
Masrah Azrifah Azmi Murad and Trevor Martin

International Journal of Computer Science and Security, Volume (1) : Issue (4) 1

Similarity-Based Estimation for Document Summarization using
Fuzzy Sets

Masrah Azrifah Azmi Murad* masrah@fsktm.upm.edu.my
Department of Information Systems
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia, 43400, Serdang, MALAYSIA

Trevor Martin trevor.martin@bris.ac.uk
Department of Engineering Mathematics
University of Bristol
BS8 1TR, UK

Abstract

Information is increasing every day and thousands of documents are produced
and made available in the Internet. The amount of information available in
documents exceeds our capacity to read them. We need access to the right
information without having to go through the whole document. Therefore,
documents need to be compressed and produce an overview so that these
documents can be utilized effectively. Thus, we propose a similarity model with
topic similarity using fuzzy sets and probability theories to extract the most
representative sentences. Sentences with high weights are extracted to form a
summary. On average, our model (known as MySum) produces summaries that
are 60% similar to the manually created summaries, while tf.isf algorithm
produces summaries that are 30% similar. Two human summarizers, named P1
and P2, produce summaries that are 70% similar to each other using similar sets
of documents obtained from TREC.

Keywords: fuzzy sets, mass assignment, asymmetric word similarity, topic similarity, summarization

1. INTRODUCTION

Information is increasing every day and thousands of documents are produced and made
available in the Internet. The amount of information available in documents exceeds our capacity
to read them. We need access to the right information without having to go through the whole
document. Therefore, documents need to be compressed and produce an overview so that these
documents can be utilized effectively. To generate a summary, we need to identify the most
important information in the document avoiding the irrelevant or less important ones, [1]
discussed three phases involved in summarizing text automatically: 1) selection of more salient
information, 2) aggregation of information, and 3) generalization of specific information to a more
general concept.

Recently, researchers have tried to extract a summary using various techniques such as word
frequencies [2; 3; 4] and clustering [5]. The first automated sentence extraction system [6] uses
term frequencies to weight sentences, which are then extracted to form an abstract. Since then,

*
 Corresponding author

Masrah Azrifah Azmi Murad and Trevor Martin

International Journal of Computer Science and Security, Volume (1) : Issue (4) 2

many approaches have been explored in automatically extracting sentences from a document.
Most existing text summarization systems use an extract approach. This approach is known to be
safe because important information is taken or copied from the source text. An abstract approach
produces a summary at least some of whose material is not available in the source text, but at the
same time retaining the content originality. A summary can be generic meaning the content is
broad and not addressed to any specific audience. Nonetheless, it could be tailored or user-
focused in which the content is addressed to a group with specific interests. Further, the content
of a summary can be indicative or informative. Indicative content provides an indication of the
main topics. Therefore, it helps the user to decide whether to proceed with reading the source
text or otherwise, while informative content represents the original document.

The objective of this work is to produce a similarity model with topic similarity using the theories of
probability and fuzzy sets incorporating mass assignment to find the similarity between two
words. We compute frequencies of triples of words exist in the document collection and convert
these frequencies to fuzzy sets. Probability of two words is then computed using the semantic
unification of two fuzzy sets. Our results show that using asymmetric word similarity with topic
similarity able to extract the most relevant sentences and produce summaries that are almost
similar to manually created summaries. The remainder of the paper is organized as follows: In
section 2 we discuss briefly on common algorithm, tf.isf, and use it to benchmark against our
algorithm, section 3 explains the methodology used, section 4 discusses in detail on the word
similarity algorithm, section 5 discusses the similarity model in extracting sentences, section 6
discusses the results, and finally section 7 concludes the paper.

