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Abstract 
 

Network congestion control is one of the most key problems in network study. With the expansion 
of network size, the continuous increase of network bandwidth and increasing diversification of 
networking forms, congestion control has encountered some new problems that require a 
solution. 
 
If a packet number that reaches the network is greater than the processing capacity of network, 
network performance would drop dramatically, resulting in an inevitable congestion. In order to 
avoid congestion, people use congestion control algorithm in the network. 
 
This paper studies different versions of TCP source algorithms, such as Reno and Vegas, and 
investigate the impact of various Queuing management algorithms on the self-similarity of 
network traffic. We compare the performance of Reno and Vegas using various queue 
management algorithms, namely Droptail, Fair Queueing (FQ), Deficit Round Robin (DRR) and 
Random Early Detection (RED) using NS-2 network simulators. The characteristics of different 
algorithms are also discussed and compared based on the basis of packet loss, fairness and 
throughput metric. 
  
Keywords- Congestion Control, TCP Reno, TCP New Reno, TCP Vegas, Transmission Control 
Protocol /Internet Protocol (TCP/IP).  

 

 
1. INTRODUCTION 
Internet has experienced exploding growth since its emergence. Internet traffic keeps growing at 
an exponential rate of almost doubling itself each year; and this trend is expected to continue [1]. 
Various and vast amount of Internet-based applications and services emerge with this growth and 
surveys reveal trend towards them. More and more people come to depend on them, and all 
kinds of business processes are built around them. And along with the emergence of Next 
Generation Network (NGN) services Internet is entering every home and business groups, and 
Internet-based applications and services are pervading everyday life. 
 
In return, people and business groups unceasingly bring forth all kinds of new demands. They not 
only ask for diversified applications and services to satisfy their needs, but also demand for better 
quality of service (QoS). These different applications and services have varying requirements for 
goodput, packet loss ratio and end-to-end latency [2]. As surveys reveal, time-critical and 
mission-critical applications are rapidly growing to be a significant portion of Internet-based 
applications. In pursuing of greater profit, delay as one of the important performance indices of 
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quality of service is becoming more and more recognized and emphasized by Internet service 
providers. 
 
The transport layer providers duplex, end-to-end data transport services between applications. 
Data sent from the application layer ware divided into segment appropriate in size for the network 
technology. Transmission control protocol (TCP) and user datagram protocol (UDP) are the 
protocols used at this layer [1]. 
 
Transmission control protocol (TCP) provides reliable service by being connection-oriented and 
including error detection and correction. The connected nature of TCP used only for two end-
points to communicate with each other. The connection must be established before a data 
transfer can occur, and transfers are acknowledged throughout the process. Acknowledgments 
assure that data received properly [6]. The acknowledgment process provides robustness in the 
face of network congestion or communication unreliability. It also determines when the transfer 
ends and closes the connection, thus freeing up resources on the systems. Checksums assure 
that the data not accidentally modified during transit [3]. 

Traffic management in TCP examines the reality of two autonomous methods: Delivery control 
regulated by the recipient using the window specification and Congestion control regulated by the 
sender for employed the congestion window and slow begin method. The first method oversees 
the recipient input buffer and the second method registers the channel congestion, hence it helps 
to decrease the level of traffic. The Congestion Window (CWND) and slow start method gives 
resolve the full loading of the virtual connection and decreasing the packet loss in case of 
overloading in the network [4]. 

2. TCP CONGESTION CONTROL ALGORITHM  
The basis of TCP congestion control lies in Additive Increase Multiplicative Decrease (AIMD), 
halving the congestion window for every window containing a packet loss, and increasing the 
congestion window by roughly one segment per Round Trip Time (RTT) otherwise.  

The second component of TCP congestion control is the Retransmit Timer, including the 
exponential bakeoffs of the retransmit timer when a retransmitted packet is itself dropped. The 
third fundamental component is the Slow-Start mechanism for the initial probing for available 
bandwidth. The fourth TCP congestion control mechanism is ACK-clocking, where the arrival of 
acknowledgements at the sender is used to clock out the transmission of new data.  

