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Abstract 
 
The success of an image recognition procedure is related to the quality of the edges marked. The 
aim of this research is to investigate and evaluate edge detection techniques when applied to 
noisy images at different scales. Sobel, Prewitt, and Canny edge detection algorithms are 
evaluated using artificially generated images and comparison criteria: edge quality (EQ) and map 
quality (MQ). The results demonstrated that the use of these criteria can be utilized as an aid for 
further analysis and arbitration to find the best edge detector for a given image. 
 
Keywords: Image Edge Detection, Gaussian Noise, Gaussian Smoothing. 

 
 
1. INTRODUCTION 

Edge extraction is usually the starting step in segmentation because it effectively detects the 
limits of the objects. These limits are commonly called "edges" [1]. Edge extraction is used mostly 
in image recognition, classification or interpretation procedures because it provides a compressed 
amount of information for processing [2]. The evidence for the best detector type is judged by 
studying the edge maps relative to each other through statistical evaluation [3]. Singh et al. [4] 
concluded that the Sobel, Prewitt, Roberts, Canny provide low quality edge maps as compared to 
Laplician of Gaussian (LoG). Comparison is done on the basis of two parameters PSNR and 
MSE. 
 
This paper is organized into five sections as follows: 
Section one introduces the topics of edge detection and scale space analysis. Section two 
reviews the theory and the mathematical background that is used to assess the analysis of the 
techniques and procedures followed throughout this work. Section three starts with the images 
that are used, and also a specific generated reference image are described along with other 
related methods which are adopted to achieve the aims of this research. Section four summarizes 
the results found when evaluating the success rate of the investigated edge detectors. Finally, in 
section five conclusions and suggestions for future work are considered. 
 
2. THEORY 

In this section, the essential derivative concept for edge detectors (sec 2.2) In 2-D images is 
introduced, along with a suggested approach which has been used in edge detector 
implementations.  
 
2.1 Edge Detection 
Firstly an "edge point" represents an abrupt change in an image brightness function which occurs 
at boundaries; each edge point has a magnitude and direction, i.e. it is a vector variable [5]. The 
edge magnitude represents edge intensity or the strength of the edge point and edge direction 
depicts the tangent of the direction at that point. 
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Since the image varies in two dimensions, accordingly edge variations are also calculated in two 
directions, i.e. horizontal direction i and vertical direction j. Therefore, two partial derivative 
components are needed to describe the edge gradient in both  i  and  j  directions: 
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also the angle between Ii and Ij can also be specified as: 
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The edge strength magnitude at each pixel (i,j) can be simply expressed as: 
             

    
2 2( , ) i jI IE i j     (4) 

or 
             

    II ji
)j,i(E     (5) 

 
To simplify image calculations and transformations, i.e. square and square root transformations, 
in this work, instead of using the definition in equation (4), it is suggested that E(i,j) be expressed 
as the maximum of the two directional gradients [5]   and : 
             

     ( , ) max ,E i j I Ii j    (6) 

 
The definition of   in equation (3) is the same as before. Equation (6) has been used extensively 
throughout the implementation procedure in various edge detectors. It is noticed that equation (6) 
calibrates the edge strength E within its maximum allowable range, i.e. E has a value not 
exceeding 255 when representing an image in 8-bit or 256 gray levels. In contrast, the standard 

magnitude notation in (4) increases the value of E by 2  at equal gradients, i.e. iI  equals jI  

and the simple addition in (5) doubles E. 
 
2.2 Image Edge Detectors 
Various edge detectors will be evaluated according to the maximum edge map [1] that they 
produce as discussed later. The robustness of the edge detectors to different levels of noise will 
be investigated as well. Common edge detectors are considered in this section. The first and 
second derivative approaches are discussed below. 
 
2.2.1 First Derivative Edge Detectors 
Some of the edge operators utilize pixel differences to approximate derivatives for example, the 
Roberts operator [5]. In contrast other edge detectors apply several rotational kernels to 
approximate first derivatives such as Sobel, Prewitt, Robinson, and Kirsch [5].  
 