2. tf.isf

This section outlines related work done in summarization particularly extracting sentences from a
document. We described a method known as tf.isf (term frequency x inverse sentence frequency)
[4]. This method is used later in comparing against MySum (our proposed model) and a manually
created summary. tf.isf is an adaptation of the conventional tf.idf [7]. Sentences are extracted
using average sentence similarities and those with high weights (above a certain threshold) are
extracted to form a summary. The computation of tf.isf is similar to the computation of tf.idf.

wik = tfik x idfik (1)

The only difference is the notion of document that is being replaced by sentence. Each sentence
is represented as a vector of tf.isf weights. Sentences with high values of tf.isf are selected to
produce a summary of the source text. Hence, the tf.isf measure of a word w in a sentence s, is
computed using the following

tf.isf(w,s) = tf (w,s) × isf(w) (2)

where tf(w, s) is the number of times the word w occurs in sentence s. isf(w) is the inverse
sentence frequency of word w in sentence s given by

isf(w) = log S / sf(w) (3)

where sf(w) is the number of sentences in which the word w occurs and S is the total number of
sentences in the document. For each sentence s, the average tf.isf of the sentence is computed
by calculating the average of the tf.isf(w, s) weight over all of the words w in the sentence, as
shown in the following formula

)(),(.
)(

1

sWsiisftf
sW

i

∑
=

 (4)

Masrah Azrifah Azmi Murad and Trevor Martin

International Journal of Computer Science and Security, Volume (1) : Issue (4) 3

where W(s) is the number of words in the sentence s. Sentences with the largest values of
average tf.isf are selected as the most relevant sentences and will be produced as a summary.
Using tf.isf is simple and fast. Further, tf.isf only relies on the frequency of words in documents,
therefore, it’s possible to use tf.isf in summarizing texts other than English. However, tf.isf may
not be a good algorithm in extracting sentences. For example, tf.isf cannot reflect similarity of
words and only count the number of overlapping words. The algorithm does not consider any
synonymy and syntactic information. In addition, there could be some relevant or important
sentences missing, as they use different words to express the same interests.

3. FUZZY SETS AND MASS ASSIGNMENT

This section outlines the theory of fuzzy sets and mass assignment that are used extensively in
our work. A fuzzy set is an extension to a classical set theory, which has a problem of defining the
border of the set and non-set [8]. Unlike a classical set, a fuzzy set does not have a clearly
defined boundary by having elements with only a partial degree of membership [9]. For example,
consider a weight of a person with labels such as thin, average, and fat. These labels are
considered fuzzy because not everyone will agree with the same subset of the value domain as
satisfying a given label. Nevertheless, if everyone agrees, we could write precise definitions of
thin, average, and fat in this context.

A mass assignment theory was proposed by Baldwin in 1991 as a general theory for evidential
reasoning under uncertainty [9; 10]. This theory is used to provide a formal framework for
manipulating both probabilistic and fuzzy uncertainties [9]. Consider the following example taken
from [10], suppose we have a set of people labeled 1 to 10 who are asked to accept or reject a
dice value of x as small. Suppose everyone accepts 1 as small, 80% accept 2 as small and 20%
accept 3 as small. Therefore, the fuzzy set for small is defined as

small = 1 / 1 + 2 / 0.8 + 3 / 0.2 (5)

where the membership value for a given element is the proportion of people who accept this
element as satisfying the fuzzy set. The probability mass on the sets is calculated by subtracting
one membership from the next, giving MAsmall as

MAsmall = {1} : 0.2, {1, 2} : 0.6, {1, 2, 3} : 0.2 (6)

The mass assignments above correspond to families of distribution. In order to get a single
distribution, the masses are distributed evenly between elements in a set. This distribution is
known as least prejudiced distribution (LPD) [11] since it is unbiased towards any of the
elements. Thus, in the example above, the mass of 0.6 is distributed equally among 1 and 2 and
the mass 0.2 is distributed equally among 1, 2 and 3. Therefore, the least prejudiced distribution
for small is

LPDsmall = 1 : 0.2+0.3+0.0667=0.5667,
 2 : 0.3+0.0667=0.3667,
 3 : 0.0667 (7)

3.1 Semantic Unification
Semantic Unification is a concept in Fril [12] proposed by Baldwin in 1992 that is used to unify
vague terms by finding a support for the conditional probability of the match. Unification is
possible if two terms have the same meaning, however, if they only have similar meaning, then
the match will not be perfect and can be supported with a support pair. A mass assignment with
the least prejudiced distribution is used to determine the unification of two fuzzy sets. For
example, suppose the fuzzy set for medium in the voting model is

Masrah Azrifah Azmi Murad and Trevor Martin

International Journal of Computer Science and Security, Volume (1) : Issue (4) 4

medium = 2 / 0.2 + 3 / 1 + 4 / 1 + 5 / 0.2 (8)

and the mass assignment would be

MAmedium = {3, 4} : 0.8, {2, 3, 4, 5} : 0.2 (9)