There are two windows in TCP: receiver advertised window (rwnd) and congestion window 
(cwnd). The TCP receiver advertised window (rwnd) is added in each sent ACK packet, which 
sets the size for the sender's sliding window. The sender's transmission rate is then adjusted by 
the rwnd value, so that the maximum number of allowed outstanding packets is equal to the size 
of the receiver advertised window at any given time instant, i.e .(rate = rwnd/RTT). Congestion 
window, which is used by the sender to estimate the network capability, is the key window in the 
congestion control mechanism.  At any given time, instant, the maximum amount of outstanding 
bytes is equal to MIN (cwnd, rwnd) [5]. 
 
Lost packets in the Internet are generally due to data collision and network congestion. Data 
collision occurs, when the shared media used such as switch and Hub, and this happen in LAN. 
Congestion refers to a state of the network, where one or more routers receive packets faster 
than they can forward them. After the queues of one of those routers fill up, it starts to drop 
packets. 
 
TCP retransmits lost packets, which introduces an overhead in bandwidth utilization. The 
purpose of congestion control is to try to minimize congestion and, consequently, the need for 
retransmission by adjusting the transmission rate of TCP. The main concept of congestion 
control is the congestion window (cwnd), which controls, with the receiver advertised window 
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(rwnd), the size of sender's sliding window and, thus, the transmission rate. At any given time, 
instant, the maximum amount of outstanding bytes is equal to min (cwnd, rwnd). Different    
flavors of TCP have different strategies to react to a loss event, i.e. they resize the cwnd 
differently. 

 
2.1 Slow Start 
Slow start and congestion avoidance are essentially different strategies to grow the cwnd. In the 
beginning of a connection, TCP sender is in slow start mode. The size of the cwnd is initialized 
to one Maximum segment size (MSS) and is increased by one each time a new ACK arrives. 
 
The slow start mechanism was a direct attempt to avoid congestion collapse by increasing the 
packet rate of a connection in a controlled fashion – slowly at first, faster later on - until 
congestion is detected (i.e. packets are dropped), and ultimately arrive at a steady packet rate, 
or equilibrium. To achieve this goal, the designers of the slow start mechanism chose an 
exponential ramp-up function to successively increase the window size. Slow start introduces a 
new parameter called the congestion window or cwnd, which specifies the number of packets 
that can be sent without needing a response from the server. TCP starts off slowly (hence the 
name “slow start”) by sending just one packet, then waits for a response (an ACK) from the 
receiver. These ACKs confirm that it is safe to send more packets into the network (i.e. double 
the window size), rather than wait for a response packet by packet. The window size grows 
exponentially until a router in between the sender and the receiver discards (drops) some 
packets, effectively telling TCP through a time-out event that its window size has grown too large 
[10].  

 

2.2 Congestion Avoidance 
During the initial data transfer phase of a TCP connection the Slow Start algorithm is used. 
However, there may be a point during Slow Start that the network is forced to drop one or more 
packets due to overload or congestion [12]. 
 
When a network is congested, queue lengths start to increase exponentially. Congestion 
avoidance was devised as a technique to signal packet loss via time-outs and make TCP throttle 
back quickly (more quickly than queue lengths are growing), with the objective of stabilizing the 
whole system. Near the point of congestion, overly aggressive increases in connection 
bandwidth can drive the network into saturation, causing the “rush-hour effect”. To avoid the 
rush-hour phenomenon, the congestion avoidance mechanism increases bandwidth additively 
rather than exponentially. When congestion is detected via a timeout, bandwidth is scaled back 
aggressively by setting cwnd to half the current window size. Congestion avoidance is 
sometimes characterized as being an additive-increase, multiplicative-decrease (AIMD) 
technique [8].   
 
While slow start and congestion avoidance were devised separately and for different purposes, 
they are almost always implemented together. The combined algorithm introduces a new 
variable called ssthresh (slow-start threshold), that effectively determines which mechanism is 
used.  
 
2.3 Fast Retransmit 
The TCP receiver can only acknowledge, the last packet received in sequence. Thus, if packets 
arrive out of sequence (e.g. one packet was lost but packets sent later arrive correctly), the 
receiver sends the same ACK more than once [11]. 
 
