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Abstract

Rust is a modern systems programming language that prioritizes safety and performance. Its key
innovation, the ownership and borrowing system, ensures memory safety by preventing common
errors such as dangling pointers, data races, and use-after-free bugs. Rust's type system further
enhances reliability by catching logic errors at compile time. The Rust compiler enforces memory
safety through its ownership and borrowing system, performing a set of strict checks to guarantee
the security and safety of the program. However, specific scenarios necessitate the use of Unsafe
Rust, which bypasses some of the safety checks. This is particularly relevant for performance
optimizations, interfacing with other languages, and implementing complex data structures. In this
paper, we have conducted a literature review on the use of Unsafe Rust, exploring why and how
programmers are utilizing it. The result indicates that while unsafe Rust is widely used, it is often
encapsulated to minimize risks. However, there are still many vulnerabilities in Rust that are
caused by using unsafe Rust. So, this paper also suggests some future research directions to
help with the safer use of unsafe Rust.

Keywords: Unsafe Rust, Rust Safety, Compiler Check, Rust Programming Language, Unsafe
Block.

1. INTRODUCTION

Rust is a system programming language designed for performance, safety, and concurrency.
Developed by Mozilla Research and first released in 2010, Rust is notable for its strong emphasis
on memory safety without relying on a garbage collector (Jespersen et al., 2015). Central to
Rust’s design is its ownership system, which ensures memory safety by managing how memory
is accessed and freed. This system, combined with borrowing and lifetimes, helps manage
references to data, ensuring these references remain valid and preventing data races. Rust also
features powerful pattern matching through match expressions, enabling concise and readable
handling of complex conditions. The language’s focus on concurrency allows developers to write
concurrent programs safely, leveraging the ownership model to avoid data races. Additionally,
Rust’s package manager and build system, Cargo, simplifies dependency management and
project building.

The Rust compiler performs a set of strict checks to guarantee the security and safety of the
program. However, unsafe Rust is a subset of the language that allows developers to bypass
some of Rust’s safety guarantees and perform operations that the compiler does not check. This
can be necessary in certain situations, such as interfacing with C libraries or system calls, where
unsafe code is required to handle the interactions properly. Performance-critical sections of code
might also leverage unsafe optimizations unattainable within safe Rust's constraints. Direct
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memory manipulation is another area where unsafe Rust is beneficial, enabling the
implementation of data structures or algorithms needing precise memory control. Additionally,
inline assembly, which is used for specific processor instructions or optimizations, often
necessitates the use of unsafe code. Finally, creating multiple mutable references to a single
piece of data, which is prohibited in safe Rust, can be achieved using unsafe Rust when such
aliasing is necessary.

While unsafe Rust provides powerful functionalities, it comes with significant security risks
because it bypasses Rust's safety checks. Unsafe code can lead to memory safety violations,
such as null pointer dereferencing, buffer overflows, and use-after-free errors. These violations
can cause a program to crash or exhibit unpredictable behavior. Unsafe Rust can also introduce
data races, which occur when two threads access or modify the same memory location
concurrently. Additionally, unsafe operations can result in undefined behavior, where the
program's actions become unpredictable and can vary across different platforms or compiler
versions. This unpredictability makes debugging extremely difficult and the code harder to
maintain. Unsafe code can also introduce security vulnerabilities. Hence, it may allow attackers to
exploit flaws and execute arbitrary code.

In this research, our goal is to understand why and how unsafe Rust is used. To answer this
question, we first study what unsafe Rust can provide. It shows that unsafe Rust allows
developers to perform low-level memory manipulation, interface directly with C libraries, optimize
performance-critical sections of code, use inline assembly, and create mutable aliases. These
operations bypass Rust’s stringent safety checks, providing a level of control and efficiency that
can be crucial in system programming, embedded development, and performance-intensive
applications. Next, we review recent studies on the use of unsafe Rust. This involves analyzing
academic papers, industry reports, and community discussions to understand the motivations,
benefits, and issues associated with employing unsafe Rust. The review focused on identifying
common patterns, specific use cases, and the experiences of developers who have integrated
unsafe Rust into their projects. Later, we focused on 4 larger studies about the unsafe Rust and
summarized them. The findings from the literature review show that unsafe Rust is used
extensively, but is necessary in certain situations where performance and control are crucial. For
example, programmers use unsafe Rust to get detailed control over memory, work with other
programming languages, and make critical parts of their code faster. However, using unsafe Rust
comes with big trade-offs in terms of safety and security. The findings highlight that while unsafe
Rust can provide strong advantages, it needs to be managed carefully to avoid security risks and
is usually only used when its benefits are greater than its potential problems. We also proposed
some future work that may help with using unsafe Rust safely.