Thus, the least prejudiced distribution is

LPDmedium = 2 : 0.05, 3 : 0.45, 4 : 0.45, 5 : 0.05 (10)

Suppose we want to determine the Pr (about_3 | medium), and the fuzzy set is

about_3 = 2 / 0.4 + 3 / 1 + 4 / 0.4 (11)

with mass assignment as

MAabout_3 = {3} : 0.6, {2, 3, 4} : 0.4 (12)

We use the point semantic unification algorithm [11] to determine the conditional probability.
Thus,

Pr (dice is about_3 | dice is medium)
 = 0.6Pr (dice is 3 | dice is medium) + 0.4Pr (dice is {2, 3, 4} | dice is medium)
 = 0.6 (0.45) + 0.4(0.05 + 0.45 + 0.45)
 = 0.65

The point semantic unification can be calculated using the following tableau.

 0.8 : {3,4} 0.2 : {2,3,4,5}

0.6 : {3} 1/2 x 0.8 x 0.6 1/4 x 0.2 x 0.6

0.4 : {2,3,4} 0.8 x 0.4 3/4 x 0.2 x 0.4

TABLE 1: Tabular Form of the Pr (about_3 | medium).

The entries in the cells are the supports from the individual terms of the mass assignments. Each
entry has an associated probability. Thus, the Pr (about_3 | medium) is 0.65. The computation of
the probability above can be shown using the following formula. Consider two fuzzy sets f1 and f2
defined on a discrete universe X. Let

(x) f1 be the membership of element x in the fuzzy set f1.
MAf1(S) be the mass associated with set S.
LPDf1(x) be the probability associated with element x in the LPD.

(and similarly for f2). Therefore

Pr (f1 | f2) = ∑

≠
⊆
⊆

×

φ21
,2
,1

21

2

)2()1(

SS
XS
XS

ff

S

SMASMA

Ι

 = ∑
∈

×
Xx

ff xLPDx)()(
21

µ (13)

Masrah Azrifah Azmi Murad and Trevor Martin

International Journal of Computer Science and Security, Volume (1) : Issue (4) 5

4. ASYMMETRIC WORD SIMILARITY

In this section, we propose a novel algorithm in computing word similarities asymmetrically using
mass assignment based on fuzzy sets of words. We concentrate on how sentences use a word,
and not on their meaning. Words in documents are considered to be similar if they appear in
similar contexts. Therefore, these similar words do not have to be synonyms or belong to the
same lexical category. Further, this algorithm is incremental such that any addition or subtraction
of words (and documents) will only require minor re-computation.

4.1 Document Preprocessing and Similarity Algorithm
Before the measurement of the similarity algorithm is implemented, documents need to go
through preprocessing stage so that only meaningful keywords are obtained from those
documents. The first step is to remove common words, for example, a, the, or, and all using a list
of stop words. If a word in a document matches a word in the list, then the word will not be
included as part of the query processing. The second step is to stem a word to become a root
word, for example, subtraction becomes subtract. In this work, we applied the process of Porter
stemmer [13] to every word in the document.

The underlying objective of our method is the automatic computation of similar words. The
method is based on the observation that it is frequently possible to guess the meaning of an
unknown word from its context. The method assumes that similar words appear in similar
contexts and therefore, these words do not have to be synonyms or belong to the same lexical
category. A key feature of the algorithm is that it is incremental, i.e. words and documents can be
added or subtracted without extensive re-computation. Our method is based on finding the
frequencies of n-tuples of context words in a set of documents where frequencies are converted
to fuzzy sets, which represent a family of distributions, and find their conditional probabilities.
Consider the following example, taken from [14]

A bottle of tezgüno is on the table.
Everyone likes tezgüno.
Tezgüno makes you drunk.
We make tezgüno out of corn.