Fast retransmit algorithm makes usage of identical acknowledgement to discover packet loss. In 
Fast retransmit, during an acknowledgement packet is received a congestion window is fixed to 
three, TCP sender is adequately assured that the TCP packet is lost and will retransmit the 
packet beyond waiting for retransmission clock. Fast recovery is approximately connected to 
retransmit the packet [9]. 
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In Fast recovery algorithm, TCP sender will not arrive in the slow start phase rather it will exactly 
decrease the congestion window by halve and boost the congestion window by estimating the 
convenient congestion window. When an acknowledgement of current data is received, it restore 
to congestion avoidance phase. This appropriate case may cause fast buffer uniform with low 
use determinant. Suddenly the queues on the maximum loaded lines will build endlessly and, in 
the end, exceed the width of the buffers at the equivalent nodes. This leads to the known fact 
that the packets retransmit to the nodes with complete buffers will be reboot and therefore are to 
be re-entering and that in change effect in wasting of network resources. 
 
2.4 Fast Recovery 
TCP Reno introduced a new mechanism called fast Recovery that, changes the congestion 
control behaviour, after retransmit: When three duplicate ACKs received, TCP sets the slow start 
threshold (ssthresh) to half of cwnd and cwnd to ssthresh plus three packets [15]. 
 
Fast recovery works hand in hand with fast retransmit to improve the responsiveness of TCP 
once congestion has occurred. Fast recovery introduces the concept of partial 
acknowledgements, which are used to notify that the next in-sequence packet has been lost so it 
can be re-transmitted immediately. Furthermore, instead of going back into slow-start mode, fast 
recovery jumps TCP into congestion avoidance mode. The congestion window is also reduced to 
the slow start threshold (ssthresh) instead of dropping all the way back to a window size of one 
packet [11].  

 
3. TCP IMPLEMENTATIONS AND EXTENSIONS 
In today's Internet, many different versions of TCP implementation coexist and communicate with 
each other, most common types of these versions are Reno, Vegas, Tahoe and New Reno, In 
this section, we review two different TCP implementations Reno and Vegas [17]. 
 

3.1 TCP Reno 
TCP Reno introduced major improvements by changing the way in which, it reacts to detecting a 
loss through duplicate acknowledgements. The Reno TCP implementation retained the 
enhancements incorporated into Tahoe TCP but modified the Fast-Retransmit operation to 
include Fast Recovery [7]. The new algorithm prevents the communication channel from going 
empty after Fast Retransmit, thereby avoiding the need to Slow-Start to re-fill it after a single 
packet loss. 
 
The idea is that the only way for a loss to be detected via a timeout and not via the receipt of a 
duplicate acknowledgements (dup ACK), is when the flow of packets and ACKs has completely 
stopped this would be an indication of heavy congestion [21].  
 
The response to packet loss events has been modified in order to maintain a high sending rate, in 
a mildly congested network. The so, called coarse-grained implementation of the TCP, timeout 
leads to long idle periods, while waiting for the timeout timer to expire. During this waiting period, 
packet sending is discontinued, which results in low throughput. In TCP-Reno, the lengthy loss 
recovery phase has been improved upon, via the introduction of the fast-retransmit loss recovery 
algorithm [13].  
 
Fast retransmit is a mechanism that, sometimes results in a much faster retransmission, of a lost 
packet than, what would have been possible if only the expire of timeout timers, was used to 
detect packet loss. The idea behind the fast-retransmit algorithm, is intuitive and easy to grasp. 
Every time a packet arrives to the receiver, the receiver responds by returning an 
acknowledgment packet. 
 
Fast recovery replaces slow-start after a packet loss event is discovered by triple duplicates. The 
effect of fast retransmit / fast recovery is in principle that, if a packet loss is discovered via triple 
duplicates, the first lost packet will be quickly, resent and the congestion window size halved. If 
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the resulting congestion window size allows it, linear increase during congestion avoidance 
follows directly. This results in a more aggressive, and more effective utilization of the available 
Network capacity, resulting in high throughput for TCP-Reno sender, when only a few packets are 
lost at each congestion event where the fast retransmit / fast recovery instance, will re-send, the 
first lost packet and quickly resume with congestion avoidance. If multiple packets are lost from a 
single window, the TCP-Reno fast retransmit / fast recovery, algorithm might, however, lead to 
multiple consecutive invocations, each invocation halving the congestion window size. in case of 
multiple packet losses, from a single window, the first re-sent packet will lead to, the receiver 
acknowledging, that it expects the second lost packet [14]. This ACK for a previously, sent and 
lost packet could be called a partial ACK. In the TCP-Reno implementation of fast retransmit / fast 
recovery, the arrival of partial ACKs will initiate a new fast retransmit / fast recovery followed by 
window halving. 
 
