produce a different similarity measure. We introduce a topic similarity measure sim(Si, t) for the 
purpose of increasing the importance measure of a sentence Si to the topic t. We compute a 
weight for topic similarity using the frequency of overlapping words in the sentence as well as the 
topic. Identical words will have a value of 1, with 0 for non-identical words. Hence, the formula is 
defined as 
 

∑ ∑
∈ ∈sentencei topicj

jjii fwwwsf ),(      (16) 

 
where f is the relative frequency of a word in a sentence and topic respectively and ws(wi,wj) is 
the similarity of overlapping words. We named the two similarity measures above (as in Eq. 15 
and 16) as the two score functions and these score functions will be used in extracting sentences 
from the document. 
 
Sentence Extraction 
 
The two score functions, i.e. sentence similarity and topic similarity measures are used to 
compute the weight for each sentence. We measure the importance of a sentence Si as an 
average similarity AvgSim(i). The weight of a sentence is defined by summing similarity measure 
of sentence Si with other sentences in the document divided by N the total number of sentences. 
Thus, the AvgSim(i) is defined as  
 

N

jSiSsim∑ ),(

       (17) 

 
where sim(Si, Sj) is the pairwise asymmetric sentence similarity. Next, we add the weight of 
average sentence similarity and topic similarity to produce the final score of a sentence, given in 
the following formula 
 

MySum = AvgSim(i) + sim(Si, t)     (18) 
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Once the score for each sentence has been computed, the sentences are ranked in descending 
order. Sentences with high values will be selected to produce a summary. Then the sentences 
are arranged according to their chronological order in the original article to form a summary. 

 
 

6. RESULTS 

In order to evaluate the effectiveness of our method, we compare the summaries produced by our 
system against the manually created summaries produced in the DUC 2002 [17]. In addition, we 
also compare the performance of other system, tf.isf against the manually created summaries. 
Our final comparison is between MySum and tf.isf against the manually created summaries. Each 
document of DUC 2002 produces two versions of manually created summaries written by two 
different human readers. In this experiment, we produce a hypothetical test by making a 
comparison of summaries produced by two different human summarizers. This is to show that in 
reality it is very unlikely for two different systems or humans to produce an identical summary 
from a document.  
 
In DUC 2002, Task 1 is a single-document summarization in which the goal is to extract 100 word 
summaries from each document in the corpus. We use the summaries produced in Task 1 in our 
comparison stage. The comparison is made using individual matching, i.e. each sentence in a 
summary produced by MySum or tf.isf is compared against each sentence of the manually 
created summary. In this case, a sentence generated by MySum or tf.isf and a sentence from 
manually created summary are considered similar if the similarity is equal to the proportion of 
identical words. If all sentences produced by MySum or tf.isf are the same as the sentences in 
the manually created summary, the similarity measure is equal to 1. However, if only a proportion 
of sentences are equal to the sentences in the manually created summary, the similarity measure 
would be the number of sentences generated by MySum or tf.isf that is similar to the number of 
sentences in the manual summary divided by total number of sentences in the manually created 
summary. In this paper, we presented only a few of our results, while the remaining is reported 
elsewhere. Figures 4 to 6 show the comparison of similarity produced by MySum and tf.isf 
against human summarizers, P1 and P2. In the figures, the comparisons of two summaries 
produced by P1 and P2 are used as a hypothetical test. 
 
On average, MySum produces summaries that are 60% similar to the manually created 
summaries, while tf.isf produces summaries that are 30% similar. It is worth pointing out that the 
human summarizers, P1 and P2 produce summaries that are 70% similar to each other. Overall, 
MySum produces a fairly good result and none of the documents generated by MySum produce a 
zero similarity comparison against the manually created summaries. Our method shows that it 
could generate a summary from a document as close to what a human summarizer could 
produce.  

                    
 

FIGURE 4: Result on Summarization using Document Set D061 
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FIGURE 5: Result on Summarization using Document Set D085 

 

                             
FIGURE 6: Result on Summarization using Document Set D092 

                       

                              
 

 
7. CONCLUSION AND FUTURE WORK 
 
This paper presented a detailed algorithm in computing the asymmetric similarity between words 
using fuzzy context sets and topic similarity in extracting the most relevant sentences. The 
asymmetric word similarity measure words that appear in similar context in the sentences, while 
topic similarity compute the frequency of overlapping words appear in the sentence and topic. 
Experiments show that using the combination of both the word similarity and topic similarity able 
to extract the most important sentences from a document that is fairly close to the manually 
created summaries. Although MySum did not produce an exact summary to the one created by 
human, on average, MySum is able to give a representable extractive summary. The difference 
between MySum and human summarizers in producing summary is only 10 percent. On the other 
hand, MySum outperforms tf.isf when compared against the manually created summaries. In 
future, we hope to test MySum for multi-document summarization. This work can also be 
extended in looking at abstract summarization or how to combine similar sentences together as 
how a human summarizer would do.  
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