2. BACKGROUND

2.1 Rust Programming Language Overview

Graydon Hoare, a Mozilla employee, created Rust out of his frustrations with the limitations of
languages used in Firefox development. Firefox’s core, written in C++, has various memory-
related errors — dangling pointers, buffer overflows, data races, use-after-free, and so on
(Jespersen et al., 2015). These bugs were difficult to track down and caused crashes or
unpredictable behavior. This frustrating experience demonstrated the need for a new approach to
build systems-level software, where safety is the top priority, but fine-tuned control for
performance is still necessary. Rust’s primary goal was to achieve memory safety without the
performance costs of traditional garbage collection. It aimed to offer the low-level control found in
languages like C/C++ alongside the peace of mind provided by safer, higher-level languages.
Additionally, Rust was designed to be a practical programming language, ready to handle the
complexities of real-world projects. Its development was informed by lessons learned from a wide
range of existing languages (Data Source15, 2023).

Mozilla’s 2009 sponsorship of Rust provided resources that helped the rapid development and
increased the language’s visibility. Rust embraced an open model from the outset (Data
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Source13, 2021). Language evolution was guided by a transparent RFC (Request for Comments)
process, giving the community a voice in shaping Rust’s direction. For example, the foundational
decisions for Rust’'s memory management, syntax, and tooling were forged collaboratively (Data
Source14, 2020). In addition, an effort has been made to make Rust easier to learn and use
without compromising its core strengths. For instance, comprehensive documentation exists,
smoothing the learning curve and making Rust more accessible to developers of all levels.
Moreover, it has a friendly community and great tools that make development smoother. Rust's
built-in tool, Cargo, handles packages and project tasks for programmers. In addition, Rust’s
compiler is famous for its exceptionally helpful error messages that not only explain the problem
but often guide towards solutions, fostering a strong learning environment (Klabnik & Nichols,
2023).

Rust’s innovation lies in its ownership and borrowing system. This compiler-enforced mechanism
ensures that at any given moment, a piece of data has either a single, well-defined owner
responsible for its cleanup or has been temporarily loaned out for read-only (&) or read-write
(«mut) access. With the compiler rigorously enforcing these rules at compile time, this approach
eliminates errors such as dangling pointers, data races, and use-after-free, which are common
vulnerabilities in other programming languages, such as C/C++. Rust’s dedication to safety and
performance carries into the realm of concurrency with its Send and sSync traits (Klabnik &
Nichols, 2023). These traits ensure that data can be safely shared between threads, preventing
common concurrency-related bugs.

Rust goes beyond preventing crashes; its rich type system proactively catches potential logic
errors at compile time (Klabnik & Nichols, 2023).Expressive traits allow for elegant code
organization and reusability. Most importantly, Rust’s zero-cost abstractions mean you can use
high-level constructs like iterators, pattern matching, and its Option and Result types for robust
error handling without sacrificing performance. Moreover, Rust’s robust cross-platform support
empowers you to build software for a wide range of operating systems and hardware
architectures with confidence. The Rust compiler understands detailed platform specifications
and can generate code tailored to specific targets. Its standard library offers both cross-platform
functionality and the flexibility to adapt to platform-specific needs. Tools like rustup and Cargo
simplify managing different target environments and build processes (Klabnik & Nichols, 2023).
This cross-compatibility means that programmers can write their Rust code once and deploy it
across diverse systems, from desktop computers to embedded devices, ultimately expanding the
reach of your software and reducing development overhead. Then, in 2018, Rust introduced
async and await to streamline asynchronous code, making Rust ideal for network-heavy and
concurrent applications. This feature significantly broadened Rust’s appeal to developers.