These consecutive window halving, will decrease the congestion window so much that TCP-
Reno, will ultimately not be able to send, any new packets, due to the congestion window size 
restriction, on the number of packets, it is allowed to have, un-acknowledged on the link. Hence, 
multiple packet losses, might finally lead to the sender having, to wait for a coarse timeout timer 
to expire, even if the re-sent packets, are being correctly received and acknowledged. 
 
3.2 TCP Vegas 
New TCP implementation, called Vegas is presented in 1994 by Brakmo. O'Malley and Petersen. 
TCP Vegas adopts a more sophisticated, bandwidth estimation scheme. Vegas algorithm 
estimates the buffering that does arise in reach the system and controls the rate affiliate with 
appropriate flow. This algorithm is absolutely capable to regulate and decrease the flow rate since 
the packet loss arise. 
 
It uses the difference between expected and actual flows rates, to estimate the available 
bandwidth in the network. The idea is that when the network, is not congested, the actual flow 
rate, will be close to the expected flow rate [6]. Otherwise, the actual flow rate, will be smaller 
than the expected flow rate. TCP Vegas, using this difference in flow rates, estimates the 
congestion level, in the network and updates the window size accordingly. This difference in the 
flow rates can be easily translated into the difference between the window size and the number of 
acknowledged packets during the roundtrip time, using the equation:   

Diff = (Expected – Actual) BaseRTT 

Where Expected is the expected rate, Actual is the actual rate, and BaseRTT is the minimum 
round trip time. The details of the algorithm are as follow: 

1. First, the sender computes the expected flow rate:  
 

 
 

where CWND is the current window size and BaseRTT is the minimum round trip time.  
 

2. Second, the sender estimates the current flow rate by using the actual round trip time.  
 

 
 

where RTT is the actual round trip RTT time of a packet.  
 

3. The sender, using the expected and actual flow rates, computes the estimated backlog in 
the queue from diff= (Expected – Actual) BaseRTT.  
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4. Based on diff, the sender updates its window size as follows:  

 
TCP Vegas tries to keep at least α packets but no more than β packets in the queues. The 
reason behind this is that TCP Vegas attempts to detect and utilize the extra bandwidth whenever 
it becomes available without congesting the network. This mechanism is fundamentally different 
from that used by TCP Reno. TCP Reno always updates its window size to guarantee full 
utilization of available bandwidth, leading to constant packet losses, whereas TCP Vegas does 
not cause any oscillation in window size once it converges to an equilibrium point 

4.  CONGESTION MANAGEMENT  
Congestion can occur at any point in the network where there are points of speed mismatches, 
aggregation, or confluence Queuing manages congestion to provide bandwidth and delay 
guarantees.  
  

 
FIGURE 1: Queuing Theory . 

 
The queuing theory work showing in Figure 1, when source 1 and source 2, send sum of packets 
at the same time the router starts to decide, where to direct first packet, and at the same time 
begin saving, the another packets into, the Buffer as seen in Figure 1. The way which the router 
(gateway), mange that packets in the buffer is called queuing theory [13]. 
 
During congestion, gateway influences, the fairness problem, because its queuing discipline, 
determines which packet to drop. This has effect on retransmissions used by TCP. Normal or 
default configuration, of gateways used the FIFO discipline, commonly referred to as Drop Tail 
(DT) gateway. Other possible gateway’s, configurations of discipline include, the Random Drop 
(RD) Gateway and the Random Early Detection (RED) Gateway [16].  
 
The TCP algorithm, at the sender, and the receiver is only part of the congestion control effort. An 
equally important part, is the congestion feedback from the network, which is the basis of any 
congestion control actions [20]. 
 
Congestion feedback, can be delivered in different ways. The most primitive feedback, is packet 
drops. In case of buffer overflow, the network simply drops incoming packets that cannot be 
accommodated in the router buffer. The source can detect the packet drop, either from a timeout, 
or from duplicate acknowledgments [22]. 
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5. QUEUING MANAGEMENT ALGORITHMS  
In this section we outline the most common queue management algorithms. Queue management 
is obviously about managing queues in forwarding devices such as routers and switches.  
 
