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Abstract 
 
Fuzzing has become the most interesting software testing technique because it can find different types of 
bugs and vulnerabilities in many target programs. Grammar-based fuzzing tools have been shown 
effectiveness in finding bugs and generating good fuzzing files. Fuzzing techniques are usually guided by 
different methods to improve their effectiveness. However, they have limitation as well. In this paper, we 
present an overview of grammar-based fuzzing tools and techniques that are used to guide them which 
include mutation, machine learning, and evolutionary computing. Few studies are conducted on this 
approach and show the effectiveness and quality in exploring new vulnerabilities in a program. Here we 
summarize the studied fuzzing tools and explain each one method, input format, strengths and limitations. 
Some experiments are conducted on two of the fuzzing tools and comparing between them based on the 
quality of generated fuzzing files.  
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1. INTRODUCTION 
Fuzzing is an automatic technique that supports discovering vulnerabilities and weaknesses in a target 
program by using malformed inputs data from files, network protocol, etc. [11]. Fuzzing has become more 
important in recent years because of its contributions in software security discipline.  Many software 
companies like Microsoft, Google, etc. are interested in fuzzing and developing fuzzing tools to test the 
security of software and programs [7]. 
 
The fuzzing idea is centered on generating a large number of invalid or bad inputs and feeding them to 
the target program to trigger errors or cause crashes. Therefore, many studies have been conducted on 
this topic to find effective ways to generate malformed inputs to trigger vulnerability in a software [8]. 
Fuzzing could be guided by different techniques, such as symbolic execution, taint analysis and grammar 
analysis. Each technique brings different advantages and disadvantages to fuzzing. For example, 
grammar-based techniques usually take shorter time and less resources to generate fuzzing files 
compared to symbolic execution. However, the drawback of grammar-based techniques is that they 
heavily rely on sample input files. Moreover, the quality of test inputs is the main point for any fuzzing 
tools which impacts the efficiency and effectiveness of the tool. There are two main methods for fuzzing 
tools to generate test inputs mutation and generation [7].  Mutation-based which works by arbitrarily 
mutating well-formed input files or using other formerly well-defined mutation approaches based on the 
target program’s information that collected during execution. On the other hand, generation method 
generates new test inputs from a grammar rule or a specification. Moreover, test inputs in fuzzing are 
usually valid that satisfy the specification to pass the parsing stage and invalid to discover vulnerabilities 
deeply in the target program. 
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Fuzzing methods can be three grouped into main types: black box, white box, and gray box [7]. Black box 
is a way of random testing which does not require any knowledge of the internal code of the target 
program and it can use some defined rules to mutate any given input data to generate fuzzing input. 
There are many studies using grammar technique with a black box fuzzer to guide fuzzing combined with 
other techniques such as [4], [14], and [17]. Based on generation method, inputs must be accepted by 
some rules or specifications or they will be rejected. White box is a technique that requires the knowledge 
of internal code of the target program. Moreover, a grammar used with white box fuzzer [13] leverage 
grammar rules to discover bugs and improve code coverage. Grey box is in the middle between black box 
and white box which requires the partial knowledge of the target program. It can support code coverage 
of the program to find bugs faster. Grammar-based fuzzing is effective to generate many input files 
automatically on the condition that the input format of a program is specific and accurate [7]. This 
literature review aims at providing a great insight of fuzzing tools that are grammar-based and the used 
fuzzing techniques to guide fuzzing tools. 

 
2. BACKGROUND 

Fuzzing is an easy, flexible, and effective technique to discover software's vulnerabilities before 
production. By concentrating on grammar-based fuzzing, fuzzing tools use some techniques such as 
mutation, machine learning, and evolutionary computing for fuzzing guidance. In addition, some machine 
learning fuzzers like [13] is supported by grammar to generate input tests automatically to increase bug 
finding. Moreover, evolutionary computing fuzzers like [16] are using grammar to get diverse input tests 
which lead to code coverage and reveal deep bugs. 
 