Since digital images are discrete in nature, so derivatives can be approximated as differences 
between pixel values. Therefore, the partial derivatives in (1) and (2) can be approximated by one 
pixel difference as in (7) and (8), respectively: 
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         j,iIj,1iIj,iI i
  (7) 

 
             

         j,iI1j,iIj,iI j
   (8) 

 
The Roberts operator involves two kernels (templates) to measure the rate of change of image 
intensity in two orthogonal directions as shown in the figure below. 
 
 

1 0  0 1 

0 -1  -1 0 
      (a)                                             (b) 
       

FIGURE 1: The Roberts edge operator kernels. 

 
 
This will yield two images Ia  and Ib from the above kernel in Figures 1(a) and 1(b), respectively. 

The absolute pixel values of  j,iI a   and  j,iIb  are: 

             

        1j,1iIj,iIj,iI a
    (9) 

              

        j,1iI1j,iIj,iI b
   (10) 

 
Consequently, the Roberts edge magnitude would be calculated by applying equation (6), using 
the results from (9) and (10), as 
 

    II ji
,max)j,i(E      (11) 

 
It is noticed that the Roberts operator uses a total of 4-neighbourhoods, or two pixels in each 
orthogonal direction, to approximate the derivative which results in high sensitivity to noise [5]. In 
contrast, other first derivative edge detectors utilize up to 8-neighbourhood pixels in each 3x3 
rotational kernel, for example Robinson and Kirsch [5]. For example, the first three possible 
successive rotational kernels in the Robinson edge detector are : 

 

                            

            k1=          k2=     k3=                                  

            

   

The eight rotational kernels (k1 to k8) for Sobel and Prewitt are generated and listed in Appendix 
A. The simple rotation [5] is applied onto the 8-neighbourhoods pixels by rotating them one 
consistent circular step, in a clockwise or anticlockwise direction, to yield a kernel  ki , as shown 
between k1 to k2 or k2 to k3. 
 
Edge operator is a good high-pass filter for an image, i.e. it can detect sharp intensity changes, 
when the image is free of noise. However, this operator is not considered as a good edge 
detector because it also detects the noise pixels as edges and increases their intensity [2,7]. 
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A practical approach in attenuating or reducing the amount of noise is called noise smoothing or 

simply smoothing [2,8]. This can be tackled with the Gaussian smoothing operator  j,iG  , or 

Gaussian for short, and is given by [2] 
             

   
2

22

2

ji

e;j,iG 




     (12) 

 
where    is the scale parameter, the standard deviation, which defines the bandwidth of the filter 

and therefore the level of smoothing [2]; the larger the parameter   , the less the presence of 

higher frequencies, and the more the blurring of the image [2]. Noise smoothing using the 
Gaussian kernel is a linear filtering operator, since the image is convolved with a constant kernel 
or kernel model (G) as [8] 
             

   GIIG      (13)   

 
The integer Gaussian filter, refer to Appendix B, is adopted in this work because it rounds to 
integers the real numbers contained in the kernel. The smallest integer used in the kernel is 1. 
Appendix B lists ten integer Gaussian kernels at different scales  ; which have been used 

throughout this study. 

 
3. METHODLOGY 

In the previous section a literature review on the topics relating to this work was presented. In this 
section the generated synthetic images used in evaluating various edge detection algorithms is 
introduced. Within this section some examples of edge detection techniques are implemented 
and the generated and used images are also considered. Finally, the necessary comparison 
criteria, which are used as an aid for arbitration, are investigated.      
 
3.1 Gaussian Noise Deviates 
Noise, in general, is defined differently according to the case it is introduced in [8]. In image and 
signal processing: 
 
• It might be considered as false contours when trying to group meaningful objects or lines. 
• In edge or line detection, noise might be the spurious fluctuations of pixel values which 
 may be introduced by the image acquisitions system [8]. 
 
In our case, the noise is chosen to be an additive amount [8] to an artificially generated [1] noise-
free image (discussed in the next section). Therefore, a generated noise image n(i , j) added to 
the true image, free-of-noise, I(i , j) will yield In(i , j) as 
             

      j,inj,iIj,iI
n

      (14) 

 
The Gaussian noise deviates model is chosen in this study because: 
1. Define the Gaussian noise values which are normally distributed deviates with zero mean and 

at fixed standard deviations, n as nn(i , j; σ ) . These noise values are completely independent 

of each other and also, of the true image e.g.  ,I i j . Noise is considered to be additive. 