5.1 Drop Tail 
The simplest queue management algorithm, where, when a queue becomes full, packets are 
simply dropped. Since packets can be dropped on all TCP connections simultaneously, many 
TCP connections on the link can be forced to go into slow-start mode. Figure 2 showing the 
Droptail queueing [20]. 

 
FIGURE 2: Drop Tail Queueing. 

 
5.2 Fair Queuing 
It is a queuing mechanism that is used to allow multiple packets flow to comparatively share the 
link capacity. "Fair Queuing" is an attempt to give the flows equal shares, at least within the limits 
of actual demand.  

 

FIGURE 3: Round Robin with Different Size Packets. 

The simplest algorithm for fair queuing is round-robin queue service, with all packets of equal 
size; this is sometimes called Nagle Fair Queuing, each nonempty queue gets to send an equal 
share of packets, Nagle fair queuing allows other flows to use more than their equal share, if 
some flows are underutilizing. Shares are divided equally among the active flows. As soon as a 
flow becomes active (that is, its queue becomes nonempty) it gets to start sharing in the 
bandwidth allocation; it does not have to wait for other flows to work through their backlogs, 
Round-robin works as fair queuing as long as all packets have the same size [18]. If packets have 
different sizes, then flows all get their fair share of packets per second, but this may not relate 
to bytes per second. FQ also ensure about the maximum throughput of the network. Figure 3 
showing the Round Robin [19]. 
 
5.3 Deficit Round Robin 
It is a modified weighted round robin scheduling mechanism. It can handle packets of different 
size without having knowledge of their mean size. Deficit Round Robin keeps track of credits for 
each flow. It derives ideas from Fair Queuing. It uses hashing to determine the queue to which a 
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flow has to be assigned and collisions automatically reduce the bandwidth guaranteed to the flow. 
Each queue is assigned a quantum and can send a packet of size that can fit in the available 
quantum. If not, the idle quantum gets added to this meticulous queue’s deficit and the packet 
can be sent in the next round. The quantum size is a very vital parameter in the DRR 
scheme, determining the upper bound on the latency as well as the throughput as shown in 
Figure 4. [20] 

 
 

FIGURE 4: Deficit Round Robin. 

5.4 RED 
Random Early Detection (RED) is a congestion avoidance queuing mechanism. RED is a type of 
congestion control algorithm/mechanism that takes advantage of TCP’s congestion control 
mechanisms and takes proactive approach to congestion. 

 
It operates on the average queue size and drop packets on the basis of statistics information. If 
the buffer is empty all incoming packets are acknowledged. As the queue size increase the 
probability for randomly discarding a packet also increase. When buffer is full probability becomes 
equal to 1 and all incoming packets are dropped [21].  
 
RED has three modes: 

 No drop: When the average queue size is between 0 and the minimum threshold. 

 Random drop: When the average queue size is between the minimum and the maximum 

Threshold. 

 Full drop (tail drop): When the average queue size is at maximum threshold or above. 

 

FIGURE 5: Packet Drop Profile In RED. 

 

6. SIMULATION SCENARIO and CONFIGURATION 
In this section, we evaluate the performance proposed for the different Queueing Algorithms over 
TCP Protocols. This network was examined using NS2 Simulator software. 
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Figure 6 show the proposed scheme of the network, covering the needs of an average networks 
with a data server that allows to send files and make voice / video calls and FTP Application. 
Although minor changes could be made to allow for the needs of different Networks. This network 
was designed to connect two branches; each branch has 4 nodes. In addition, 2 routers were 
used to connect network. 
 
Here we will be using five different mechanisms which have different behavior for different 
network configuration and traffic pattern. Most importantly, the task in designing the simulation is 
to select parameters (bandwidth, queue limit, packet size, etc.) and a typical set of network 
topology. A simple topology is used in our simulation where different flows share a bottleneck 
between the two routers. The packets sent from sources queue to the queue of router and wait 
for transmitting. If the sender keeps sending and the queue overloaded, then congestion occurs.  
 

 
 

FIGURE 6: Network Topology of The Case Sudy. 

 
There are four nodes at each side of the bottleneck link. Here four nodes are acting as a TCP 
source (Vegas, Reno) and four nodes are acting as a TCP sink so that both routers are applying 
the congestion control algorithm. We simulate this network on NS2 for different Queueing 
algorithms such as Drop tail, Fair Queueing, Random Early Detection and Deficit Round Robin 
over TCP protocols Vegas and Reno and compare the results for all proposal. This simulation 
has been observed over the period of 200 seconds.  