Overall, Rust lets programmers write safe and easy-to-maintain code without giving up
performance. The programming language has had significant success and has ranked as the
most loved programming language for six consecutive years on StackOverflow's developer
survey (Ho & Protzenko, 2022). In addition, Rust’s safety and performance drew the attention of
tech giants like Microsoft, Amazon, Discord, and Cloudflare, who adopted it for critical systems
(Data Source16, 2022).

2.2. Safety Mechanisms

Rust is a modern systems programming language designed to empower developers to build
simultaneously fast, reliable, and easy-to-maintain software. It provides the low-level control
necessary for critical systems such as operating systems, embedded devices, and Real-time
operating systems while offering robust safety features that prevent common errors and
streamline development (Klabnik & Nichols, 2023).

2.2.1. Ownership in Rust
Rust’s safety mechanism targets the root cause of memory-related errors like dangling pointers,
double frees, use-after-free, and data races, which are common vulnerabilities in C and C++.
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Rust’s key innovation is proactively detecting memory-related errors during compilation, where
the compiler strictly enforces its ownership and borrowing system. The ownership rule in Rust
states that each piece of data has a single owner. When ownership is transferred (e.g., by
passing a value to a function), the original owner can no longer use that data. Alternatively, data
can be temporarily borrowed by references. References can either be read-only (&) or read-write
(smut), but the compiler strictly enforces that there can only be one mutable reference at a time.
In Rust, variables are non-mutable by default (unless the mutable keyword is used), and they
are bound to their content (they own it or they have ownership of it) (Blanco-Cuaresma &
Bolmont, 2016). When that variable goes out of scope (its lifetime ends), Rust automatically
cleans up the value. This ownership rule ensures that every value has a clear owner responsible
for cleanup, and references are strictly managed to prevent unexpected data modification
(Anderson et al., 2016). Therefore, this system eliminates errors like dangling pointers, data
races, double-free, and use-after-free bugs. While this might feel slightly more complex to Rust
programmers, the payoff is worth the extra work: successfully compiled Rust code offers a strong
guarantee of memory safety.

Ownership Move. In Rust, every value has a single owner. When you assign values to a
variable, such aslet x = y;,ownership often moves. This means responsibility for managing
and deallocating the data associated with that value transfers from the old owner (y) to the new
owner (x). Moves are the default for most data types because they enhance efficiency and
provide clarity about which part of your code is responsible for the data's lifetime.

1 fn main() {

2 let hello_message = String::from(”"How_are._you”);
3 // String created, hello_message owns it

4

5 let another_message = hello_message;

6 //Ownership moves to another_message

7

8 // This would now be an error:

9 // println!(”{}”, hello_message);
10 // hello_message is no longer valid!

11

12 println !(”{}”, another_message);

13 // This Works as another_message is now the owner
14 }

15

FIGURE 1: An example of Ownership Move in Rust.

An example of an ownership move is shown in Figure 1. On line 2, the assignment statement
assigns the string “How are you” to variable hello_message, which means hello_message
owns the string. Then, on line 5, the ownership of the string moves to the variable
another_message. On lines 9 and 12, the code tries to print the string using
hello_messageand another_message. However, if the code on line 9 is uncommented, then
an error message will be given because hello_messageno longer owns the string “How are
you” and hence can not be used to access it. On the other hand, no compiler error message will
be generated when executing the code on line 12 because another_message is the owner of
the string.

The advantages of ownership move include (1) Avoiding value copies: When Ownership moves,
Rust often just transfers a pointer to the data rather than copying the entire contents of the data.
This is especially important for larger data structures where copying would be time-consuming
and memory-intensive. (2) Enabling optimizations: Since the compiler knows who owns a value
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and when it’s invalidated, it can automatically insert memory deallocation code at the right point.
This keeps the code clean while allowing for behind-the-scenes optimizations.

Ownership Borrowing. Sometimes, we need temporary access to data without taking
permanent ownership. Rust facilitates this through its borrowing system. It uses references & for
immutable (read-only) access, allowing reading the value without the ability to change it. For
modification, smut (mutable reference) must be used, which grants exclusive read and write
capabilities. The compiler performs a check on it — if there’s a read-only reference, no changes
are allowed, and only one mutable reference is allowed at any given time. This strictness is the
key to preventing data races and unexpected mutations, making Rust code inherently safe.

