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Abstract 

 

Effective cost estimation is the most challenging activity in software development. 
Software cost estimation is not an exact science. However it can be transformed from a 
black art to a series of systematic steps that provide estimate with acceptable risk. 
Effort is a function of size. For estimating effort first we face sizing problem. In direct 
approach size is measured in lines of code (LOC). In indirect approach, size is 
represented as function points (FP). In this paper we use indirect approach. Fuzzy logic 
is used to find fuzzy functional points and then the result is defuzzified to get the 
functional points and hence the size estimation in person hours. Triangular fuzzy 
numbers are used to represent the linguistic terms in Function Point Analysis (FPA) 
complexity matrixes We can optimise the results for any application by varying the 
fuzziness of the triangular fuzzy numbers.       

 
Keywords: FP, FFP, FPA, FFPA, LOC, Fuzzy logic, Triangular Fuzzy Number, Membership function and 
Fuzziness.  

 
 

1. INTRODUCTION 

Out of the three principal components of cost i.e., hardware costs, travel and training costs, and effort 
costs, the effort cost is dominant. Software cost estimation starts at the proposal state and continues 
throughout the life time of a project.  
There are seven techniques of software cost estimation: 

• Algorithm Cost Model 

• Expert Judgments 

• Estimation by Analogy 

• Parkinson’s Law 

• Pricing to win 

• Top-down estimation 

• Bottom-up estimation  
 
If these predict radically different costs, more estimation should be sought and the costing process 
repeated. 
    Algorithm model, also called parametric model, is designed to provide some mathematical 
equations to provide software estimation. LOC-based models are algorithm models such as [3, 13, 14, 
and 15]. Ali Idri and Laila Kjjri [7] proposed the use of fuzzy sets in the COCOMO, 81 models [3]. Musilek, 
P. and others [11] proposed f-COCOMO model, using fuzzy sets. The methodology of fuzzy sets giving 
rise to f-COCOMO [11] is sufficiently general to be applied to other models of software cost estimation 
such as function point method [9]. Software Functional size measurement is regarded as a key aspect in 
the production, calibration and use of software engineering productivity models because of its 
independence of technologies and of implementation decisions. W.Pedrycz and others [12] found that 



Harish Mittal, Pradeep Bhatia 

International Journal of Computer Science and Security Volume (1) : Issue (4)                                                         37 

the concept of information granularity and fuzzy sets, in particular, plays an important role in making 
software cost estimation models more users friendly. Harish Mittal and Pradeep Bhatia [10] used 
triangular fuzzy numbers for fuzzy logic sizing.  Lima, O.S.J. and Others [16] proposed the use of 
concepts and properties from fuzzy set theory to extend function point analysis to Fuzzy function point 
analysis, using trapezoid shaped fuzzy numbers for the linguistic variables of function point analysis 
complexity matrixes. 
 
In this paper we proposed triangular fuzzy numbers to represent the linguistic variables. The results can 
be optimised for the given application by varying fuzziness of the triangular fuzzy numbers.  To apply 
fuzzy logic first fuzzification is done using triangular fuzzy number, Fuzzy output is evaluated and then 
estimation is done by defuzzification technique given in this paper.                        
The paper is divided into sections. Section 2 introduces related terms. In section 3, the technique of 
estimation of fuzzy functional points and optimisation technique is given; section 4 gives experimental 
results and section 5 gives conclusions and future research.  