TABLE 1: Simulation Parameters. 

Simulation Parameter V
a
l
u
e 

Simulator Ns-allinone-
2.31 Type of link Duplex Link 

Routers 2 

Nodes 8 

Network Applications FTP, VOIP, Video conferencing 
 
 
 

Queue Drop Tail, FQ, RED, RDD 

Speed 2MB 

Delay 20ms 
Transmission Protocol TCP 

Simulation start time 0s 

Simulation finish time 200s 
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7.  SIMULATION RESULTS 
The performance of the congestion management system that consists of the queueing algorithm 
and the link congestion signal, algorithm has many facets, and these variables can impact the 
QoS, that applications experience from the network. Varieties of metrics that address different 
aspects of performance used to evaluate a congestion management system. At first, the results 
will be displayed algorithms, followed by an explanation of how the work of the network and right 
after, the results will be discussed. A final step and it will explain the main differences between 
the four algorithms.     
    
7.1 Congestion Window in TCP Reno 

 

 

 

 
              
 

 

 

   

 

 

 

 
 

FIGURE 7: Congestion Window In TCP Reno. 

 
7.2 Send, Dropped and ACK Packet In 40 Sec using TCP Reno 

 

 
 

FIGURE 8: Send, Dropped and ACK Packet In 40 Sec using TCP Reno. 

 
7.3 Queueing Algorithms (Droptail, FQ, RDD and RED) over TCP Reno 
If all TCP Sources work as TCP Reno and the used queuing type is Drop Tail and Fair Queueing 
in a bottleneck link, G1-G2 and Queuing limit (Buffer size) is equal to 20. The results shown in 
Figure 9 Drop Tail and in Figure 10 FQ and tables are below. 
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FIGURE 9: Throughput kbps to four sources work as TCP Reno when Queuing type is DropTail. 

 

 
 

FIGURE 10: Throughput kbps to four sources work as TCP Reno when Queuing type is FQ. 

 
If all TCP Sources work as TCP Reno and the used queuing type is DRR and RED in a 
bottleneck link, G1-G2 and Queuing limit (Buffer size) are equal to 20. The results shown in 
Figure 11 Deficit Round Robin and in Figure 12 RED and tables are below. 
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FIGURE 11: Throughput kbps to four sources work as TCP Reno and Queuing type is Deficit Round Robin. 

 

 
 

FIGURE 12: Throughput kbps to four sources work as TCP Reno and Queuing type is RED. 

 
TABLE (7-1): Compare between Sent, Received and Dropped packets with different Queuing algorithms in 

TCP Reno. 
  

   
Sources 

 
 

S1 

 
 

S2 

 
 

S3 

 
 

S4 

 
 
 
 
Droptail 

 
Sent Packet 

 
3775 

 
3816 

 
3155 

 
3385 

 
Received Packet 

 
3706 

 
3750 

 
3085 

 
3320 

 
Dropped Packet 

 
68 

 
66 

 
70 

 
65 

 
 
 
 

 
Sent Packet 

 
3719 

 
3588 

 
3559 

 
3559 

 
Received Packet 

 
3706 

 
3576 

 
3547 

 
3547 
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Fair 
Queueing 

 
Dropped  Packet 

 
0 

 
0 

 
0 

 
0 

 
 
 
 
DRR 
 

  
Sent Packet 

 
3675 

 

 
3550 

 
3627 

 
3724 

 
Received Packet 

 
3612 

 
3480 

 
3558 

 
3660 

 
Dropped Packet 

 
63 

 
70 

 
69 

 
64 

 
 
 
 
RED 

 
Sent Packet 

 
4182 

 
3190 

 
3551 

 
3406 

 
Received Packet 

 
4085 

 
3077 

 
3449 

 
3306 

 
Dropped Packet 

 
97 

 
113 

 
102 

 
100 

 
7.4   Congestion Window In TCP Vegas 

 

 
 

FIGURE 13: Congestion Window in TCP Vegas. 
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7.5   Send, dropped and ACK packet in 40 sec using TCP Vegas 

 

 
 

FIGURE 14: Send, Dropped and ACK Packet In 40 Sec using TCP Vegas. 

