
Harish Mittal, Pradeep Bhatia

International Journal of Computer Science and Security Volume (1) : Issue (4) 36

A comparative study of conventional effort estimation and fuzzy

effort estimation based on Triangular Fuzzy Numbers

Harish Mittal harish.mittal@vcenggrtk.com

Department of IT
Vaish College of Engineering,
Rohtak, 124001, India

Pradeep Bhatia pk_bhatia20002@yahoo.com

Department of Computer Science
G.J. University of Science & Technology
Hisar, 125001, India

Abstract

Effective cost estimation is the most challenging activity in software development.
Software cost estimation is not an exact science. However it can be transformed from a
black art to a series of systematic steps that provide estimate with acceptable risk.
Effort is a function of size. For estimating effort first we face sizing problem. In direct
approach size is measured in lines of code (LOC). In indirect approach, size is
represented as function points (FP). In this paper we use indirect approach. Fuzzy logic
is used to find fuzzy functional points and then the result is defuzzified to get the
functional points and hence the size estimation in person hours. Triangular fuzzy
numbers are used to represent the linguistic terms in Function Point Analysis (FPA)
complexity matrixes We can optimise the results for any application by varying the
fuzziness of the triangular fuzzy numbers.

Keywords: FP, FFP, FPA, FFPA, LOC, Fuzzy logic, Triangular Fuzzy Number, Membership function and
Fuzziness.

1. INTRODUCTION

Out of the three principal components of cost i.e., hardware costs, travel and training costs, and effort
costs, the effort cost is dominant. Software cost estimation starts at the proposal state and continues
throughout the life time of a project.
There are seven techniques of software cost estimation:

• Algorithm Cost Model

• Expert Judgments

• Estimation by Analogy

• Parkinson’s Law

• Pricing to win

• Top-down estimation

• Bottom-up estimation

If these predict radically different costs, more estimation should be sought and the costing process
repeated.
 Algorithm model, also called parametric model, is designed to provide some mathematical
equations to provide software estimation. LOC-based models are algorithm models such as [3, 13, 14,
and 15]. Ali Idri and Laila Kjjri [7] proposed the use of fuzzy sets in the COCOMO, 81 models [3]. Musilek,
P. and others [11] proposed f-COCOMO model, using fuzzy sets. The methodology of fuzzy sets giving
rise to f-COCOMO [11] is sufficiently general to be applied to other models of software cost estimation
such as function point method [9]. Software Functional size measurement is regarded as a key aspect in
the production, calibration and use of software engineering productivity models because of its
independence of technologies and of implementation decisions. W.Pedrycz and others [12] found that

Harish Mittal, Pradeep Bhatia

International Journal of Computer Science and Security Volume (1) : Issue (4) 37

the concept of information granularity and fuzzy sets, in particular, plays an important role in making
software cost estimation models more users friendly. Harish Mittal and Pradeep Bhatia [10] used
triangular fuzzy numbers for fuzzy logic sizing. Lima, O.S.J. and Others [16] proposed the use of
concepts and properties from fuzzy set theory to extend function point analysis to Fuzzy function point
analysis, using trapezoid shaped fuzzy numbers for the linguistic variables of function point analysis
complexity matrixes.

In this paper we proposed triangular fuzzy numbers to represent the linguistic variables. The results can
be optimised for the given application by varying fuzziness of the triangular fuzzy numbers. To apply
fuzzy logic first fuzzification is done using triangular fuzzy number, Fuzzy output is evaluated and then
estimation is done by defuzzification technique given in this paper.
The paper is divided into sections. Section 2 introduces related terms. In section 3, the technique of
estimation of fuzzy functional points and optimisation technique is given; section 4 gives experimental
results and section 5 gives conclusions and future research.