The concept of the mutation technique is collecting data (files, network packets, texts, etc.) then 
modifying or manipulating them randomly or based on some strategies [3]. An Example of the strategies 
is replacing small text with larger text or changing the length value with larger or smaller value and 
changing a number with a larger or a smaller number. The advantage of mutation method is it requires 
little or no knowledge about a target program. However, it may fail the input which depends on challenge 
response such as checksum. 
 
Machine learning is another method that grammar-based fuzzing is using in some available tools. For 
example, neural network [13] can support learning grammar of inputs from large corpus. For example, a 
fuzzing tool must have input files (data set) to learn their grammar format first. Second, the fuzzing tool 
trains generative neural network to learn the grammar format from input files. Then, it generates fuzzing 
files based on the learned grammar. After that, the result of good learning would generate well-formed 
inputs which is accepted by a parser. Otherwise, bad learning would generate ill-formed inputs that will be 
rejected. Therefore, neural network can help in generating good inputs are able to increase the code 
coverage in a target program [13]. In learning probability grammar, it takes sample of inputs and its 
grammar and learns the rules and format model for the inputs and take a probability for a production rule 
to generate new inputs with variations of grammar structure. The advantage of machine learning 
approach is generating large diverse test input but better learning does not mean better fuzzing [13] 
which means the generated better learned input files do not guarantee better fuzzing results. 
 
Evolutionary computing is another technique that grammar-based fuzzing is using to get optimized test 
inputs to find deep vulnerabilities. Evolutionary algorithms use Darwin theory in biology evolution [5] 
which provide population of individuals’ pressure by environment that causes the natural selection 
(keeping the fittest) which leads to increased fitness of population. According to Eiben and Smith in [1] 
Evolutionary algorithm is processed by representing individuals and using the fitness function as 
evaluation of the individuals. The higher fitness is the best. After that, the individuals that have higher 
fitness are selected for recombination and mutation to create new individuals. Then, the new fittest 
individuals are added to the next generation. The iteration continues to enhance the fitness of all 
individuals. In grammar-based fuzzing, input files are generated using the grammar, and they are 
considered individuals and represent them by parse tree. Then, the algorithm applies parent selection 
based on the fitness function, recombination, generation of children, and add them to the next generation 
of population based on the higher fitness. After that, repeating the operation until finding best test input 
files by the highest fitness value or the limit is reached. Evolutionary computation is effective in generating 
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variations of well-formed input files that have the ability to discover bugs and security issues in a target 
program [16]. 

 
3. LITERARURE REVIEW  
Many scientific researches have been conducted on fuzzing techniques that use grammar to guide 
fuzzer. Moreover, the studies include these techniques with fuzzing based on grammar. The techniques 
are mutation, machine learning (e.g. neural networks), and evolutionary computing (e.g. genetic algorithm 
and genetic programming) to guide fuzzing and improve the ability in finding bugs in a target program. 

 
3.1 Fuzzing Based on Mutation 
Some studies used mutation technique in a grammar-based fuzzing. According to Guo et al. [17] 
GramFuzz which is using the two techniques grammar analysis of inputs and mutation of the inputs 
structure to fuzz web browsers. GramFuzz obtains initial input file from internet to build the grammar for 
web files. They are analyzed to build the grammar to get the trees by using Gold Parser, an open source 
analysis tool. After getting the grammar trees, the nodes are mutated. Then input test cases can be 
generated. Authors reported that by combining generation and mutation, test cases will be more effective 
of fuzzing web browsers. GramFuzz has found 36 vulnerabilities which considered severe security in IE, 
Mozela, and Firfox [17]. However, GramFuzz only works with web files such as HTML, CSS, and 
JavaScript. 
 