 
7.6 Queueing Algorithms (Droptail, FQ, RDD and RED) over TCP Vegas 
If all TCP Sources work as TCP Vegas and the used queuing type is Drop Tail and Fair Queueing 
in a bottleneck link, G1-G2 and Queuing limit (Buffer size) are equal to 20. The results shown in 

Figure 15 Drop Tail and in Figure 16 FQ and tables are below. 

 

 
 

FIGURE 15: Throughput kbps to four-sources work as TCP Vegas when Queuing type is DropTail. 
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FIGURE 16: Throughput kbps to four-sources work as TCP Vegas when Queuing type is FairQueueing. 
 
If all TCP Sources work as TCP Vegas and the used queuing type is DRR and RED in a 
bottleneck link, G1-G2 and Queuing limit (Buffer size) are equal to 20. The results shown in 
Figure 17 Drop Tail and in Figure 18 FQ and tables are below. 

 

 
 

FIGURE 17: Throughput kbps to four sources work as TCP Vegas when Queuing type is DRR. 
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FIGURE 18: Throughput to four sources work as TCP Vegas when Queuing type is RED. 
 

  
   
Sources 

 
 

S1 

 
 

S2 

 
 

S3 

 
 

S4 

 
 
 
 
Droptail 

 
  Sent Packet 

 
5382 

 
4234 

 
2630 

 
2630 

 
Received Packet 

 
5382 

 
4234 

 
2630 

 
2630 

 
Dropped Packet 

 
0 

 
0 

 
0 

 
0 

 
 
 
 
Fair Queueing 

 
Sent Packet 

 
3803 

 
3713 

 
3681 

 
3680 

 
Received Packet 

 
3803 

 
3713 

 
3681 

 
3680 

 
Dropped Packet 

 
0 

 
0 

 
0 

 
0 

 
 
 
 
DRR 
 
 
 
 

  
Sent Packet 

 
3801 

 

 
3712 

 
3682 

 
3681 

 
Received Packet 

 
3801 

 
3712 

 
3682 

 
3681 

 
Dropped Packet 

 
0 

 
0 

 
0 

 
0 

 
 
 
 
RED 

 
Sent Packet 

 
3960 

 
3761 

 
3865 

 
3625 

 
Received Packet 

 
3869 

 
3673 

 
3779 

 
3520 

 
Dropped Packet 

 
91 

 
88 

 
86 

 
105 

 

TABLE (7-2): Compare between Sent, Received and Dropped packets with different Queuing algorithms in 

TCP Vegas. 
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7.8 Compare between sent and received packets with different Queuing Algorithms in 
(TCP Reno and Vegas): 

  

Type TCP Vegas TCP Reno 
   

Drop Tail 14876 13861 
   

Fair Queueing 14877 14376 

   

DRR 14876 14310 

   

RED 14841 13917 
   

 

TABLE (7-3): Compare Between Total of Sent Packets. 

 

Type TCP Vegas TCP Reno 
   

Drop Tail 1162.1785 276.0121 
   

Fair Queueing 50.1416 65.7381 

   

DRR 48.9540 66.8636 

   

RED 1129.9141 374.0550 
   

 
TABLE (7-4): Compare Standard Deviation. 

8. CONCLUSION 
In this paper, we analysed the proposed scheme of ‘A Comparison of Queueing Algorithms over 
TCP Protocol’. 
 
While looking at the performance metrics (fairness and throughput) for all four queueing 
algorithms, we find that The DRR algorithm in TCP Vegas is the best in fairness. Then we find FQ 
algorithm in both TCP (Vegas and Reno) is better than DRR in Reno and the other two algorithms 
RED and Droptail, so we can conclude that the overall performance of FQ algorithm in both TCP 
protocols Reno and Vegas is better than DRR. DRR in TCP Vegas is better than FQ only in 
fairness but in throughput it is the same with FQ and Droptail and better than RED. 

Moreover, we find Droptail in Reno is better than RED in both TCP protocols (Reno and Vegas), 
but when it is in Vegas, it is less fairness than RED and better throughput, so that the overall 
performance of Droptail in both TCP protocols Reno and Vegas is better than RED except when it 
is in Vegas, then it is worse in fairness. 
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From this study we can classify these four Queueing algorithms in accordance to performance 
metrics as this order: 
 
1-FQ 
2-DRR 
3-Droptail 
4-RED 
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