2. The symmetrical nature of this model is a practical approximation. In contrast impulsive noise, 
otherwise known as spots or peak noise, randomly alters pixels so that their values deviate 

considerably from the true values  ,I i j .  
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Two Gaussian deviates are generated by the algorithm introduced by Press et al. [9]. This 

algorithm has been developed to generate these normal deviates at the desired n  and in two 

dimensions  i   and  j  to yield finally a noise image, file, of size mxn . 

 
3.2 Generated Images 
Ramalho's artificially generated images [1,10] Band A and Band B are shown in Figures 3.1 and 
3.2; these are mainly used in this study. The Ramelho's Band B reference edge image, as shown 
in figure 3.3, is also used as a reference for correct and wrong marked edge pixels; it is a binary 
image i.e. one level represents the correct edges while the other refers to wrong marked edges. 
Therefore, edge images which result from the set of edge detection algorithms (discussed in 
section 3.4) are compared with the aid of this reference image to compute the percentage of 
missed edges. Comparison criteria are investigated in the next section. 
 

` 

 

  
 

FIGURE 3.1: Ramalho's [1] Band A original 

image. 

 
FIGURE 3.2: Ramalho's [1] Band B original image. 

 
Enhancement image operations are performed on the Band B reference image to yield closed 
contours of one pixel wide edges coinciding with the centers of corresponding pixels of the 
original image [11] (Band B original image shown in figure 3.2). The enhancement process has 
included the following three major steps: 
 
1.  Simple segmentation operation to segment the original image into a one closed contour object 
 and background.   
2.  Logically based routine to mark outside boundaries of the main object. 
3. Logical and mathematical operations between Ramelho's original reference and the image 
 result from step 2. 
 
Figure 3.4 shows the output images resulting from the steps followed to prepare this enhanced 
reference. 
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FIGURE 3.3: Ramalho's[1] Band B Reference 

image (256x256) pixels. 

FIGURE 3.4: Enhanced  Band B Reference image 

(150x150) pixels. 

 
3.3 Comparison Criteria 
According to Pratt [12], the only performance measure of ultimate importance is the 
completeness and quality of and edge map. A feasible approach introduced by Ramalho [1] 
shows significant advantages of using a neural network in the comparison of edge detection 
techniques, in contrast with the conventional edge detection techniques. Ramalho's [1] has 
developed two ratios to compare and evaluate this quality of edges which are produced by a 
selected set of edge detection algorithms. These ratios are designated as edge quality (EQ) and 
map quality (MQ) as follows 
             

   

CW

C
EQ


     (15) 

 
             

   

MCW

C
MQ


    (16) 

 
where C refers to the correctly marked edges, W to the wrongly marked edges, and M to missed 
edges. The map quality ratio is chosen in this study as a base measure for the quality of edges 
produced by a set of edge detection algorithms (as discussed in the next section) because (i) 
edge detectors which mark a small number of correct edges are penalized [1], (ii) it is more 
accurate since the missed points are also included; in contrast EQ  gives in such case a 
misleading result. For example the case when an edge operator marks a very small number of 
both wrong and correct points, In this case if W goes to zero then EQ will measure a false ratio of 
one. 
 
3.4 Edge Detection Algorithms 
A diversity of edge detection algorithms and their implementations are considered in this section. 
First derivative edge detectors which are based on the convolution operations, are introduced in 
section two. Due to the similarities between these filters, one algorithm is introduced ; the Sobel 
edge detector algorithm is selected as an example from this category. 
 
The thresholding step is commonly used in edge detection algorithms [1,8] to determine a 

threshold value () above which the image points are considered as edges [8]. Different 

thresholding techniques are reviewed by Shaoo et al. [13]. The problem with this type of 
traditional edge detection approach is that a low threshold produces false edges, but a high 
threshold misses important edges [14]. Panda et al. [15] investigated different first and second 
derivative filters to find edge map after denoising a corrupted gray scale image. Subjective 
method has been used by visually comparing the performance of the proposed derivative filter 
with other existing first and second order derivative filters. For objective evaluation of the 
derivative filters, the root mean square error and root mean square of signal to noise ratio are 
used.  
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In this research the suggested method for noisy images, requires a strategy to take into 
consideration the overall probability of these images. The standard deviation of the Gaussian 
noise should be taken into account when calculating the threshold.  
 