From the sentences above, we could infer that tezgüno may be a kind of an alcoholic beverage.
This is because other alcoholic beverages, for example, beer tends to occur in the same contexts
as tezgüno. The idea that words occurring in documents in similar contexts tend to have similar
meanings is based on a principle known as the Distributional Hypothesis [15]. We use this idea to
produce a set of related words, which can be used as the basis for taxonomy, or to cluster
documents. In this experiment, we use Fril to compute asymmetric similarities such that the
similarity between <w1> and <w2> is not necessarily the same as between <w2> and <w1>
expressed as

ws(<w1>,<w2>) ≠ ws(<w2>,<w1>)

This is because to compute similarity between two fuzzy sets, i.e. ws(<w1>,<w2>), we multiply
the memberships of fuzzy sets of <w1> with the corresponding frequencies in frequency
distributions of <w2>. In order to calculate ws(<w2>,<w1>), we multiply the memberships of fuzzy
sets of <w2> with the corresponding frequencies in frequency distributions of <w1>. In most
cases, the values for two fuzzy sets are different; therefore, the similarity measures will be
different. In the next phases, we present the algorithms used in finding the similarity between
words. AWS consists of two phases. In Phase I [16], we compute the frequency distributions of
words to fuzzy sets. In Phase II [16], we find the conditional probabilities of the fuzzy sets using
the semantic unification algorithm and show the creation of AWS matrix.

Masrah Azrifah Azmi Murad and Trevor Martin

International Journal of Computer Science and Security, Volume (1) : Issue (4) 6

Phase I – Computation of frequency distributions to fuzzy sets

Each document is described by a set of all words called vocabulary. We run a pre-processing
procedure by removing inappropriate words and stemming words. Removing inappropriate words
allow us to save space for storing document contents and at the same time reduce the time taken
during the search process. We define a document Dj that is represented by a set of an ordered
sequence of nj words as the following

Dj = {w0, w1, w2, ..., wnj}

with w being the sub-sequence of document Dj. The ordering of words in the document is
preserved. We calculate the frequency distributions of every word available in the document. For
any sub-sequence Wn(x) = {wx, wx+1, ..., wx+n}, let p(x) be a word that precedes word x such that

p(x) = {wx-k, wx-k+1, ..., wx-1}

and s(x) be a word that succeeds word x such that

s(x) = {wx+l+1, wx+l+2 ..., wx+l+k}

where k and l are a given block of k words preceded and succeeded by blocks of l words, and n
is the total number of words in the document. We give a value of 1 to k and l as we need to
consider the start and end of the document. Consider a document Dj containing sentences as the
following.

The quick brown fox jumps over the lazy dog.
The quick brown cat jumps onto the active dog.
The slow brown fox jumps onto the quick brown cat.
The quick brown cat leaps over the quick brown fox.

TABLE 2: Example of Sentences in Document Dj

From the sentences, we obtain

W(1)=quick, p(1)=the, s(1)=brown
W(2)=brown, p(2)=quick, s(2)=fox

using

p(x) = W(x-1)
s(x) = W(x+1)

The computation of frequency distributions of words in the document will be built up
incrementally. Hence, for each word x, we incrementally build up a set <context-of-x> containing
pairs of words that surround x, with a corresponding frequency. Let

 pre(x) be the set of words that precedes word x
 suc(x) be the set of words that succeeds word x
 N = {pre(x), x, suc(x)} being the total number of times the
 sequence of {pre(x), x, suc(x)} occurs in document Dj

Thus, the frequency of each <context-of-x> is given by the following

 fcw = {pre(x), x, suc(x)} / N

Masrah Azrifah Azmi Murad and Trevor Martin

International Journal of Computer Science and Security, Volume (1) : Issue (4) 7

Once we computed the frequency distributions of each word, we convert the frequencies to
memberships as shown in the following algorithm.

Input:

fcw : array of frequency counts.
T : total frequency count for this word = ∑

SP

cw SPf
,

),(where P and S are

precedence and successor respectively.

Output:

mcw: array of memberships

1. Sort frequency counts into decreasing order, fcw[0] ... fcw[n-1] such that

fcwi ≥ fcwj iff i > j

2. Set the membership corresponding to maximum count, mcw[0] = 1

3. for i=1 ... n-1, i.e., for each remaining frequency count
 mcw[i] = mcw[i-1] - (fcw[i-1] - fcw[i]) * i / T

FIGURE 1: Algorithm for Converting Frequencies to Memberships

The complexity of the above algorithm lies in its sorting step, nevertheless, the remaining steps
are linear in the size of the array. Using the example of sentences in Table 2, we obtain the
frequencies for word brown with N=6

quick - brown - cat occurs three times
quick - brown - fox occurs two times
slow - brown - fox occurs once

We use mass assignment theory to convert these frequencies to fuzzy sets (as described in
Figure 1), and obtain the fuzzy set for word brown as

 (quick, cat):1, (quick, fox):0.833, (slow, fox):0.5

In the next phase, we use the fuzzy sets to compute the probability of any two words.