2. RELATED TERMS 

(a) Fuzzy Number  (b) Fuzzy Logic   (c) Fuzziness                  

(d) Function Point Analysis (e) Various criterion for Assessment of Software Cost Estimation Models 

(a) Fuzzy Number:  
 
A fuzzy number is a quantity whose value is imprecise, rather than exact as in the case of ordinary single 
valued numbers. Any fuzzy number can be thought of as a function, called membership function, whose 
domain is specified, usually the set of real numbers, and whose range is the span of positive numbers in 
the closed interval [0, 1]. Each numerical value of the domain is assigned a specific value and 0 
represents the smallest possible value of the membership function, while the largest possible value is 1. 
In many respects fuzzy numbers depict the physical world more realistically than single valued numbers. 
Suppose that we are driving along a highway where the speed limit is 80km/hr, we try to hold the speed 
at exactly 80km/hr, but our car lacks cruise control, so the speed varies from moment to moment. If we 
note the instantaneous speed over a period of several minutes and then plot the result in rectangular 
coordinates, we may get a curve that looks like one of the curves shown below. However there is no 
restriction on the shape of the curve. The curve in figure 1 is a triangular fuzzy number, the curve in 
figure 2 is a trapezoidal fuzzy number, and the curve in figure3 is bell shaped fuzzy number.  
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Fig1: Triangular Fuzzy Number        Fig2:Trapezoidal Fuzzy Number             Fig3: Bell shaped Fuzzy Number 

 

(b)Fuzzy Logic 

Fuzzy logic is a methodology, to solve problems which are too complex to be understood quantitatively, 
based on fuzzy set theory, and introduced in 1965 by Prof. Zadeh in the paper Fuzzy Sets [4, 5]. Use of 
fuzzy sets in logical expression is known as fuzzy logic. A fuzzy set is characterized by a membership 
function, which associates with each point in the fuzzy set a real number in the interval [0,1], called degree 
or grade of membership. The membership function may be triangular, trapezoidal, parabolic etc. Fuzzy 
numbers are special convex and normal fuzzy sets, usually with single modal value, representing uncertain 

quantitative information. A triangular fuzzy number (TFN) is described by a triplet (α ,m, β), where m is the 

modal value, α and β are the right and left boundary respectively. 
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(c) Fuzziness: Fuzziness of a TFN (α, m,β) is defined as: 

 
Fuzziness of TFN (F) =  , 0 < F< 1 … (1) 

 
The higher the value of fuzziness, the more fuzzy is TFN 
 

(d) Function Point Analysis (FPA): 

FPA begins with the decomposition of a project or application into its data and transactional functions. The 
data functions represent the functionality provided to the user by attending to their internal and external 
requirements in relation to the data, whereas the transactional functions describe the functionality provided 
to the user in relation to the processing this data by the application.  
 
The data functions are: 

1. Internal Logical File(ILF) 
2. External Interface File (EIF) 

 

The transactional functions are: 

1. External Input(EI) 
2. External Output(EO) 
3. External Inquiry(EI) 
 

Each function is classified according to its relative functional complexity as low, average or high. The data 
functions relative functional complexity is based on the number of data element types (DETs) and the 
number of record element types (RETs). The transactional functions are classified according to the number 
of file types referenced (FTRs) and the number of DETs. The number of FTRs is the sum of the number of 
ILFs and the number of EIFs updated or queried during an elementary process.  
 
The actual calculation process consists of three steps: 

1. Determination of unadjusted function points(UFP) 
2. Calculation of value of adjustment factor(VAF)    
3. Calculation of final adjusted functional points. 

 

Evaluation of Unadjusted FP: 

The unadjusted Functional points are evaluated in the following manner 

UFP=  ΣΣ Fij Zij  , for j= 1 to 3 and i = 1 to 5, where Zij denotes count for component i at level (low, average or 
high) j, and Fij is corresponding Function Points from table 1. 
 