2. RELATED TERMS

(a) Fuzzy Number (b) Fuzzy Logic (c) Fuzziness

(d) Function Point Analysis (e) Various criterion for Assessment of Software Cost Estimation Models

(a) Fuzzy Number:

A fuzzy number is a quantity whose value is imprecise, rather than exact as in the case of ordinary single
valued numbers. Any fuzzy number can be thought of as a function, called membership function, whose
domain is specified, usually the set of real numbers, and whose range is the span of positive numbers in
the closed interval [0, 1]. Each numerical value of the domain is assigned a specific value and 0
represents the smallest possible value of the membership function, while the largest possible value is 1.
In many respects fuzzy numbers depict the physical world more realistically than single valued numbers.
Suppose that we are driving along a highway where the speed limit is 80km/hr, we try to hold the speed
at exactly 80km/hr, but our car lacks cruise control, so the speed varies from moment to moment. If we
note the instantaneous speed over a period of several minutes and then plot the result in rectangular
coordinates, we may get a curve that looks like one of the curves shown below. However there is no
restriction on the shape of the curve. The curve in figure 1 is a triangular fuzzy number, the curve in
figure 2 is a trapezoidal fuzzy number, and the curve in figure3 is bell shaped fuzzy number.

 µ(x) µ(x) µ(x)

1.0 + 1.0 1.0

0.5 0.5 0.5

0.0 0.0 0.0

 | | | | | | | | |

 70 80 90 x 70 80 90 x 70 80 90 x

Fig1: Triangular Fuzzy Number Fig2:Trapezoidal Fuzzy Number Fig3: Bell shaped Fuzzy Number

(b)Fuzzy Logic

Fuzzy logic is a methodology, to solve problems which are too complex to be understood quantitatively,
based on fuzzy set theory, and introduced in 1965 by Prof. Zadeh in the paper Fuzzy Sets [4, 5]. Use of
fuzzy sets in logical expression is known as fuzzy logic. A fuzzy set is characterized by a membership
function, which associates with each point in the fuzzy set a real number in the interval [0,1], called degree
or grade of membership. The membership function may be triangular, trapezoidal, parabolic etc. Fuzzy
numbers are special convex and normal fuzzy sets, usually with single modal value, representing uncertain

quantitative information. A triangular fuzzy number (TFN) is described by a triplet (α ,m, β), where m is the

modal value, α and β are the right and left boundary respectively.

Harish Mittal, Pradeep Bhatia

International Journal of Computer Science and Security Volume (1) : Issue (4) 38

(c) Fuzziness: Fuzziness of a TFN (α, m,β) is defined as:

Fuzziness of TFN (F) = , 0 < F< 1 … (1)

The higher the value of fuzziness, the more fuzzy is TFN

(d) Function Point Analysis (FPA):

FPA begins with the decomposition of a project or application into its data and transactional functions. The
data functions represent the functionality provided to the user by attending to their internal and external
requirements in relation to the data, whereas the transactional functions describe the functionality provided
to the user in relation to the processing this data by the application.

The data functions are:

1. Internal Logical File(ILF)
2. External Interface File (EIF)

The transactional functions are:

1. External Input(EI)
2. External Output(EO)
3. External Inquiry(EI)

Each function is classified according to its relative functional complexity as low, average or high. The data
functions relative functional complexity is based on the number of data element types (DETs) and the
number of record element types (RETs). The transactional functions are classified according to the number
of file types referenced (FTRs) and the number of DETs. The number of FTRs is the sum of the number of
ILFs and the number of EIFs updated or queried during an elementary process.

The actual calculation process consists of three steps:

1. Determination of unadjusted function points(UFP)
2. Calculation of value of adjustment factor(VAF)
3. Calculation of final adjusted functional points.

Evaluation of Unadjusted FP:

The unadjusted Functional points are evaluated in the following manner

UFP= ΣΣ Fij Zij , for j= 1 to 3 and i = 1 to 5, where Zij denotes count for component i at level (low, average or
high) j, and Fij is corresponding Function Points from table 1.

Function Points Level

ILF EIF EI EO EQ

Low 7 5 3 4 3

Average 10 7 4 5 4

High 15 10 6 7 6

Table 1: Translation table for the terms low, average and high

Value Adjustment Factor (VAF) is derived from the sum of the degree of influence (DI) of the 14 general
system characteristics (GSCc). General System characteristics are:

1. Data communications
2. Distributed data processing
3. Performance
4. Heavily utilised configuration
5. Transaction rate
6. On-line data entry
7. End-user efficiency
8. On-line update

m2

αβ −

Harish Mittal, Pradeep Bhatia

International Journal of Computer Science and Security Volume (1) : Issue (4) 39

9. Complex processing
10. Reusability
11. Installations ease
12. Operational ease
13. Multiple sites/organisations
14. Facilitate change

The DI of each one of these characteristics ranges from 0 to 5 as follows:

(i) 0- no influence
(ii) 1 -Incidental influence
(iii) 2- Moderate influence
(iv) 3- Average influence
(v) 4- Significant influence
(vi) 5- Strong influence

Total Function Points = UFP * (0.65+ 0.01 * Value Adjustment Factor)

Function points can be converted to Effort in Person Hours. Numbers of studies have attempted to relate
LOC and FP metrics [16]. The average number of source code statements per function point has been
derived from historical data for numerous programming languages. Languages have been classified into
different levels according to the relationship between LOC and FP. Programming language levels and
Average numbers of source code statements per function point are given by [17].