Rust’s borrowing system also introduces flexibility while guaranteeing safety. It allows temporary
access to data without the need to take full ownership. This is ideal for situations where you need
to work with information without assuming permanent responsibility for it. By allowing read-only or
exclusive mutable access, Rust safeguards data integrity. This means you can have confidence
that data remains consistent and reliable, especially when multiple parts of the code interact with
it.

Mutable and Shared References. Mutable references (smut)grant exclusive read and write
access to the underlying data. This is important for safe modification. For example, using a global
mutable static variable for the cache introduces potential problems, especially in multi-threaded
environments where it prevents data races — the hazard of multiple threads unpredictably
modifying the same memory. The shared reference (&) allows multiple readers to observe the
data simultaneously. It provides a guarantee that the data they point to will remain unchanged. A
mutable reference acts as a temporary shield, preventing any conflicting access and letting you
change data safely. Shared references (&) enable you to safely pass data to functions without
fearing the function might change its value.

2.3 Unsafe Rust

Rust is a programming language known for its focus on memory safety, zero-cost abstractions,
and concurrency control. However, it has a unique feature called unsafe Rust. Unsafe Rust
allows developers to intentionally bypass the strict safety guarantees that Rust usually enforces.
While Rust's primary goal is to eliminate common programming errors through rigorous compiler
checks, there are scenarios where developers might need to bypass some of the language’s
safety checks, such as when interacting with libraries written in other programming languages.
When a block of code or a function is marked as unsafe in Rust, it means that the compiler won’t
enforce some of its usual safety checks within that scope. By using the unsafe keyword,
programmers essentially assume full responsibility for the code's safety within that block, placing
full responsibility for the code’s safety in the programmers’ hands. Therefore, the programmer
must be absolutely certain of the code’s safety and accept the increased risk in exchange for
potential performance gains. In this exploration, we will delve into five specific reasons for using
unsafe Rust.

2.3.1. Dereferencing a Raw Pointer: Unsafe Rust allows developers to perform low-level
memory operations, such as dereferencing raw pointers. Raw pointers are essentially memory
addresses without any associated metadata or lifetime information, offering direct access to
memory locations. While inherently risky, raw pointers can be powerful tools when used with
extreme care. Programmers may resort to this when interacting with low-level interfaces,
optimizing critical sections of code where the overhead of Rust's safety checks becomes
prohibitive, requiring direct manipulation of memory addresses, or interfacing with low-level APls
or external libraries that use raw pointers.

In Rust, raw pointers are denoted by *const T (immutable) or *mut T (mutable), where T is a
data type. Unlike references (&T and smut T), raw pointers lack the guarantees provided by
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Rust’s borrow checker and compiler checks. They can point to arbitrary memory locations,
potentially leading to undefined behavior if not handled carefully.

fn main() {
let num = 42;
let raw_ptr = &um as *const i32;
unsafe {
// Danger! This points to invalid memory
println !("Raw_pointer_value: _{}” ,sraw_ptr);
}
}

==l e L

FIGURE 2: An example of dereferencing a raw pointer in Rust.

See Figure 2 for an example of dereferencing a raw pointer in Rust. This code demonstrates the
creation and usage of a raw pointer in Rust and how unsafe blocks are used to dereference raw
pointers. On line 2 of the code, it creates an integer variable num with a value of 42. On line 3,
raw_ptr takes a reference to the variable num and*const 132 casts this reference to a raw
pointer of type *const 132 (a raw pointer to a constant i32). Then, on line 6, the raw pointer
raw_ptr is dereferenced using *raw_ptr to access the value it points to. This must be done in
an unsafe block (lines 4-7); otherwise, dereferencing a raw pointer is not allowed in Rust.

Dereferencing a raw pointer poses a significant risk due to their lack of safeguards compared to
Rust’s safer alternatives. One major issue is the potential for dereferencing an invalid pointer. An
invalid pointer may point to uninitialized memory, deallocated memory, or simply an incorrect
location, leading to crashes or unpredictable results upon dereferencing it. Furthermore, working
with raw pointers inside unsafe blocks eliminates the protection of Rust’s borrow checker. This
can lead to data races, where concurrent access or aliasing (multiple pointers referencing the
same memory) can result in unexpected memory modifications and corrupted data. In addition,
mistakes in offset calculations or neglecting to release allocated memory can lead to memory that
remains in use, even if the program no longer needs it.