The discussion above can be summarized in the following proposed edge detection algorithm:  
 
Algorithm: Proposed Sobel edge detection based on eight Sobel rotational  kernels. 

 
 

{Detection} 

  For i=1 to 8 do   {eight rotational  kernels k1 to k8 } 

    k iI I k   {convolve image I with kernel ik } 

  end for 

  
1 8

( , ) max k kI to IE i j   {maximum gradients} 

       

{Thresholding} 

                              { computes threshold .   is the mean of ( , )E i j ,   is its    

                                                    standard deviation, and   is an adjustable parameter }  
 

                            ( , )E i j   { mark edges which have edge strength greater than  }  

        

 
The above algorithm consists mainly of two major parts: Detection and Thresholding. 

 

The Detection step performs eight convolution operations on the image I, by operating eight 
rotational kernels k1 to k8 , which model eight orientation images (at eight orientations 

i.e. 47...,2,4,0  ). Each orientation image represents a directional gradient and the 

greatest gradient will constitute the edge strength E( i , j) : this was discussed in section two.  

 

In the Thresholding operation, the selection of   is designed to be such that all pixels points of the 

edge strength E( i , j) are greater than . However it is important to determine a method to 

calculate . A method is suggested for choosing this threshold according to a combination of the 

mean and the standard deviation    of the edge detector output image, E( i , j), as discussed in 
the next section. 

 

Extensive experiments have been carried out on noisy images (e.g. Band A and Band B shown in 
figures 3.1 and 3.2, respectively). It is found that a common approximation that is made to the 

threshold value   is a percentage of the highest value of E( i , j) as follows: 
 

      j,iEmax    (17) 

 

For example 5.0  will mark all pixels of  E( i , j)  which are above 50% of its maximum. This 

relation is misleading, especially when an image is corrupted by a large amount of noise, for 
example when noise n(i ,j) with large variance, is added to the true image I(i ,j). For example, in 

this study, five levels of noise are chosen at .75and,50,30,10,1n   

 

The suggested method to compute   will takes into consideration the amount of additive noise. 
The derived relation given as  

             (18) 
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where   is the mean value of the strength image E( i , j),   is its standard deviation, and    is an 
adjustable parameter which may give a flexible range to control the output of an edge detector 

more. Here    is taken to be the sum of   and    i.e. 1 . 

 

The relation in (18) is successfully experimented on different images and yields a qualitatively 
good edge output. Therefore, the {Thresholding} section in the above algorithm is developed as  
 

{Thresholding} 

    j,iEMean   {Get the mean value of  image E( i , j) } 

    j,iEStdDev   {Get the standard deviation of image E( i , j)}  

      

 
In the next section the performance of different edge detectors are evaluated according to the 
comparison criteria which were mentioned earlier in this section. 

 
4. RESULTS AND DISCUSSION 
In this section the output of three edge detectors are evaluated using the map quality ratio (MQ), 
section 3.3. Firstly, five levels of noise are added to the Band B image (Figure 3.2), then each 
level is smoothed at gradual scales; ten gradual smoothing steps are used. Finally, for each edge 
detector there are five curves showing the fluctuation of edge success rate; the percentage of 
map quality MQ represents this rate.  
 
4.1  Effect of Gaussian Noise Deviates on Edge Detectors 
To achieve the foregoing objectives, the performance of each edge detector is analyzed for five 

levels of Gaussian noise deviates; .75,50,30,10,1n and  Figure 4.1 shows the Band B 

image exposed to these five levels of noise: 
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   FIGURE 4.1: Five noise levels added to Band B image. 

   Images (a) at 1n  , (b) 10n  , (c) 30n  , (d) 50n  , 

   (e) 75n  .      