Phase II – Computation of Word Probabilities

To compute a point semantic unification for two frequency distributions fcw1 and fcw2, we calculate
membership for fcw1 and multiply by the frequency for the corresponding element in fcw2.

Input:

mcw1 : array of memberships.

fcw2 : array of frequency counts.
Tcw2 : total frequency counts for w2 = ∑

SP

cw SPf
,

2
),(where P and S are

precedence and successor respectively.

Masrah Azrifah Azmi Murad and Trevor Martin

International Journal of Computer Science and Security, Volume (1) : Issue (4) 8

Output:
 Semantic Unification Value - Pr (w1|w2) , Pr (w2|w1)

1. Convert fcw1 to mcw1 using steps in Algorithm I.

2. Calculate the sum of mcw1 multiply by fcw2 for the common elements

giving the point semantic unification for two frequency distributions.

3. To compute the asymmetric probability, simply reverse the calculation
in steps 1 and 2.

FIGURE 2: Point Semantic Unification Algorithm

Hence, for any two words <w1> and <w2>, the value

Pr (<context-of-w1>|<context-of-w2>)

measures the degree to which <w1> could replace <w2>, and is calculated by semantic
unification of the two fuzzy sets characterizing their contexts. For example, suppose there is
sentences in the document that give the fuzzy context set of grey as

(quick, cat):1, (slow, fox):0.75

We calculate the asymmetric word similarity of the two fuzzy sets of brown and grey using point
semantic unification algorithm, giving the conditional probabilities as

Pr (brown | grey) = 0.8125
Pr (grey | brown) = 0.625

By semantic unification of the fuzzy context sets of each pair, we obtain an asymmetric word
similarity matrix. For any word, we can extract a fuzzy set of similar words from a row of the
matrix. We also note that there are important efficiency considerations in making this a totally
incremental process, i.e. words (and documents) can be added or subtracted without having to
recalculate the whole matrix of values as opposed to a straightforward implementation that
requires O(na x nb) operations per semantic unification, where nb is the cardinality of the fuzzy
context set that requires O(n

2
) semantic unification and n is the size of the vocabulary. Therefore,

any addition of a new word or a new document using a straightforward implementation would
require the whole re-computation of the matrix. Figure 3 below shows the creation of AWS matrix
with elements described in the algorithm as having non-zero values.

1.

Store each word with a list of its context pairs with number of times
each context pair has been observed.

2. Calculation of the corresponding memberships and elements are not
done until needed. Otherwise,
 if a word W is read, then mark elements Pr(W|wi) and Pr(wi|W) as

needing recalculation.

3. If a new context, P-W-S is read,
 search for other words wj which have the same context P-wj-S.
 mark the elements Pr(W|wj) and Pr(wj|W) as needing calculation.

FIGURE 3: Algorithm for Creating AWS Matrix

Masrah Azrifah Azmi Murad and Trevor Martin

International Journal of Computer Science and Security, Volume (1) : Issue (4) 9

This process creates an asymmetric word similarity matrix Sim, whose rows and columns are
labeled by all the words encountered in the document collection. Each cell Sim(wi, wj) holds a
value between 0 and 1, indicating to which extent a word i is contextually similar to word j. For
any word we can extract a fuzzy set of similar words from a row of the matrix. Many of the
elements are zero. As would be expected, this process gives both sense and nonsense. Related
words appear in the same context (as with brown and grey in the illustration above), however,
unrelated words may also appear, for example, the phrase {slow fat fox} would lead to a non-zero
similarity between fat and brown.