2.3.2. Calling an Unsafe Function or Method

Rust allows the definition of unsafe functions or methods, which can only be called within an
unsafe block. Unsafe functions or methods are the functions or methods marked with the unsafe
keyword. An unsafe block allows programmers to use unsafe features, such as dereferencing raw
pointers or calling unsafe functions, within a clearly defined, restricted section of your code. It
provides a way to encapsulate unsafe behavior and limits its scope. It is crucial to remember that
the compiler often performs fewer or even no runtime safety checks on code within unsafe
functions and blocks. For example, in certain performance-critical situations where Rust’s safety
checks introduce unacceptable overhead, unsafe code might be employed to bypass the check
(Data Source17, 2023). Therefore, when using an unsafe block, ensuring the safety of the
encapsulated operations becomes entirely the programmer’s responsibility.

Any function declared with an unsafe keyword must be called from within an unsafe block. This
mechanism signals that the programmer is aware of the potential security risks involved. The
unsafe keyword acts as a barrier, preventing accidental calls and ensuring that the use of unsafe
functions is deliberate and intentional.
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1 unsafe fn potentially_dangerous_operation

2 (input: &str) —> usize {

3 // Dereferencing a raw pointer

4 //without bounds checks

5 let raw_ptr = input.as_ptr() as *mut u8;

6 let value_at_offset = x(raw_ptr.add(10));

7 // Reading directly from memory... danger/!

8 // Converting a reference into a raw pointer
9 let ptr = input.as_ptr ();

10 let some_value = *ptr;

11 //input’ might be gone by now

12

13 // Transmuting between incompatible types

14 let bytes = input.as_bytes ();

15 let fake_int_ptr = bytes.as_ptr() as xconst i32;
16 let fake_int = xfake_int_ptr;

17 //Likely misinterpreting memory

18

19 input.len() * 2 //

20 }

21 fn main() {

22 let my_string = " Hello”;

23 unsafe {

24 let result = potentially_dangerous_operation(my-string);
25 println!(” Result:.{}”, result);

26

27 '}

28

FIGURE 3: An Example of an Unsafe Function.

Figure 3 shows an example of an unsafe function (lines 1 to 20). On line 1, the unsafe keyword
indicates that the function contains operations that the programmer does not want the Rust
compiler to check their security. This code demonstrates several unsafe operations in Rust, such
as dereferencing raw pointers (on line 6 and line 10) and transmuting between incompatible types
can lead to misinterpreting memory (on lines 14-16). Because this unsafe function contains
potentially dangerous operations, the function can only be called from an unsafe block. In this
example, the function is called on line 24, which is inside an unsafe block (lines 23-26).

When an unsafe Rust code is needed, programmers need to decide whether to use unsafe
functions or unsafe blocks. Unsafe functions are best for encapsulating unsafe operations where
you want to define precise safety requirements. This approach offers modularity and helps guide
others who might use the unsafe function by clearly outlining its preconditions. Use unsafe blocks
for smaller, isolated snippets of code where creating an entire unsafe function might be
unnecessary. When programming, it is important to document any unsafe function, explicitly
specifying the conditions required for its safe use.

2.3.3. Accessing or Modifying a Mutable Static Variable

Unsafe Rust allows the creation and modification of mutable static variables, which have a single
memory location and are accessible across different threads in a program. While generally
discouraged due to potential concurrency issues, the use of the global mutable state might be
necessary in specific scenarios, such as when designing low-level concurrency patterns or
interacting with certain system-level resources. If a mutable static variable must be used, it is
imperative to employ appropriate synchronization mechanisms (such as mutexes, locks, or
atomic operations) to prevent data races and ensure thread safety.

A static variable in Rust has a static lifetime, meaning it persists for the entire duration of the
program’s execution. It has a fixed memory location, unlike regular variables that lose their values
between function calls. Static variables often serve as global constants or values that need to be
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shared across different parts of the codebase. When declaring a static variable with the mut
keyword, it becomes mutable (modifiable). However, it is crucial to exercise extreme caution
when working with mutable static variables. They can introduce the potential for data races if
multiple threads attempt to modify them simultaneously, leading to undefined behavior,
unpredictable program execution, or even crashes. Therefore, careful synchronization and
adherence to Rust's concurrency guidelines are essential when dealing with mutable static
variables.