 
At each noise level there are ten gradual steps of smoothing according to convolution kernel 
width given as 

    5 gW     (19) 

This is an adequate width of the Gaussian filter because it subtends 98.76% of the area under the 

curve [8]. The degree of smoothing is determined by the standard deviation of the Gaussian g ; 

larger standard deviation Gaussians require larger convolution kernels. To clear ambiguities, 

Appendix C lists in tabular form the detailed data summarizing the values of  g , kernel sizes, 

percentage of correct, wrong, and missed edges, and the overall map quality MQ. Figures 4.2 to 
4.4 illustrate the performance of the three edge detectors: Sobel, Prewitt,  and Canny. The edge 

quality decreases with the increase of scale g of the Gaussians.  

 

In this research the suggested method for noisy images, requires a strategy to take into 
consideration the overall probability of these images. The improved selection of thresholding in 
Sobel and Prewitt algorithms using the sum of mean and standard deviation of the Gaussian 
noise. Then the image is run through the proposed Sobel or Prewitt algorithms, this process is 
hardly affected by noise. The MQ results indicated that the Proposed Sobel and Prewitt edge 
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detection algorithms outperform Canny algorithm. The enhanced detection step in Sobel and 
Prewitt performs eight convolution operations and this will enrich the detection of edge pixels. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.2: Edge map quality of smoothed Sobel edge detector 

corrupted by Gaussian noise. 

FIGURE 4.3: Edge map quality of smoothed Prewitt edge 

detector corrupted by  Gaussian noise. 
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FIGURE 4.4: Edge map quality of smoothed Canny edge detector corrupted by  Gaussian noise. 

 

5. CONCLUSION AND FUTURE WORK 
The aims of this research have been stated and methods are also suggested to aid in achieving 
the following objectives: 
 

 The necessary comparison criteria that assist in the evaluation of the performance of edge 
detector are investigated. 

 Edge detectors outputs 'edge marked' are evaluated by using the map quality MQ ratio. 
 
The performance of three edge detectors are analyzed for five levels of Gaussian noise deviates; 

.75,50,30,10,1n and  At each noise level there are ten gradual steps of smoothing 

according to convolution kernel width given as 5W  .  
 

Future work suggests that the learning set of artificially generated images used by Ramalho can 
be used to train the neural network which will (i) be utilized as an aid to the arbitration strategy, 

and (ii) used to define the ideal sigma g  that corresponds to the ideal noisy image within every 

level of noise. The neural network will also be used to determine the overall performance of the 
edge detector itself. 
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APPENDIX A.  Convolution Kernels: 
 

         1 0 -1  

k1 =  2 0 -2 

         1 0 -1 

         2 1  0  

k2 =  1 0  -1 

         0 -1 -2 

        1  2  1  

k3 =  0 0  0  

       -1 -2 -1 

          0  1 2  

k4 =  -1  0  1 

         -2 -1 0 

 

        -1 0 1  

k5 =  -2 0 2 

         -1 0 1 

       -2 -1 0   

k6 = -1 0  1 

         0 1  2 

        -1 -2 -1  

k7 =  0  0   0 

         1  2   1 

         0 -1 -2  

k8 =  1  0 -1 

         2  1  0 

 
TABLE A.1: Sobel eight rotational kernels. 

 

 

        1 0 -1  

k1 =  1 0 -1 

         1 0 -1 

         1 1  0  

k2 =  1 0  -1 

         0 -1 -1 

        1  1  1  

k3 =  0 0  0  

       -1 -1 -1 

          0  1 1  

k4 =  -1  0  1 

         -1 -1 0 

 

        -1 0 1  

k5 =  -1 0 1 

         -1 0 1 

       -1 -1 0   

k6 = -1 0  1 

         0 1  1 

        -1 -1 -1  

k7 =  0  0   0 

         1  1   1 

         0 -1 -1  

k8 =  1  0 -1 

         1  1  0 

 
TABLE A.2: Prewitt eight rotational kernels. 

 
 

         3 3  3  

k1 =  3 0  3 

       -5 -5 -5  

          3  3  3   

k2 =  -5 0  3 

         -5 -5 3 

         -5 3  3  

k3 =  -5 0  3  

         -5 3 3 

         -5 -5 3  

k4 =  -5  0 3 

          3  3 3 

 

        -5 -5 -5  

k5 =   3  0 3 

         3  3 3 

         3 -5 -5  

k6 =  3  0  -5 

         3  3  3 

         3 3 -5  

k7 =  3 0 -5 

         3 3 -5 

         3  3  3  

k8 =  3  0 -5 

         3 -5 -5 

 
TABLE A.3: Kirsch eight rotational kernels. 