Sargsyan et al. [15] presented SD-Gen which is an automatic structure data generation based on ANTLR 
grammar that supports grammar rules for more than 120 languages and file formats. It takes the target 
grammar and input language as inputs. Then, test data (programs) are generated and mutated. SD-Gen 
can generate programs for compilers, interpreters, and translator testing because it supports generating 
programs in C, C++, Java, Pyhton, etc. Results showed SD-Gen is able to increase code coverage [15]. 
However, it can't provide programs semantic correctness. 
 
BlendFuzz [4] is another grammar-based fuzzing tool which is a model-based framework that is effective 
fuzzing with grammatical inputs. BlendFuzz generates inputs by first building a parser for the target 
language. Second, it applies the parser to seed set (input) and obtains a parser tree to extract grammar 
language from the tree structure and check the ordering of grammar elements. Third, mapping between 
inferring grammar elements and collecting language constructs to make it easy for mutation. Lastly, it 
uses mutation technique to the string by selecting fragments and replacing another with the same type. 
These inputs test the target program so the complex structures and program's edges are covered. In the 
end, after experiment the results showed the approach is effective and enhanced the code coverage and 
revealed security vulnerabilities [4]. However, it can't generate new grammar components other than 
those available in the seed set and can't always generate syntactically correct inputs. 
 
QuickFuzz  [6] has been introduced by Grieco et al. which leverages Haskell's QuicKChick (the well-
known property-based random testing library) and Hackage (the community Haskell software repository) 
with combining a general purpose bit-level mutational fuzzers (e.g. Radamsa and HonggFuzz) to create 
fuzzing automatically for some well-known file format without providing any file format specifications. It 
generates input files based on a grammar then performs mutational technique on these files to trigger 
unexpected behavior in the target program. QuickFuzz was tried with real world programs and found to 
be successfully effective in discovering most important vulnerabilities [6]. However, in the start of 
generating, some randomly derived inputs are not effective in generation source code because it rejected 
in the parsing stage. Also, there are some issues of using third party's package because some modules 
do not support certain complex file types. 
 
LangFuzz [2] was introduced by Holler et al. which is a fuzzing tool using blackbox fuzz testing of engines 
based on grammar. LangFuzz takes the grammar and sample code to learn language fragments and test 
suite for code mutation. In code mutation, it is divided into two phases: a learning phase and main 
mutation phase. In learning phase, a group of sample codes are operated with a parser using grammar. 
The parser will separate the input code sample into code fragments which are non-terminal in the 
grammar. Once the learning phase is finished, mutation phase starts by selecting some code fragments 
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and replacing them with others of the same type. Using code generation, step wise expansion is used by 
considering code as syntax tree. LangFuzz uses code mutation, which is the primary technique, and 
random generation to generate test cases to test the engine before passing the test cases to the 
interpreter. By combining two types of code generation (mutation and generation) LangFuzz has found 
164 real-world bugs in popular JavaScript engines and 31 security related vulnerabilities and detected 20 
bugs on PHP engine [2]. LangFuzz has some issues in the less test cases or biased tests decrease 
LangFuzz performance. In addition, to use the tool for a new language it needs necessary changes to be 
compatible and accepted by the new language. 
 
3.2 Fuzzing Guided by Machine Learning Technique 
Some grammar-based fuzzing tools utilize machine learning to generate well-formed inputs that are able 
to increase code coverage and discover new bugs. 
 
Godefroid et al. [13] designed Learn&Fuzz which uses machine learning (Neural Network) to generate 
input grammars for grammar-based fuzzer automatically. Learn&Fuzz uses neural network-based 
learning methods to learn a grammar for non-binary PDF data object such as formatted text. It uses input 
sampling techniques to generate PDF objects from the learned distribution. There are 1300 pdf pages 
and they are defined by rules. The grammar rules are huge, heavy, and ponderous but they are 
structured well and adequate for learning with neural network. Learn&Fuzz utilizes learned input 
probability distribution to guide the tool where to fuzz inputs in a smart way. It shows that the neural 
network technique is able to generate well-formed inputs and increase coverage of input parser more 
than different variations of random fuzzing [13]. Nevertheless, Learn&Fuzz is not able to process less 
structured inputs such as images, videos, and audio files because it is considered for text formatted 
inputs. 
 