Function Points Level 

ILF EIF EI EO EQ 

Low 7 5 3 4 3 

Average 10 7 4 5 4 

High 15 10 6 7 6 

Table 1: Translation table for the terms low, average and high 

 
Value Adjustment Factor (VAF) is derived from the sum of the degree of influence (DI) of the 14 general 
system characteristics (GSCc). General System characteristics are: 

1. Data communications 
2. Distributed data processing  
3. Performance  
4. Heavily utilised configuration 
5. Transaction rate 
6. On-line data entry 
7. End-user efficiency 
8. On-line update 

m2

αβ −
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9. Complex processing  
10. Reusability 
11.  Installations ease 
12. Operational ease 
13.  Multiple sites/organisations 
14.  Facilitate change  
 

The DI of each one of these characteristics ranges from 0 to 5 as follows: 

(i) 0- no influence 
(ii) 1 -Incidental influence 
(iii) 2- Moderate influence 
(iv) 3- Average influence 
(v) 4- Significant influence 
(vi) 5- Strong influence 

 

Total Function Points = UFP * (0.65+ 0.01 * Value Adjustment Factor) 

 
Function points can be converted to Effort in Person Hours. Numbers of studies have attempted to relate 
LOC and FP metrics [16]. The average number of source code statements per function point has been 
derived from historical data for numerous programming languages. Languages have been classified into 
different levels according to the relationship between LOC and FP. Programming language levels and 
Average numbers of source code statements per function point are given by [17].   
 
Complexity matrix of an ILF or EIF is given in Table 2. Complexity matrix of EO or EQ is given in Table 3. 
Complexity matrix of EI is given in Table 4 
 

DET RET 

1 to 19 20 to 50 51 or more 

1 Low Low  Average 

2 to 5 Low Average High 

6 or more Average High High 

Table 2: Complexity matrix of an ILF or EIF 

 

DET FTR 

1 to 5 6 to 19 20 or more 

Less than 2 Low Low  Average 

2 or 3 Low Average High 

Greater than 3 Average High High 

Table 3: Complexity matrix of EO or EQ 

 

DET FTR 

1 to 4 5 to 15 16 or more 

Less than 2 Low Low  Average 

2  Low Average High 

More than 2 Average High High 

Table 4: Complexity matrix of EI 

The value of function points for the terms low, average and high to each FPA are given in Table1. 
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(e) Various Criterions for Assessment of Software Cost Estimation Models 

There are 4 important criterions for assessment of software cost estimation models: 

1. VAF (Variance Accounted For) (%):  

 

VAF (%) =                     …(2) 

 

2. Mean absolute Relative Error (%): 

      Mean absolute error (%) =    ...(3) 

 

3. Variance Absolute Relative Error (%):  

Variance Absolute Relative Error (%)  =       …(4) 

 

4. Pred (n): Prediction at level n((Pred (n))is defined as the % of projects that have absolute relative error 

under n[8]. 

Where,  

Var x =                 ...(5) 

 

 x = mean x 

 E = measured effort 

Ê = estimated effort 

 f = frequency 

       Absolute Relative Error (RE ) =        …(6)     
 

 

3.  FUZZY FUNCTIONAL POINT ANALYSIS (FFPA) 

FFPA consists of the following three stages: 

1. Fuzzification 

2. Defuzzification  

3. Optimization  

1 Fuzzification 

We take each linguistic variables as a triangular Fuzzy numbers, TFN (α, m, β), α≤m, β≥ m. The 

membership function (µ(x)) for which is defined as: 

               0, x ≤  α 

µ(x) =     x-α / m - α   , α≤ x ≤ m         …….(7) 

               β-x / β-m   , m≤ x ≤ β  

               0,    x≥ β                                           

                                                                                            Fig4: representation of TFN (α, m,β) 

 

We create a new linguistic variable, TFN (α, m, k), high or very high, where k is a positive integer. In case 
low and average are given, we create high variable. In case low, average and high are given, we create very 
high variable. In case average and high are given, we create very high variable. The creation of the new 
linguistic variable helps to deal better with larger systems.     