 

 

APPENDIX B. Gaussian Smoothing Kernels: 
 
Gaussian Integer Kernels Gi :  
 

                 
22

2, , 2

yx
G x y e




   

 

The normalization factor  f  can be determined by   
            

                 
min

1f
g

             ,
ming is the  minimum floating point value of  kernel G  

             

The entries of the non-normalized filter are  

 

                        





















g

,j,iGfint
g

,j,iintG    , int  indicates the closest integer  
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Ten integer Gaussian kernels at different scales  : 

 
 

3x3 Kernel: 

6.0g   

1 2 1 

2 10 2 

1 2 1 

 

 

5x5 Kernel: 

0.1g   

0 1 1 1 0 

1 4 6 4 1 

1 6 10 6 1 

1 4 6 4 1 

0 1 1 1 0 

 

7x7 Kernel: 

4.1g   

0 0 1 1 1 0 0 

0 1 3 4 3 1 0 

1 3 6 8 6 3 1 

1 4 8 10 8 4 1 

1 3 6 8 6 3 1 

0 1 3 4 3 1 0 

0 0 1 1 1 0 0 

 

 

9x9 Kernel: 

8.1g   

0 0 0 1 1 1 0 0 0  

0 1 1 2 2 2 1 1 0  

0 1 3 5 5 5 3 1 0  

1 2 5 6 8 6 5 2 1  

1 2 5 8 10 8 5 2 1  

1 2 5 6 8 6 5 2 1  

0 1 3 5 5 5 3 1 0  

0 1 1 2 2 2 1 1 0  

0 0 0 1 1 1 0 0 0 

 

 

 
 

11x11 Kernel: 

2.2g   

0 0 0 0 1 1 1 0 0 0 0 

0 0 1 1 2 2 2 1 1 0 0 

0 1 2 3 4 4 4 3 2 1 0 

0 1 3 4 6 6 6 4 3 1 0 

1 2 4 6 8 8 8 6 4 2 1 

1 2 4 6 8 10 8 6 4 2 1 

1 2 4 6 8 8 8 6 4 2 1 

0 1 3 4 6 6 6 4 3 1 0 

0 1 2 3 4 4 4 3 2 1 0 

0 0 1 1 2 2 2 1 1 0 0 

0 0 0 0 1 1 1 0 0 0 0 

 

 

13x13 Kernel: 

6.2g   

0 0 0 0 1 1 1 1 1 0 0 0 0 

0 0 0 1 1 1 2 1 1 1 0 0 0 

0 0 1 2 2 3 3 3 2 2 1 0 0 

0 1 2 3 4 5 5 5 4 3 2 1 0 

1 1 2 4 6 6 6 6 6 4 2 1 1 

1 1 3 5 6 8 8 8 6 5 3 1 1 

1 2 3 5 6 8 10 8 6 5 3 2 1 

1 1 3 5 6 8 8 8 6 5 3 1 1 

1 1 2 4 6 6 6 6 6 4 2 1 1 

0 1 2 3 4 5 5 5 4 3 2 1 0 

0 0 1 2 2 3 3 3 2 2 1 0 0 

0 0 0 1 1 1 2 1 1 1 0 0 0 

0 0 0 0 1 1 1 1 1 0 0 0 0 

 

 

15x15 Kernel: 

0.3g   

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 

0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 

0 0 1 1 2 2 2 2 2 2 2 1 1 0 0 

0 1 1 2 2 3 4 4 4 3 2 2 1 1 0 

0 1 2 2 4 5 6 6 6 5 4 2 2 1 0 

1 1 2 3 5 6 8 8 8 6 5 3 2 1 1 

1 1 2 4 6 8 8 8 8 8 6 4 2 1 1 

1 1 2 4 6 8 8 10 8 8 6 4 2 1 1 

1 1 2 4 6 8 8 8 8 8 6 4 2 1 1 

1 1 2 3 5 6 8 8 8 6 5 3 2 1 1 

0 1 2 2 4 5 6 6 6 5 4 2 2 1 0 

0 1 1 2 2 3 4 4 4 3 2 2 1 1 0 

0 0 1 1 2 2 2 2 2 2 2 1 1 0 0 

0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 
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17x17 Kernel: 