Wang et al. stated that Skyfire [8] is a data-driven seed generation approach. It takes a corpus and 
grammar as inputs and generates inputs in two steps. First, it parses the collected samples based on the 
grammar and generates the AST (Abstract Syntax Tree) trees. Then, it learns the PCSG (Probabilistic 
Context-Sensitive Grammar) that is based on semantics rules and syntax features. Second, it generates 
seed inputs by looping to select and apply grammar rules that satisfy the context on non-terminal symbols 
until there is no more non-terminal symbol in the output string. Then, it applies low probability on high 
probability production rules to obtain uncommon input with variety of grammar structure. Skyfire makes 
selection on the resulting input seed to filter out the similar seeds to reduce duplication. In the end, 
Skyfire mutates the selected input seeds by randomly selecting leaf-level node in the trees with the same 
node with applying semantic rules and remaining grammar structure. The results show that skyfire 
effectively improves the code coverage and enhances the ability to find bugs [8]. However, it is only 
limited for files that their format are XML, XSL, and JavaScript. 
 
According to Hu et al. [18] GANFuzz uses machine learning for industrial network protocol to fuzz network 
protocol in which input test is generated using protocol grammar by creating specifications or reverse 
engineering from network packets. In this study, by using machine learning (neural network) an 
automated test input is generated by using deep-learning techniques to learn protocol grammar. After 
that, GANFuzz takes advantages to train test inputs over the network packets to get protocol grammars 
then generates invalid input messages that lead to discover some bugs and errors. The results showed 
that GANFuzz is effective in code coverage and deeply testing [18]. However, there are some limitations 
such as GANFuzz cannot handle file operations, generate correct syntactically protocol specifications, 
and graphical user interface errors. 
 
3.3 Fuzzing Guided by Evolutionary Computation Technique 
Some grammar-based fuzzing tools use evolutionary computation methods such as genetic algorithm and 
genetic programming. These tools leverage the crossover and mutation techniques to produce well-
formed test inputs based on improved fitness function. 
 
Hodován et al. [14] created the fuzzing tool Grammarinator which works with generation and mutation-
based fuzzers with help of grammar. Therefore, it uses parser grammar to generate input test cases and 
build abstract syntax tree for each test case and analyzes them. Moreover, evolutionary algorithm is used  
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Table 1: Fuzzing Tools Summaries.

Fuzzing Tools Input Format Sample Inputs Technique Usage of Grammar Strengths Limitations 

Learn&Fuzz [13]. PDF format. 
Three types: 
NoSample, Sample, 
SampleSpace 

Grammar-bases 
using Neural 
network (machine 
learning). 

Learn the input 
grammar then generate 
new test input as PDF 
files. 

Learning well-formed 
inputs is useful to guide 
fuzzing where to fuzz the 
inputs. 

Difficult to learn less 
structure inputs like images. 

GramFuzz [17]. 
HTML, CSS, 
JavaScriptc. 

Web Files from 
internet. 

Grammar-based. 
Mutate the original 
initial test cases. 

Generate more effective 
test cases that effectively 
discovered new bugs. 

Limited for web files. 

Grammarinator 
[14]. 

Simple formats 
but customizable 
for complex 
formats. 

Example grammar. Grammar-based. 
Mutate the new 
generated test inputs. 

Useful in hardening of the 
programs by discovering 
different bugs. 

Limited for JavaScript 
engines. 

BlendFuzz [4]. String. Seed set. Grammar-based. 

Build the grammar 
from seed set then 
generate new test 
inputs then mutate 
them. 

Improves code coverage 
help to find new 
vulnerabilities. 

Cannot generate new 
Grammar components other 
than those available in the 
seed set, cannot always 
generate syntactically 
correct inputs. 

LangFuzz [2]. 
No particular 
language. 

Language 
Grammar, Sample 
code, and test 
suite. 