5. THE SIMILARITY MODEL

Recall the AWS algorithm we have described in Section 4 above

Sim(wi,wj) (14)

We now introduce the sentence similarity measures sim(Si, Sj) to find the similarities between
sentences available in a document using AWS. Hence

∑ ∑
∈ ∈1 2

),(
sentencei sentencej

jjii fwwSimf (15)

where f is the relative frequency of a word in a sentence and Sim(wi,wj) is the similarity matrix
developed in Section 4. We also compute the asymmetric sentence similarity, which would
produce a different similarity measure. We introduce a topic similarity measure sim(Si, t) for the
purpose of increasing the importance measure of a sentence Si to the topic t. We compute a
weight for topic similarity using the frequency of overlapping words in the sentence as well as the
topic. Identical words will have a value of 1, with 0 for non-identical words. Hence, the formula is
defined as

∑ ∑
∈ ∈sentencei topicj

jjii fwwwsf),((16)

where f is the relative frequency of a word in a sentence and topic respectively and ws(wi,wj) is
the similarity of overlapping words. We named the two similarity measures above (as in Eq. 15
and 16) as the two score functions and these score functions will be used in extracting sentences
from the document.

Sentence Extraction

The two score functions, i.e. sentence similarity and topic similarity measures are used to
compute the weight for each sentence. We measure the importance of a sentence Si as an
average similarity AvgSim(i). The weight of a sentence is defined by summing similarity measure
of sentence Si with other sentences in the document divided by N the total number of sentences.
Thus, the AvgSim(i) is defined as

N

jSiSsim∑),(

 (17)

where sim(Si, Sj) is the pairwise asymmetric sentence similarity. Next, we add the weight of
average sentence similarity and topic similarity to produce the final score of a sentence, given in
the following formula

MySum = AvgSim(i) + sim(Si, t) (18)

Masrah Azrifah Azmi Murad and Trevor Martin

International Journal of Computer Science and Security, Volume (1) : Issue (4) 10

Once the score for each sentence has been computed, the sentences are ranked in descending
order. Sentences with high values will be selected to produce a summary. Then the sentences
are arranged according to their chronological order in the original article to form a summary.

6. RESULTS

In order to evaluate the effectiveness of our method, we compare the summaries produced by our
system against the manually created summaries produced in the DUC 2002 [17]. In addition, we
also compare the performance of other system, tf.isf against the manually created summaries.
Our final comparison is between MySum and tf.isf against the manually created summaries. Each
document of DUC 2002 produces two versions of manually created summaries written by two
different human readers. In this experiment, we produce a hypothetical test by making a
comparison of summaries produced by two different human summarizers. This is to show that in
reality it is very unlikely for two different systems or humans to produce an identical summary
from a document.

In DUC 2002, Task 1 is a single-document summarization in which the goal is to extract 100 word
summaries from each document in the corpus. We use the summaries produced in Task 1 in our
comparison stage. The comparison is made using individual matching, i.e. each sentence in a
summary produced by MySum or tf.isf is compared against each sentence of the manually
created summary. In this case, a sentence generated by MySum or tf.isf and a sentence from
manually created summary are considered similar if the similarity is equal to the proportion of
identical words. If all sentences produced by MySum or tf.isf are the same as the sentences in
the manually created summary, the similarity measure is equal to 1. However, if only a proportion
of sentences are equal to the sentences in the manually created summary, the similarity measure
would be the number of sentences generated by MySum or tf.isf that is similar to the number of
sentences in the manual summary divided by total number of sentences in the manually created
summary. In this paper, we presented only a few of our results, while the remaining is reported
elsewhere. Figures 4 to 6 show the comparison of similarity produced by MySum and tf.isf
against human summarizers, P1 and P2. In the figures, the comparisons of two summaries
produced by P1 and P2 are used as a hypothetical test.

On average, MySum produces summaries that are 60% similar to the manually created
summaries, while tf.isf produces summaries that are 30% similar. It is worth pointing out that the
human summarizers, P1 and P2 produce summaries that are 70% similar to each other. Overall,
MySum produces a fairly good result and none of the documents generated by MySum produce a
zero similarity comparison against the manually created summaries. Our method shows that it
could generate a summary from a document as close to what a human summarizer could
produce.