4.3g   

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 

0 0 0 1 1 1 2 2 2 2 2 1 1 1 0 0 0 

0 0 1 1 2 2 3 3 3 3 3 2 2 1 1 0 0 

0 1 1 2 3 3 4 5 5 5 4 3 3 2 1 1 0 

0 1 1 2 3 5 6 6 6 6 6 5 3 2 1 1 0 

1 1 2 3 4 6 6 8 8 8 6 6 4 3 2 1 1 

1 1 2 3 5 6 8 8 10 8 8 6 5 3 2 1 1 

1 1 2 3 5 6 8 10 10 10 8 6 5 3 2 1 1 

1 1 2 3 5 6 8 8 10 8 8 6 5 3 2 1 1 

1 1 2 3 4 6 6 8 8 8 6 6 4 3 2 1 1 

0 1 1 2 3 5 6 6 6 6 6 5 3 2 1 1 0 

0 1 1 2 3 3 4 5 5 5 4 3 3 2 1 1 0 

0 0 1 1 2 2 3 3 3 3 3 2 2 1 1 0 0 

0 0 0 1 1 1 2 2 2 2 2 1 1 1 0 0 0 

0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 

 

19x19 Kernel: 

8.3g   

0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 

0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 

0 0 0 1 1 1 1 2 2 2 2 2 1 1 1 1 0 0 0 

0 0 1 1 1 2 2 3 3 3 3 3 2 2 1 1 1 0 0 

0 0 1 1 2 2 3 4 4 4 4 4 3 2 2 1 1 0 0 

0 1 1 2 2 3 4 5 6 6 6 5 4 3 2 2 1 1 0 

0 1 1 2 3 4 5 6 6 6 6 6 5 4 3 2 1 1 0 

1 1 2 3 4 5 6 8 8 8 8 8 6 5 4 3 2 1 1 

1 1 2 3 4 6 6 8 8 10 8 8 6 6 4 3 2 1 1 

1 1 2 3 4 6 6 8 10 10 10 8 6 6 4 3 2 1 1 

1 1 2 3 4 6 6 8 8 10 8 8 6 6 4 3 2 1 1 

1 1 2 3 4 5 6 8 8 8 8 8 6 5 4 3 2 1 1 

0 1 1 2 3 4 5 6 6 6 6 6 5 4 3 2 1 1 0 

0 1 1 2 2 3 4 5 6 6 6 5 4 3 2 2 1 1 0 

0 0 1 1 2 2 3 4 4 4 4 4 3 2 2 1 1 0 0 

0 0 1 1 1 2 2 3 3 3 3 3 2 2 1 1 1 0 0 

0 0 0 1 1 1 1 2 2 2 2 2 1 1 1 1 0 0 0 

0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 

 

 

 

 

 

21x21 Kernel: 

2.4g   

0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 2 2 2 1 1 1 1 1 0 0 0 0 

0 0 0 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 0 0 0 

0 0 1 1 1 2 2 3 3 4 4 4 3 3 2 2 1 1 1 0 0 

0 0 1 1 2 2 3 4 4 5 5 5 4 4 3 2 2 1 1 0 0 

0 1 1 2 2 3 4 5 6 6 6 6 6 5 4 3 2 2 1 1 0 

0 1 1 2 3 4 5 6 6 8 8 8 6 6 5 4 3 2 1 1 0 

1 1 1 2 3 4 6 6 8 8 8 8 8 6 6 4 3 2 1 1 1 

1 1 2 2 4 5 6 8 8 8 10 8 8 8 6 5 4 2 2 1 1 

1 1 2 2 4 5 6 8 8 10 10 10 8 8 6 5 4 2 2 1 1 

1 1 2 2 4 5 6 8 8 8 10 8 8 8 6 5 4 2 2 1 1 

1 1 1 2 3 4 6 6 8 8 8 8 8 6 6 4 3 2 1 1 1 

0 1 1 2 3 4 5 6 6 8 8 8 6 6 5 4 3 2 1 1 0 

0 1 1 2 2 3 4 5 6 6 6 6 6 5 4 3 2 2 1 1 0 

0 0 1 1 2 2 3 4 4 5 5 5 4 4 3 2 2 1 1 0 0 

0 0 1 1 1 2 2 3 3 4 4 4 3 3 2 2 1 1 1 0 0 

0 0 0 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 0 0 0 

0 0 0 0 1 1 1 1 1 2 2 2 1 1 1 1 1 0 0 0 0 

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 

 