  0       α        m          β      x   

µ(x)  
 

                   

 

100*
 var

)ˆ( var
1 









 −
−

E

EE

100*
) ( 2

∑
∑ ΕΕ −

f

RmeanRf

100*
)(

∑
∑

f

Rf E

∑
∑ −

f

xf
2

)x (

E

EE ˆ−



Harish Mittal, Pradeep Bhatia 

International Journal of Computer Science and Security Volume (1) : Issue (4)                                                         41 

 

Fuzziness of the created linguistic variable (F) = (k-α)/2m, 0< F < 1.                 …….. (8) 
 

So that k=2 F m +α.                                                                                             ……  (9) 
 
We can estimate the function points for the new variable, very high, by extrapolation using Newton’s 
interpolation formula [16]. The estimated values of function points are 22,14,9,10 and 9 for the functions  
ILF, EIF, EI, EO and EQ respectively. 
 

Modified Complexity Matrices for various data and transaction functions are given in the following tables: 

 

DET Complexity  

1-50 Low 

51-k1 

k1 ≤ 102 

Average 

K1+1 or more High 

Table 5: Modified Complexity Matrix for ILF & EIF (RET =1) 

 
 
 
 
 
 
 
 
 
 
 

Fig 5 
 

DET Complexity  

1-19 Low 

20-50 Average 

51-k2 

k2 ≤ 102 

High 

K2+1 or more V. High 

Table 6: Modified Complexity Matrix for ILF & EIF (RET = 2 to 5) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 6: 
 
 

DET Complexity  

1-19 Average 

20-k3 

k3 ≤ 40 

High 

K3+1 or more V. High 

Table 7: Modified Complexity Matrix for ILF & EIF (RET  ≥ 6) 

    x/25              (50-x)/25  (x-50)/20             (90-x)/20 

0         25                 50                   70                 90   DET=x 

       Low                                    Avg               =k1 

µ(x) 

 

 

    1 

0 10        19       35         50        70           90   DET=x 

 Low               Avg                  High       =k2  V. High 

µ(x) 

 

 

    1 
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Fig7: 
 

DET Complexity  
1-19 Low 
20-k4 

k4 ≤ 40 

Average 

K4+1 or more High 

Table 8: Modified Complexity Matrix for EO & EQ (FTR ≤  2) 

 
 
 
 
 
 
 
 
 
 
 
 

 Fig 8: 
 
 

DET Complexity  
1-5 Low 

6-19 Average 

20-k5 

k5 ≤ 40 

High 

K5+1 or more V. High 

Table 9: Modified Complexity Matrix for EO & EQ (FTR = 2 or 3) 

 
 
 
 
 
 
 
 
 
 
 

Fig 9: 
 

DET Complexity  
1-5 Average 

5-k6 

k6 ≤ 12 

High 

K6+1 or more V.High 

Table 10: Modified Complexity Matrix for EO & EQ (FTR  ≥  4) 

0 10        19       29         38       High      DET=x 

 Low               Avg      =k4   

µ(x) 

 

 

    1 

0 3          5       12         19        29           38       DET=x 

 Low            Avg                  High       =k5  V. High 

            High    

µ(x) 

 

 

    1 

0         10                 19                   29                 38   DET=x 

       Average                              High              =k3   V. High 

µ(x) 

 

 

    1 
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Fig 10: 
 
 

DET Complexity  

1-15 Low 

16-k7 

k7 ≤ 32 

Average 

K7+1 or more High 

Table 11: Modified Complexity Matrix for EI ( FTR  =  1) 

 
 

 
 
 
 
 
 
 
 
 
 

Fig 11: 

DET Complexity  
1-4 Low 

5-15 Average 

16-k8 

k8 ≤ 32 

High 

K8+1 or more V. High 

Table 12: Modified Complexity Matrix for EI (FTR = 2) 

 
 
 
 
 
 
 
 
 
 
 

Fig 12: 
 

 

DET Complexity  
1-4 Average 

5-k9 

k9 ≤ 10 

High 

K9+1 or more V.High 

Table 13: Modified Complexity Matrix for EI (FTR  ≥  2) 