Figure 4 illustrates the use of a mutable static variable in Rust. This code demonstrates how a
global counter (OPERATIONS_COUNT, declared on line 1) can be used to track the number of
times the perform_operation function is called. On line 5, the global static variable
OPERATIONS_COUNT is incremented by 1 within an unsafe block (lines 4-6). This is necessary
because modifying a mutable static variable is considered an unsafe. Similarly, in the main
function, another unsafe block (lines 14-17) is used to read and print the value of
OPERATIONS_COUNT. Again, this is required because accessing a mutable static variable outside
of an unsafe block would trigger a compiler error message.

//Global Counter
static mut OPERATIONS.COUNT: u32 = 0;
fn perform_operation () {
unsafe {
OPERATIONS.COUNT += 1;
}
}

fn main () {
for _ in 0..10 {
perform_operation ();

}

14 unsafe {

15 println!(” Total_operations_performed:{}”,
16 OPERATIONS_COUNT) ;

17 }

18 }

© 00~ U W=

el
W N = O

FIGURE 4: An example of accessing or modifying a mutable static variable.

While generally discouraged, there are specific situations where altering a static variable within a
program might seem beneficial. Examples include caching computationally expensive results,
tracking counts across the program, or storing global configuration values that can change at
runtime. However, it's important to remember that mutable static variables introduce significant
security risks.

2.3.4. Implementing an Unsafe Trait

Traits in Rust act like interfaces in other languages, providing a way to define a blueprint of
shared behaviors that different types can adopt. They are essential in Rust for several reasons:
(1) Polymorphism, a key benefit of traits, allows programmers to write code that works with
multiple types without needing to worry about the specifics of their implementations. This flexibility
means a function can accept any type that implements a certain trait. (2) Traits also promote
code reusability; by defining shared functionality in a trait, programmers can have multiple structs
implement those behaviors, eliminating repetition. Furthermore, traits can be implemented for
types from external libraries, making it easy to integrate those types within a code. (3) Rust offers
unsafe traits that can provide more low-level control or performance optimization. Unsafe traits in
Rust enable the definition of traits with associated unsafe methods. This can be valuable when
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dealing with specialized scenarios requiring manual resource management or other unsafe
operations. Programmers may opt for this when working on advanced abstractions that require
manual control over certain aspects of the code.

trait Shape {
fn area(&self) —> f64; // Method signature
}

1

2

3

4

5 struct Rectangle {
6 width: f64,
7 height: {64,
8 }

10 impl Shape for Rectangle {
11 // Implementing the Shape trait for Rectangle

12 fn area(&self) — f64 {

13 self.width % self.height;

14 }

15}

16

17 fn main() {

18 let rect = Rectangle {width:5.0, height:10.0};
19 println!(” Area_of_rectangle:{}”, rect.area());
20 }

FIGURE 5: An example of trait in Rust.

Figure 5 presents a code example of using trait in Rust. This code demonstrates how to define
and implement a trait in Rust. Lines 1-3 define a Shape trait with a method area that must be
implemented by any type that wants to implement this trait. Then on lines 5-8, we defined a
Rectangle struct with width and height as its fields. Then, the Shape trait is implemented for
Rectangle by defining the area method (lines 10-15). This method computes the area by
multiplying the rectangle’s width and height. In the main function, an instance of Rectangle is
created with a width of 5.0 and a height of 10.0 and the area method is called on this instance,
and the resulting area is printed to the console, displaying the area of the rectangle.

2.3.5. Manual Memory Management

Rust’s ownership model is the key to its memory safety guarantees. By default, Rust relies on the
concepts of ownership and borrowing. When a variable goes out of scope, its memory is
automatically freed (Matsakis & Klock, 2014). This system effectively prevents common memory-
related issues like memory leaks and dangling pointers. However, while Rust's automated
memory management is excellent for most use cases, there are certain situations where manual
control might be necessary. These include interacting with C libraries to manage memory,
implementing specialized data structures where fine-grained control over memory layout is
needed, or in certain scenarios where the program needs to gain additional efficiency by
bypassing Rust’s checks. According to Balasubramanian et al., many techniques for improving
the performance and reliability of systems hinge on the ability to automatically manipulate
program state in memory within unsafe Rust (Balasubramanian et al., 2017).