Grammar-based 
Mutation/generation 
Fuzzing. 

Generate mutated new 
test inputs after getting 
language grammar 
from sample code. 

Combining two 
Approaches make 
LangFuzz successfully 
discover bugs. 

Less test cases or biased 
tests decrease LangFuzz 
performance. To use it for a 
new language needs 
necessary changes. 

Skyfire [8]. 
XML, XSL, 
JavaScript, 
grammar. 

XML, XSL, 
JavaScript files 
from internet. 

Grammar-based 
Probabilistic context-
sensitive grammar. 

Generate new test files 
based on grammar 
rules and probability 
grammar learning from 
sample input files, then 
mutate them. 

Generate well-formed 
inputs that are useful to 
improve code coverage 
and ability in finding bugs. 

Limited for XSL, XML, 
JavaScript. 

IFuzzer [16]. JavaScript. 
Grammar, Sample 
code, test suit. 

Grammar-based 
using Genetic 
programming. 

Generate new test code 
files from grammar and 
code sample inputs. 

Fast to find bugs. Main 
strength is its feedback 
loop and the evolution of 
inputs as dictated by its 
new fitness function. 

Less quality in code 
generation. For new 
language or code needs 
necessary changes. 

GANFuzz [18]. 
Protocol message 
format. 

Grammar, Sample 
protocol message. 

Grammar-based 
using Neural 
Network (machine 
learning) 

Generate new test files 
based on training 
protocol grammar over 
protocol message. 

Effective in code coverage 
and deeply testing 

Cannot handle file 
operations, generate correct 
syntactically protocol 
specifications, and graphical 
user interface errors. 

SD-gen [15]. Language data. Target grammar. Grammar-based. 
Generate new data files 
and mutate them. 

Increases the code 
coverage. 

Can’t provide programs 
semantic correctness. 
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for mutation and recombination to the test input files. Grammarinator defines the depth of generated 
structure and focuses its generation on the less visited parts. It also defines complex actions and decides 
the correct test cases that the grammar can describe. Grammarinator is used to test different JavaScript 
engines and is found to be useful, effective, and has found more than 100 new issues [14]. However, it is 
only fuzzing JavaScript engines. 
 
Veggalam et al. [16] developed a fuzzing tool which is using evolutionary computation techniques such as 
genetic programming to guide fuzzing called IFuzzer which takes context-free grammar as input to 
generate test cases by generating parse trees and extracting code fragments from test suit. IFuzzer uses 
genetic programming technique which utilizes mutation and crossover and leverages the improving 
fitness function to enhance the quality of generating input (codes) test cases. The results showed that 
IFuzzer is fast in revealing bugs compared with the state of art fuzzing tools [16]. Moreover, it found 40 
bugs in old version of JavaScript interpreter of Mozila and 17 bugs in latest version of the interpreter [16]. 
However, IFuzzer is less quality in code generation and for new language or new code IFuzzer needs 
necessary changes. 
 
3.4 Comparing Different Grammar-based Fuzzing Techniques 
Table 1 summarizes fuzzing tools based on 7 categories. First column is fuzzing tools which clarifies the 
tools' names. The format of the input to each tool is presented on column 2. Third column is sample 
inputs which clarifies what types of sample inputs that the tool starts with at the first stage of fuzzing. The 
fourth column explains what technique that the tool uses. Fifth column is usage of grammar which 
explains how the tool uses the grammar technique. The strengths and weaknesses of each tool are 
discussed in columns 7 and 8. 

 
4. EXPERIMENTS 
To experiment the grammar-based fuzzing techniques, we have chosen two fuzzers Skyfire [8] uses 
machine learning technique to generate fuzzing files and Grammarinator [14] uses evolutionary technique 
to generate fuzzing files. In this section, we installed both of the fuzzing tools to check the quality of 
fuzzing files that are generated by them. 
 