FIGURE 4: Result on Summarization using Document Set D061

Masrah Azrifah Azmi Murad and Trevor Martin

International Journal of Computer Science and Security, Volume (1) : Issue (4) 11

FIGURE 5: Result on Summarization using Document Set D085

FIGURE 6: Result on Summarization using Document Set D092

7. CONCLUSION AND FUTURE WORK

This paper presented a detailed algorithm in computing the asymmetric similarity between words
using fuzzy context sets and topic similarity in extracting the most relevant sentences. The
asymmetric word similarity measure words that appear in similar context in the sentences, while
topic similarity compute the frequency of overlapping words appear in the sentence and topic.
Experiments show that using the combination of both the word similarity and topic similarity able
to extract the most important sentences from a document that is fairly close to the manually
created summaries. Although MySum did not produce an exact summary to the one created by
human, on average, MySum is able to give a representable extractive summary. The difference
between MySum and human summarizers in producing summary is only 10 percent. On the other
hand, MySum outperforms tf.isf when compared against the manually created summaries. In
future, we hope to test MySum for multi-document summarization. This work can also be
extended in looking at abstract summarization or how to combine similar sentences together as
how a human summarizer would do.

Masrah Azrifah Azmi Murad and Trevor Martin

International Journal of Computer Science and Security, Volume (1) : Issue (4) 12

8. REFERENCES

1. K. Sparck Jones. “Automatic Summarizing: Factors and Directions”. In I. Mani and M.T.

Maybury, Editors, Advances in Automatic Text Summarization, Cambridge, MA: The MIT
Press, pp 1-12, 1999

2. S.H. Lo, H. Meng, and W. Lam. “Automatic Bilingual Text Document Summarization”. In

Proceedings of the Sixth World Multiconference on Systematic, Cybernetics and Informatics.
Orlando, Florida, USA, 2002

3. S. Yohei ‘‘Sentence Extraction by tf/idf and Position Weighting from Newspaper Articles

(TSC-8)’’ NTCIR Workshop 3 Meeting TSC, pp 55-59, 2002

4. J. Larocca Neto, A.D. Santos, C.A.A. Kaestner, and A.A. Freitas. “Document Clustering and

Text Summarization”. In Proceedings of the 4th Int. Conf. Practical Applications of
Knowledge Discovery and Data Mining (PADD-2000), London: The Practical Application
Company, pp 41---55, 2000b

5. M. Amini and P. Gallinari. “The Use of Unlabeled Data to Improve Supervised Learning for

Unsupervised for Text Summarization”. In SIGIR, Tampere, Finland, 2002

6. H. Luhn “The Automatic Creation of Literature Abstracts”. IBM Journal of Research and

Development, 2(92):159 - 165, 1958

7. G. Salton and C. Buckley. “Term-weighting Approaches in Automatic Text Retrieval”.

Information Processing and Management 24, pp 513-523, 1988. Reprinted in: Sparck Jones
K. and Willet P. (eds). Readings in Information Retrieval, Morgan Kaufmann, pp 323-328,
1997

8. G.J. Klir and B. Yuan. “Fuzzy Sets and Fuzzy Logic - Theory and Applications”. Prentice-

Hall, Inc., Englewood Cliffs, New Jersey, 1995

9. J.F. Baldwin. “Fuzzy and Probabilistic Uncertainties”. In Encyclopedia of AI, 2nd ed., S.C.

Shapiro, Editor 1992, Wiley, New York, pp. 528-537, 1992

10. J.F. Baldwin. “Combining Evidences for Evidential Reasoning”. International Journal of

Intelligent Systems, 6(6), pp. 569-616, 1991a

11. J.F. Baldwin, J. Lawry, and T.P. Martin. “A Mass Assignment Theory of the Probability of

Fuzzy Events”. Fuzzy Sets and Systems, (83), pp. 353-367, 1996

12. J.F. Baldwin, T.P. Martin and B.W. Pilsworth. “Fril - Fuzzy and Evidential Reasoning in

Artificial Intelligence”. Research Studies Press Ltd, England, 1995

13. M.F. Porter. “An Algorithm for Suffix Stripping”. Program, 14(3):130-137, 1980

14. D. Lin. “Extracting Collocations from Text Corpora”. Workshop on Computational

Terminology, Montreal, Canada, 1998

15. Z. Harris. “Distributional Structure”. In: Katz, J. J. (ed.) The Philosophy of Linguistics. New

York: Oxford University Press, pp. 26-47, 1985

16. M.A. Azmi-Murad. “Fuzzy Text Mining for Intelligent Information Retrieval”. PhD Thesis,

University of Bristol, April 2005

17. DUC. “Document Understanding Conferences”. http://duc.nist.gov, 2002