0 3        5          8          11          DET=x 

Avg               High      =k6  V. High 

µ(x) 

 

 

    1 

0 2          4       10         15        23           31       DET=x 

 Low            Avg                  High       =k8  V. High 

µ(x) 

 

 

    1 

0 8        15       23         31       High      DET=x 

 Low               Avg      =k7   

µ(x) 

 

 

    1 



Harish Mittal, Pradeep Bhatia 

International Journal of Computer Science and Security Volume (1) : Issue (4)                                                         44 

 
 
 
 
 
 
 
 
 
 
 

 

Fig 13: 

Defuzzification: 
Defuzzification rules for various data and transaction functions are given in the following tables.  

 
Defuzzification for ILF and EIF 
 
 

          DET 
FFP 

1-25 25-50 50-70 70-90 

ILF µ*7 (µ*7)+ (1-µ)*10 (µ*10)+ (1-µ)*7 (µ*10)+ (1-µ)*15 

EIF µ*5 (µ*5)+ (1-µ)*7 (µ*7)+ (1-µ)*5 (µ*7)+ (1-µ)*10 

Table 14: Case 1 for RET =1 

 

    DET 
FFP 

1-10 10-19 19-35 35-50 50-70 70-90 

ILF µ*7 (µ*7)+ (1-µ)*10 (µ*10)+ (1-µ)*7 (µ*10)+ (1-µ)*15 (µ*15)+ (1-µ)*10 (µ*15)+ (1-µ)*22 

EIF µ*5 (µ*5)+ (1-µ)*7 (µ*7)+ (1-µ)*5 (µ*7)+ (1-µ)*10 (µ*10)+ (1-µ)*7 (µ*10)+ (1-µ)*14 

Table 15: Case 2 for 2 ≤  RET ≤ 5 

 

          DET 
FFP 

1-10 10-19 19-29 29-38 

ILF µ*10 (µ*10)+ (1-µ)*15 (µ*15)+ (1-µ)*10 (µ*15)+ (1-µ)*22 

EIF µ*7 (µ*7)+ (1-µ)*10 (µ*10)+ (1-µ)*7 (µ*10)+ (1-µ)*14 

Table 16: Case 3 for RET ≥ 6 

 
Defuzzification for EO and EQ: 
 

          DET 
FFP 

1-10 10-19 19-29 29-38 

EO µ*4 (µ*4)+ (1-µ)*5 (µ*5)+ (1-µ)*4 (µ*5)+ (1-µ)*7 

EQ µ*3 (µ*3)+ (1-µ)*4 (µ*4)+ (1-µ)*3 (µ*4)+ (1-µ)*6 

Table 17: Case 1 FTR < 2 
 

           DET 
FFP 

1-3 3-5 5-12 12-19 19-29 29-38 

EO µ*4 (µ*4)+ (1-µ)*5 (µ*5)+ (1-µ)*4 (µ*5)+ (1-µ)*7 (µ*7)+ (1-µ)*5 (µ*7)+ (1-µ)*10 

EQ µ*3 (µ*3)+ (1-µ)*4 (µ*4)+ (1-µ)*3 (µ*4)+ (1-µ)*6 (µ*6)+ (1-µ)*4 (µ*6)+ (1-µ)*9 

Table 18: Case 2 FTR = 2 or 3 
 

           RET 
FFP 

1-3 3-5 5-8 8-11 

 EO µ*5 (µ*5)+ (1-µ)*7 (µ*7)+ (1-µ)*5 (µ*7)+ (1-µ)*10 

 EQ µ*4 (µ*4)+ (1-µ)*6 (µ*6)+ (1-µ)*4 (µ*6)+ (1-µ)*9 

Table 19: Case 3 FTR > 3 

0 2        4          6            8          DET=x 

Avg               High      =k9     V. High 

µ(x) 

 

 

    1 
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Defuzzification for EI: 
 