Complexity matrix of an ILF or EIF is given in Table 2. Complexity matrix of EO or EQ is given in Table 3.
Complexity matrix of EI is given in Table 4

DET RET

1 to 19 20 to 50 51 or more

1 Low Low Average

2 to 5 Low Average High

6 or more Average High High

Table 2: Complexity matrix of an ILF or EIF

DET FTR

1 to 5 6 to 19 20 or more

Less than 2 Low Low Average

2 or 3 Low Average High

Greater than 3 Average High High

Table 3: Complexity matrix of EO or EQ

DET FTR

1 to 4 5 to 15 16 or more

Less than 2 Low Low Average

2 Low Average High

More than 2 Average High High

Table 4: Complexity matrix of EI

The value of function points for the terms low, average and high to each FPA are given in Table1.

Harish Mittal, Pradeep Bhatia

International Journal of Computer Science and Security Volume (1) : Issue (4) 40

(e) Various Criterions for Assessment of Software Cost Estimation Models

There are 4 important criterions for assessment of software cost estimation models:

1. VAF (Variance Accounted For) (%):

VAF (%) = …(2)

2. Mean absolute Relative Error (%):

 Mean absolute error (%) = ...(3)

3. Variance Absolute Relative Error (%):

Variance Absolute Relative Error (%) = …(4)

4. Pred (n): Prediction at level n((Pred (n))is defined as the % of projects that have absolute relative error

under n[8].

Where,

Var x = ...(5)

 x = mean x

 E = measured effort

Ê = estimated effort

 f = frequency

 Absolute Relative Error (RE) = …(6)

3. FUZZY FUNCTIONAL POINT ANALYSIS (FFPA)

FFPA consists of the following three stages:

1. Fuzzification

2. Defuzzification

3. Optimization

1 Fuzzification

We take each linguistic variables as a triangular Fuzzy numbers, TFN (α, m, β), α≤m, β≥ m. The

membership function (µ(x)) for which is defined as:

 0, x ≤ α

µ(x) = x-α / m - α , α≤ x ≤ m …….(7)

 β-x / β-m , m≤ x ≤ β

 0, x≥ β

 Fig4: representation of TFN (α, m,β)

We create a new linguistic variable, TFN (α, m, k), high or very high, where k is a positive integer. In case
low and average are given, we create high variable. In case low, average and high are given, we create very
high variable. In case average and high are given, we create very high variable. The creation of the new
linguistic variable helps to deal better with larger systems.

 0 α m β x

µ(x)

100*
 var

)ˆ(var
1

 −
−

E

EE

100*
) (2

∑
∑ ΕΕ −

f

RmeanRf

100*
)(

∑
∑

f

Rf E

∑
∑ −

f

xf
2

)x (

E

EE ˆ−

Harish Mittal, Pradeep Bhatia

International Journal of Computer Science and Security Volume (1) : Issue (4) 41

Fuzziness of the created linguistic variable (F) = (k-α)/2m, 0< F < 1. …….. (8)

So that k=2 F m +α. …… (9)

We can estimate the function points for the new variable, very high, by extrapolation using Newton’s
interpolation formula [16]. The estimated values of function points are 22,14,9,10 and 9 for the functions
ILF, EIF, EI, EO and EQ respectively.