While Rust's ownership model is sufficient in most cases, sometimes you might need direct
control over memory allocation and deallocation on the heap. Rust’s standard library provides
functions like alloc, alloc zeroed, and dealloc(within the std: :alloc module) for these
tasks. These functions return raw pointers and allow programmers to manage memory explicitly.
However, these functions are sometimes too restrictive in terms of managing memory; therefore,
the use of unsafe Rust to bypass the checks might be necessary. For example, when designing
specialized data structures, interacting directly with hardware, or attempting to improve the
performance of a program (Liu et al., 2020). However, it's crucial to emphasize that the
programmer assumes full responsibility for ensuring correct and safe manual memory
management in these situations.
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1

2 wuse std::alloc::{alloc, dealloc, Layout};

3 fn main() {

4 unsafe {

5 // Allocate enough space for 5 integers
6 let layout =Layout::array::<i32 >(5).unwrap ();
7 let ptr = alloc(layout) as xmut i32;

8

9 //Write values into the allocated memory
10 for i in 0..5 {

11 xptr.add(i) = i as i32;

12 }

13 // Read the walues

14 for i in 0..5 {

15 println!(”Index_{}:{}” ,i,xptr.add(i));
16 }

17 // Crucial: Ezxplicitly deallocate

18 //to avoid memory leaks

19 dealloc (ptr as #mut u8, layout);

20 }

21 }

FIGURE 6: An example of Manual Memory Management in Rust.

As shown in Figure 6, an example of manual memory management in Rust is presented. This
code demonstrates manual memory management in Rust using the std: :alloc module (on line
2),allocating memory for an array of 5 i32 integers (lines 6 and 7),writing values into the allocated
memory by using the for loop on lines 10 to 12. The values are printed from the allocated
memory on lines 14-16. On line 19, deallocating the memory to avoid memory leaks.

The use of unsafe blocks (lines 4-20) is necessary for these operations because manual memory
management bypasses Rust’s safety checks. This code illustrates the importance of handling
memory allocation and deallocation carefully to ensure memory safety and prevent leaks.

3. RELATED WORK

As Rust gains adoption in critical systems, Qin et al. wanted to understand the real-world safety
issues that arise in Rust code to improve programming practices and tools (Qin et al., 2020). Qin
et al. conducted the first empirical study of Rust by manually inspecting 850 unsafe code usages
and 170 bugs in five open-source Rust projects, five widely used Rust libraries, two online
security databases, and the Rust standard library. The study answers three important questions:
what memory-safety issues real Rust programs have, what concurrency bugs Rust programmers
make, and how and why programmers write unsafe code.

The study explores how unsafe code is utilized, modified, and used. Throughout the examined
projects, the authors claim that unsafe Rust is used often and usually for legitimate reasons like
improving performance or reusing existing code. However, the authors found that the
programmers also make efforts to minimize the use of unsafe code whenever possible.
Furthermore, they observed that the practice of interior unsafe is commonly used by
programmers as a means to encapsulate unsafe code. In Rust, interior unsafe refers to the
practice of using unsafe code within a safe abstraction to perform operations that are not checked
by the compiler's usual safety guarantees. This allows developers to encapsulate potentially
dangerous code in a way that presents a safe interface to the outside, leveraging the power of
unsafe while maintaining overall program safety (Qin et al., 2020).

This study investigates memory-safety issues in real-world Rust applications through bug
analysis in selected projects and databases (Qin et al., 2020). The key finding is that all memory-
safety bugs involve unsafe code. Surprisingly, most of these bugs also incorporate elements of
safe code, highlighting the risk of errors when programmers write safe code without sufficient
awareness of connected unsafe code. Additionally, when used with unsafe code,
misunderstandings of the Rust lifetimes contribute to many memory-safety issues.
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Their study also analyzes concurrency bugs within Rust code, specifically looking at non-blocking
and blocking bugs (Qin et al., 2020).Blocking bugs are the bugs that are severe enough to halt
the program’s execution and stop it from functioning. Non-blocking bugs are the bugs that cause
problems or unexpected behavior in a program, but they don't completely prevent the program
from continuing to execute. The authors made a surprising discovery: non-blocking bugs can
arise in both safe and unsafe Rust code, while all the blocking bugs examined were found
exclusively within safe code sections. This finding highlights the potential for concurrency issues
even within Rust’s typically safer code environments.