4.1 Skyfire 
The Skyfire installing experience was not easy in the beginning because the developer added Skyfire 
software in Github repository without giving enough instruction on how to install and run skyfire. So, we 
installed it in Ubuntu 18.10 VM, but we couldn't run it from the terminal because there is no scripts 
commandline to use for running it. We installed Skyfire on Windows 10, then added the source code to 
IDE eclipse and by following the instructions we use MySql to create a database to connect it with the 
Skyfire code for learning grammar. Then, the tool ran perfectly. 
 

 

FIGURE 1: XML Fuzzing File Generated by Skyfire. 
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Skyfire takes grammar and sample inputs then learns them to generate fuzzing files by following the 
grammar rules. Skyfire generates well organized fuzzing files as shown in Figure 1 which satisfy the 
grammar such as XML or JavaScript syntax format that helps to trigger an error in a target program e.g. 
web browser engines. In addition, Skyfire controls the number of generating fuzzing files by 
"numOfSamplesToGenerate" variable in the code and it also controls the length of fuzzing file by 
"maxDerivationDepth" variable. The best thing about Skyfire is that its mutation work is replacing same 
type of the context randomly by selecting the right and same type from the pool without mixing or 
scrambling its contents to keep the input structure valid. However, fuzzing files with larger size will be 
more complex and will not help find any error or will be discarded by some fuzzers because they become 
useless [8]. 

 
4.2 Grammarinator 
The experience of installing Grammarinator was easy because the documentation is available and it is 
specific and precise. We were able to install it on Ubuntu 18.10 and run it by using the provided command 
line scripts and it works perfectly. 
 
Grammarinator takes grammar as input then processes it to generate unlexer and unparser Python 
programs. Using the two generated programs it generates fuzzing files by defining the number of 
generated fuzzing files needed and the size of fuzzing files. 
 
By taking a look at some generated files, the files seem to be unorganized because they are not following 
the syntax format. As shown in Figure 2, it is difficult to understand the file's content because there are 
some mixed and scrambled characters, numbers, and symbols, because the type of mutation and 
recombination that Grammarinator is using which create these random symbols and characters. The file 
has a lot of white spaces and unknown data which may not help to trigger any errors when targeting a 
program. 
 

 

FIGURE 2: XML Fuzzing File Generated by Grammarinator. 
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5. LESSON LERRNED  
Most of the grammar-based fuzzing techniques take certain file format specific input structure. If there is 
no known input format or specification, the fuzzing tool would face some issues and difficulties to 
generate and accept test inputs. So, it is important for grammar-based fuzzing tool to have grammar 
specification which will support in generating valid test input that satisfy the program and test and help to 
reveal interesting bugs. Moreover, grammar-based fuzzer can increase code coverage and reach deep 
locations in a program [9]. 
 
Most techniques with grammar-based fuzzing is taking grammar and sample input in the first stage of 
fuzzing to generate test cases after applying fuzzing techniques on the inputs. GramFuzz [17] uses 
sample input to generate grammar rules then applies them to generate new test inputs. Moreover, 
mutation is the most common technique used for fuzzing guidance because it is effective in finding deep 
bugs when using with grammar-based fuzzing tool [17]. 
 
The majority of grammar-based fuzzing tools are strict meaning they accept specific kind of input format 
or specification and fuzz specific type of a target program, engine or application. For example, GramFuzz 
[17] uses HTML, CSS, and JavaScript as input files and a web browser as a target program. Also, 
LangFuzz [2] uses programming languages codes such as C++, Java, PHP etc. and an interpreter engine 
as a target program. Moreover, IFuzzer [16] uses JavaScript code as input and JavaScript engine such 
as Mozilla's engine as a target program. So, it is difficult on any grammar-based fuzzing tool to have 
general fuzzing for most of applications and software rather than fuzzing a specific target program 
because there are many file formats and grammar-based fuzzing uses specific format or specification of 
input structure. 
 