Modified Complexity Matrices for various data and transaction functions are given in the following tables:

DET Complexity

1-50 Low

51-k1

k1 ≤ 102

Average

K1+1 or more High

Table 5: Modified Complexity Matrix for ILF & EIF (RET =1)

Fig 5

DET Complexity

1-19 Low

20-50 Average

51-k2

k2 ≤ 102

High

K2+1 or more V. High

Table 6: Modified Complexity Matrix for ILF & EIF (RET = 2 to 5)

Fig 6:

DET Complexity

1-19 Average

20-k3

k3 ≤ 40

High

K3+1 or more V. High

Table 7: Modified Complexity Matrix for ILF & EIF (RET ≥ 6)

 x/25 (50-x)/25 (x-50)/20 (90-x)/20

0 25 50 70 90 DET=x

 Low Avg =k1

µ(x)

 1

0 10 19 35 50 70 90 DET=x

 Low Avg High =k2 V. High

µ(x)

 1

Harish Mittal, Pradeep Bhatia

International Journal of Computer Science and Security Volume (1) : Issue (4) 42

Fig7:

DET Complexity
1-19 Low
20-k4

k4 ≤ 40

Average

K4+1 or more High

Table 8: Modified Complexity Matrix for EO & EQ (FTR ≤ 2)

 Fig 8:

DET Complexity
1-5 Low

6-19 Average

20-k5

k5 ≤ 40

High

K5+1 or more V. High

Table 9: Modified Complexity Matrix for EO & EQ (FTR = 2 or 3)

Fig 9:

DET Complexity
1-5 Average

5-k6

k6 ≤ 12

High

K6+1 or more V.High

Table 10: Modified Complexity Matrix for EO & EQ (FTR ≥ 4)

0 10 19 29 38 High DET=x

 Low Avg =k4

µ(x)

 1

0 3 5 12 19 29 38 DET=x

 Low Avg High =k5 V. High

 High

µ(x)

 1

0 10 19 29 38 DET=x

 Average High =k3 V. High

µ(x)

 1

Harish Mittal, Pradeep Bhatia

International Journal of Computer Science and Security Volume (1) : Issue (4) 43

Fig 10:

DET Complexity

1-15 Low

16-k7

k7 ≤ 32

Average

K7+1 or more High

Table 11: Modified Complexity Matrix for EI (FTR = 1)

Fig 11:

DET Complexity
1-4 Low

5-15 Average

16-k8

k8 ≤ 32

High

K8+1 or more V. High

Table 12: Modified Complexity Matrix for EI (FTR = 2)

Fig 12:

DET Complexity
1-4 Average

5-k9

k9 ≤ 10

High

K9+1 or more V.High

Table 13: Modified Complexity Matrix for EI (FTR ≥ 2)

0 3 5 8 11 DET=x

Avg High =k6 V. High

µ(x)

 1

0 2 4 10 15 23 31 DET=x

 Low Avg High =k8 V. High

µ(x)

 1

0 8 15 23 31 High DET=x

 Low Avg =k7

µ(x)

 1

Harish Mittal, Pradeep Bhatia

International Journal of Computer Science and Security Volume (1) : Issue (4) 44

Fig 13:

Defuzzification:
Defuzzification rules for various data and transaction functions are given in the following tables.

Defuzzification for ILF and EIF

 DET
FFP

1-25 25-50 50-70 70-90

ILF µ*7 (µ*7)+ (1-µ)*10 (µ*10)+ (1-µ)*7 (µ*10)+ (1-µ)*15

EIF µ*5 (µ*5)+ (1-µ)*7 (µ*7)+ (1-µ)*5 (µ*7)+ (1-µ)*10

Table 14: Case 1 for RET =1

 DET
FFP

1-10 10-19 19-35 35-50 50-70 70-90

ILF µ*7 (µ*7)+ (1-µ)*10 (µ*10)+ (1-µ)*7 (µ*10)+ (1-µ)*15 (µ*15)+ (1-µ)*10 (µ*15)+ (1-µ)*22

EIF µ*5 (µ*5)+ (1-µ)*7 (µ*7)+ (1-µ)*5 (µ*7)+ (1-µ)*10 (µ*10)+ (1-µ)*7 (µ*10)+ (1-µ)*14

Table 15: Case 2 for 2 ≤ RET ≤ 5

 DET
FFP

1-10 10-19 19-29 29-38

ILF µ*10 (µ*10)+ (1-µ)*15 (µ*15)+ (1-µ)*10 (µ*15)+ (1-µ)*22

EIF µ*7 (µ*7)+ (1-µ)*10 (µ*10)+ (1-µ)*7 (µ*10)+ (1-µ)*14

Table 16: Case 3 for RET ≥ 6

Defuzzification for EO and EQ:

 DET
FFP

1-10 10-19 19-29 29-38

EO µ*4 (µ*4)+ (1-µ)*5 (µ*5)+ (1-µ)*4 (µ*5)+ (1-µ)*7

EQ µ*3 (µ*3)+ (1-µ)*4 (µ*4)+ (1-µ)*3 (µ*4)+ (1-µ)*6

Table 17: Case 1 FTR < 2

 DET
FFP

1-3 3-5 5-12 12-19 19-29 29-38

EO µ*4 (µ*4)+ (1-µ)*5 (µ*5)+ (1-µ)*4 (µ*5)+ (1-µ)*7 (µ*7)+ (1-µ)*5 (µ*7)+ (1-µ)*10

EQ µ*3 (µ*3)+ (1-µ)*4 (µ*4)+ (1-µ)*3 (µ*4)+ (1-µ)*6 (µ*6)+ (1-µ)*4 (µ*6)+ (1-µ)*9

Table 18: Case 2 FTR = 2 or 3

 RET
FFP

1-3 3-5 5-8 8-11

 EO µ*5 (µ*5)+ (1-µ)*7 (µ*7)+ (1-µ)*5 (µ*7)+ (1-µ)*10

 EQ µ*4 (µ*4)+ (1-µ)*6 (µ*6)+ (1-µ)*4 (µ*6)+ (1-µ)*9

Table 19: Case 3 FTR > 3

0 2 4 6 8 DET=x

Avg High =k9 V. High

µ(x)

 1

Harish Mittal, Pradeep Bhatia

International Journal of Computer Science and Security Volume (1) : Issue (4) 45

Defuzzification for EI:

 DET
FFP

1-8 8-15 15-23 23-37

EI µ*3 (µ*3)+ (1-µ)*4 (µ*4)+ (1-µ)*3 (µ*4)+ (1-µ)*6

Table 20: Case 1 FTR < 2

 DET
FFP

1-2 2-4 4-10 10-15 15-23 23-31

 EI µ*3 (µ*3)+ (1-µ)*4 (µ*4)+ (1-µ)*3 (µ*4)+ (1-µ)*6 (µ*6)+ (1-µ)*4 (µ*6)+ (1-µ)*9

Table 21: Case 2 FTR= 2

 RET
FFP

1-2 2-4 4-6 6-8

EI µ*4 (µ*4)+ (1-µ)*6 (µ*6)+ (1-µ)*4 (µ*6)+ (1-µ)*9

Table 22: Case 3 FTR > 2

Optimisation

Optimization of result for an application can be done on the basis any of the four criteria given in section 2,
by varying one or more variables k1, k2, k3, k4, k5, k6, k7, k8 and k9.

4. EXPERIMENTAL STUDY

The data for experimental study is taken from [18]. Calculation of Unadjusted Fuzzy Function points for real

life application is given in tables 23 to 26.

K DET RET µ Count FFP FP
60 3 0.5 2 17.00 20 K2=90

75 3 0.75 1 11.00 10

Total 3 28.00 30

Table 23: Calculation of FP and FFP for EIF

K DET FTR µ Count FFP FP

22 1 0.30 3 12.90 15

10 2 0.71 4 18.86 20 K4=38
 22 3 0.30 3 16.80 21

Total 10 48.56 56

Table 24: Calculation of FP and FFP for EO

K DET FTR µ Count FFP FP

2 1 0.20 1 0.80 3 K4=38
 21 1 0.20 3 12.60 12

1 2 0.33 1 1.33 3 K5=38
 7 2 0.29 2 8.57 8

K6=11 2 4 0.67 2 5.33 8

Total 9 28.64 34

Table 25: Calculation of FP and FFP for EQ

K DET FTR µ Count FFP FP

2 1 0.25 3 2.25 9 K7=31
 16 1 0.13 5 15.63 20

4 2 0.00 2 8.00 6

7 2 0.50 3 10.50 12 K8=31
 13 2 0.40 6 21.60 24

K9=9 3 3 0.50 8 40.00 32

Total 27 97.98 103

Table 26: Calculation of FP and FFP for EI

Harish Mittal, Pradeep Bhatia

International Journal of Computer Science and Security Volume (1) : Issue (4) 46

Comparison of Function Points using conventional and Fuzzy Technique:

 FP FFP

ILF 0 0
EIF 30 28.00

EO 56 48.56
EQ 34 28.64
EI 103 97.98
Total UFP 211 203.17

Table 27

 UFP VAF Total

FP 211 1.13 238.43

FFP 203.17 1.13 229.58

Table 28

5. CONCLUSION AND FUTURE RESEARCH

The proposed study extends function point analysis to fuzzy function point analysis, using triangular fuzzy

numbers. In FPA linguistic terms are used for some ranges of DET for which function points are considered

to be the same. Of course they vary throughout these ranges. By using trapezoid shaped fuzzy numbers the

problem is solved to some extent. We get better results then FPA by using Trapezoid shaped fuzzy numbers

for linguistic terms for DETs in the border areas while for a considerable middle part of the range

represented by linguistic term, the problem is not solved. In the proposed study triangular fuzzy numbers are

used for linguistic terms, with the help of which we get variation of function points throughout the range

represented by a linguistic term. Surely we must get better results. The methodology of fuzzy sets used for,

in the proposed study, is sufficiently general and can be applied to other areas of quantitative software

engineering.

6. REFERENCES

1. Alaa F. Sheta, “Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA

Software Projects”. Journal of Computer Science 2(2):118-123, 2006.

2. Bailey, J.W. and Basili, “A Meta model for software development resource expenditure”. Proc. Intl.

Conf. Software Engineering, pp: 107-115, 1981.

3. Boehm, B., “Software Engineering Economics”, Englewood Cliffs, NJ. Prentice-Hall, (1981).

4. L.A. ZADEH., “From Computing with numbers to computing with words-from manipulation of

measurements to manipulation of perceptions”, Int. J. Appl. Math. Computer Sci., Vol.12, No.3, 307-

324., 2002.

5. L.A. ZADEH, “Fuzzy Sets, Information and Control”, 8, 338-353, 1965.

6. Roger S. Pressman, “Software Engineering; A Practitioner Approach”, Mc Graw-Hill International

Edition, Sixth Edition (2005).

7. Ali Idri , Alain Abran and Laila Kjiri, “COCOMO cost model using Fuzzy Logic”, 7
th
 International

Conference on Fuzzy Theory & Technology Atlantic, New Jersy, 2000.

8. Emilia Mendes, Nile Mosley, “Web Cost Estimation: An Introduction, Web engineering: principles

and techniques”, Ch 8, 2005.

9. J.E. Matson, B.E. Barrett, J.M. Mellichamp, “Software Development Cost Estimation Using Function

Points”, IEEE Trans. on Software Engineering, 20, 4, 275-287, 1994.

Harish Mittal, Pradeep Bhatia

International Journal of Computer Science and Security Volume (1) : Issue (4) 47

10. Harish Mittal, Pradeep Bhatia, “Optimization Criterion for Effort Estimation using Fuzzy Technique”.

CLEI Electronic Journal, Vol. 10 Num. 1 Pap. 2, 2007.

11. Musílek, P., Pedrycz, W., Succi, G., & Reformat, M., “Software Cost Estimation with Fuzzy Models”.

ACM SIGAPP Applied Computing Review, 8(2), 24-29, 2000.

12. W.Pedrycz, J.F.Peters, S. Ramanna, “A Fuzzy Set Approach to Cost Estimation of Software

Projects”, Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer

Engineering Shaw Conference Center, Edmonton Alberta, Canada, 1999.

13. A. J. Albrecht, “Measuring application development productivity”, SHARE/GUIDE IBM Application

development Symposium.

14. V. R. Basili, K. Freburger, “Programming Measurement and Estimation in the Software Engineering

Laboratory”, Journal of System and Software, 2, 47-57, 1981.

15. B. W. Boehm et al., “Software Cost Estimation with COCOMO II”, Prentice Hall, (2000).

16. Lima O.S.J., Farias, P.P.M. Farias and Belchor, A.D., “A Fuzzy Model for Function Point Analysis to

Development and Enhancement Project Assessments”, CLEI EJ 5 (2), 2002.

17. Jones, C., 1996, “Programming Languages Table”, Release 8.2, March

18. Chuk Yau, Raymond H.L. Tsoi, “Assessing the Fuzziness of General System Characteristics in

Estimating Software Size”, IEEE, 189-193, 1994.