         DET 
FFP 

1-8 8-15 15-23 23-37 

EI µ*3 (µ*3)+ (1-µ)*4 (µ*4)+ (1-µ)*3 (µ*4)+ (1-µ)*6 

Table 20: Case 1 FTR < 2 
 

         DET 
FFP 

1-2 2-4 4-10 10-15 15-23 23-31 

 EI µ*3 (µ*3)+ (1-µ)*4 (µ*4)+ (1-µ)*3 (µ*4)+ (1-µ)*6 (µ*6)+ (1-µ)*4 (µ*6)+ (1-µ)*9 

Table 21: Case 2 FTR= 2 
 

         RET 
FFP 

1-2 2-4 4-6 6-8 

EI µ*4 (µ*4)+ (1-µ)*6 (µ*6)+ (1-µ)*4 (µ*6)+ (1-µ)*9 

Table 22: Case 3 FTR > 2 
 
Optimisation  

Optimization of result for an application can be done on the basis any of the four criteria given in section 2, 
by varying one or more variables k1, k2, k3, k4, k5, k6, k7, k8 and k9. 
 
 

4. EXPERIMENTAL STUDY 

The data for experimental study is taken from [18]. Calculation of Unadjusted Fuzzy Function points for real 

life application is given in tables 23 to 26.  

K  DET RET µ Count FFP FP 
60 3 0.5 2 17.00 20 K2=90 

75 3 0.75 1 11.00 10 

Total 3 28.00 30 

Table 23: Calculation of FP and FFP for EIF 
 

K DET FTR µ Count FFP FP 

22 1 0.30 3 12.90 15 

10 2 0.71 4 18.86 20 K4=38 
 22 3 0.30 3 16.80 21 

Total 10 48.56 56 

Table 24: Calculation of FP and FFP for EO 
 

K DET FTR µ Count FFP FP 

2 1 0.20 1 0.80 3 K4=38 
 21 1 0.20 3 12.60 12 

1 2 0.33 1 1.33 3 K5=38 
 7 2 0.29 2 8.57 8 

K6=11 2 4 0.67 2 5.33 8 

Total 9 28.64 34 

Table 25: Calculation of FP and FFP for EQ 
 

K DET FTR µ Count FFP FP 

2 1 0.25 3 2.25 9 K7=31 
 16 1 0.13 5 15.63 20 

4 2 0.00 2 8.00 6 

7 2 0.50 3 10.50 12 K8=31 
 13 2 0.40 6 21.60 24 

K9=9 3 3 0.50 8 40.00 32 

Total 27 97.98 103 

Table 26: Calculation of FP and FFP for EI 
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Comparison of Function Points using conventional and Fuzzy Technique: 
 

 FP FFP 

ILF 0 0 
EIF 30 28.00 

EO 56 48.56 
EQ 34 28.64 
EI 103 97.98 
Total UFP 211 203.17 

Table 27 
 

 UFP VAF Total 

FP 211 1.13 238.43 

FFP 203.17 1.13 229.58 

Table 28 
 

5. CONCLUSION AND FUTURE RESEARCH 

The proposed study extends function point analysis to fuzzy function point analysis, using triangular fuzzy 

numbers. In FPA linguistic terms are used for some ranges of DET for which function points are considered 

to be the same. Of course they vary throughout these ranges. By using trapezoid shaped fuzzy numbers the 

problem is solved to some extent. We get better results then FPA by using Trapezoid shaped fuzzy numbers 

for linguistic terms for DETs in the border areas while for a considerable middle part of the range 

represented by linguistic term, the problem is not solved. In the proposed study triangular fuzzy numbers are 

used for linguistic terms, with the help of which we get variation of function points throughout the range 

represented by a linguistic term. Surely we must get better results. The methodology of fuzzy sets used for, 

in the proposed study, is sufficiently general and can be applied to other areas of quantitative software 

engineering. 
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