 

 
APPENDIX C. Tabular Form of Results: 
 

G Kernel Threshold %Correct %Missed %Wrong %EQ %MQ 

0.6 3x3 107 85.5 14.5 10.7 
88.9 77.2 

1.0 5x5 104 80.2 19.8 12.1 
86.9 71.5 

1.4 7x7 98 74.6 25.4 12.8 
85.3 66.1 

1.8 9x9 88 69.9 30.1 13.3 
84.0 61.7 

2.2 11x11 78 66.2 33.8 13.5 
83.1 58.3 

2.6 13x13 68 62.2 37.8 13.5 
82.2 54.8 

3.0 15x15 61 55.8 44.2 13.4 
80.6 49.2 

3.4 17x17 55 50.8 49.2 12.9 
79.7 45.0 

3.8 19x19 50 43.8 56.2 12.0 
78.5 39.1 

4.2 21x21 46 39.5 60.5 11.6 
77.3 35.4 

 

TABLE C.1: Sobel Edge Detector: Image title "Band B". Noise standard deviation N=1.0. 

Threshold= (mean+ standard deviation). 
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G N=1.0 N=10.08 N=31.43 N=50.41 N=75.41 

0.6 
77.2 73.7 63.4 47.3 35.7 

1.0 
71.5 68.4 62.2 49.6 38.2 

1.4 
66.1 63.9 56.6 43.4 29.2 

1.8 
61.7 58.7 49.4 31.4 14.4 

2.2 
58.3 54.8 37.2 15.0 5.6 

2.6 
54.8 47.6 22.6 7.7 1.3 

3.0 
49.2 37.9 12.5 1.4 0.0 

3.4 
45.0 32.4 6.8 0.0 0.0 

3.8 
39.1 23.1 1.3 0.0 

0.0 

4.2 
35.4 16.2 0.0 0.0 

0.0 

 

TABLE C.2: Sobel %Map Quality at 5 Noise levels. Threshold = (mean + standard deviation). 
 

 

 

G N=1.0 N=10.08 N=31.43 N=50.41 N=75.41 

0.6 74.3 70.5 60.4 44.5 33.3 

1.0 68.8 66.2 59.0 45.5 33.6 

1.4 64.3 62.5 54.2 39.1 22.9 

1.8 60.0 57.3 45.7 24.4 10.9 

2.2 56.6 52.4 31.2 11.6 3.5 

2.6 51.5 40.6 17.4 4.1 0.8 

3.0 43.2 32.5 10.3 0.8 0.0 

3.4 38.3 26.1 4.3 0.0 0.0 

3.8 31.8 15.4 0.6 0.0 0.0 

4.2 25.2 10.6 0.0 0.0 0.0 

 
TABLE C.3: Prewitt Edge Detector: Prewitt %Map Quality at 5 Noise levels. 

Threshold = (mean + standard deviation). 
 

 

G N=1.0 N=10.08 N=31.43 N=50.41 N=75.41 

0.6 44.7 39.8 34.5 31.2 25.6 

1.0 40.7 38.6 36.1 29.7 27.0 

1.4 36.9 36.4 37.0 27.7 25.7 

1.8 31.7 30.9 30.8 24.8 24.1 

2.2 24.1 22.6 21.6 18.8 19.2 

2.6 16.8 15.7 15.5 11.6 11.6 

3.0 11.9 11.3 11.4 7.8 7.5 

3.4 8.8 9.0 8.6 5.0 6.3 

3.8 6.3 5.7 5.3 3.0 3.0 

4.2 5.5 5.3 3.0 2.6 2.2 

 

TABLE C.4: Canny Edge Detector: Canny %Map Quality at 5 Noise levels. 

 