Grammar-based fuzzing tools generate fuzzing files in a shorter time and use less resources compared to 
fuzzing tools using symbolic execution or taint analysis. With shorter time a grammar-based fuzzer can 
generate thousands of fuzzing files. On the other hand, symbolic execution fuzzer takes longer time to 
generate many fuzzing files and uses more resources because of code interpretation [10]. 
 
Some of grammar-based fuzzing tools use a parser tree to mutate randomly or find a way to select 
interesting paths to discover bugs in unreachable places and increase code coverage in a target program. 
Others use some methods like package libraries as in QuickFuzz [6] or training inputs to optimize them to 
be well-formed test input then select some of them randomly and evaluate the code coverage by a parser 
as in Learn&Fuzz [13]. Moreover, some tools generate inputs based on grammar rules and select 
interesting ones with no duplication then mutate them as in Skyfire [8]. 
 
After finishing the experiments, we came up with some thoughts and ideas. First, Skyfire generates well-
formed fuzzing files that follow XML format exactly and they are readable. However, most of the 
generated fuzzing files can’t trigger bugs in the target programs unless the fuzzing files feed to a general 
purpose fuzzer like AFL [8]. Wang et al. [8] stated that Skyfire improves code coverage, but when we see 
the code coverage data sets, they built their assumption based on the 5 out of 39 target programs that 
Skyfire has increased the code coverage and the remaining 34 has not shown any evidence of increased 
code coverage. Therefore, their conclusion on code coverage improvement is not convinced. 
 
Grammarinator generates fuzzing files with unreadable characters and symbols. The reason of it is that 
the tool is using mutation and recombination randomly, e.g. bit flipping, bit swapping, byte flipping, byte 
swapping, etc. which cause the tool to generate these unreadable characters and symbols as shown in 
Figure 2. Since the purpose of our experiment is the quality of the fuzzing files, we came up with that the 
generated fuzzing files by Grammarinator are not very effective. Because the random changes affect the 
default XML format data, which means the target program will most likely reject most of the generated 
fuzzing files because of not following XML format accurately. Hodovan et al. [14] stated that the tool has 
discovered over 100 issues without showing data sets as evidence of their discovery even though they 
did not mention the types of these issues. Moreover, they concluded their case study [14] with the 
increased code coverage by generating fuzzing files towards less visited paths without providing an 
accurate percentage number of the code coverage. 
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6. FUTURE WORK FOR RESEARCH AND DEVELOPMENT 
For future direction, we will develop a technique to analyze user inputs to different programs and to detect 
the grammars of the user input. After that, we will generate fuzzing files based on the detected grammars 
information, so that the generated fuzzing files can interact with the target program. Many problems can 
be caused by unexpected user input, because programmers do not always check user input completely, 
such as input format, symbols, length of the string. By generating and testing different forms of user input, 
it is possible that vulnerabilities, such as buffer overflow, integer overflow, and format string problems, can 
be triggered. Grammars will be detected from the sample user input, and they will guide generations of 
the fuzzing files. By using grammars, more effective fuzzing files can be generated to correctly interact 
with the program, therefore reach deeper levels of the program. 

 
7. CONCLUSION  
Fuzzing has made life easy and flexible for bug and vulnerabilities finding in a software, application, 
program, interpreter engines, etc. This literature review focuses on grammar-based fuzzing tools which 
are guided by mutation, machine learning, or evolutionary computing to generate better fuzzing files. 
 
Generating valid inputs which are able to trigger bugs in a program is the main point for high quality 
fuzzing. Moreover, these inputs must be accepted in the first stage by the grammar to go through fuzzing 
techniques, or they are rejected. After satisfying the grammar rules, the techniques such as mutation, 
machine learning (e.g. neural network), or evolutionary computing (e.g. genetic programming) can be 
applied to help generate fuzzing files. 
 
Grammar-based fuzzing takes shorter time and less resources to generate fuzzing files. However, some 
limitations include being unable to process some unstructured inputs files like images, not generating 
correct syntactically input specification, cannot work with undefined grammar specifications for inputs, 
and limited for specific file format. 
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