In their research, Qin et al. also proposed specific design principles and methods for creating
effective Rust bug detectors focused on lifetime issues. They developed two static bug detectors,
a use-after-free detector and a double-lock detector, both of which revealed a total of 10 bugs
that had not been previously discovered (Qin et al., 2020).

Another study, conducted by Astrauskas et al., delved into real-world applications of unsafe Rust
(Astrauskas et al., 2020). The paper offers valuable insights into why programmers choose to
employ unsafe Rust. It also provides an empirical analysis of how unsafe Rust appears in actual
codebases. In addition, the research aims to verify the Rust hypothesis suggesting that unsafe
Rust is used sparingly, is easy to review, and is hidden behind safe interfaces within projects. The
study looked at how often unsafe code appears, its size, if it uses other libraries, and what kinds
of functions it calls. The authors designed comprehensive methods, including automatic code
analysis with information from the Rust compiler and human code reviews, to explore this
question. Findings show that while the Rust hypothesis holds partially true—unsafe Rust tends to
be uncomplicated and well-contained—it is used extensively in interacting with other
programming languages (Astrauskas et al., 2020).

In the third large study we studied, the authors aimed to investigate how software developers are
utilizing unsafe Rust in real-world Rust libraries and applications (Evans et al., 2020). Although
Rust promotes safety properties like memory safety and no data race, the authors aimed to
assess the extent to which these guarantees hold in practice when unsafe Rust is involved. By
analyzing the usage of unsafe Rust within Rust libraries, they sought to identify potential risks and
challenges to Rust's safety claims, ultimately aiming to recommend changes that could enhance
the safety awareness and practices of Rust developers.

The Authors indicate that the use of unsafe Rust may lead to various issues, including(Evans et
al., 2020):

e Memory safety issues - Bypassing Rust's memory management system can lead to
memory leaks, dangling pointers, and buffer overflows. These can cause crashes,
security vulnerabilities, and other unexpected behavior.

e Undefined behavior - Unsafe code can trigger undefined behavior, causing program
crashes or unpredictable results. This makes it difficult to reason about the behavior of
unsafe code and can lead to hard-to-find bugs.

e Security vulnerabilities - Improper use of unsafe code can introduce security
vulnerabilities like buffer overflows, which attackers can exploit.

¢ Increased development complexity - Using unsafe code makes reasoning about program
behavior more challenging, potentially leading to bugs. Unsafe code can also be difficult
to test and maintain.

Evans et al. also developed a tool to analyze Rust code and build call graphs that track how
safety guarantees might propagate. Safety guarantees in Rust refer to the language’s features
that help prevent the following issues (Evans et al., 2020): (1) Memory Errors - Errors like
dangling pointers, buffer overflows, and memory leaks. These can cause crashes, security
vulnerabilities, and other unexpected behavior. (2) Data Races - Issues that occur when multiple
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threads access the same memory location concurrently without proper synchronization. And (3)
Undefined Behavior - The program’s behavior is not specified by the Rust language, leading to
unpredictable results.

In the context of the study, the authors’ tool tracks how these safety guarantees propagate
through a program’s code. They found that while not every library uses the unsafe keyword
directly, over half of Rust codebases become indirectly unsafe due to dependencies on unsafe
code elsewhere. This suggests that even seemingly safe Rust code may not be fully protected
from the bugs. Rust is designed to prevent, highlighting the need for careful use and better
tracking of Unsafe Rust (Evans et al., 2020).

In another paper, the authors studied how Rust developers utilize the unsafe code feature and
the necessity of its use (Zhang et al., 2023). The authors analyzed thousands of unsafe blocks
from popular Rust projects, finding that while unsafe code is often essential (like interacting with
foreign languages), there are also many cases where safe alternatives exist that the Rust code
could be refactored to eliminate the unsafe keyword while maintaining the same functionality
(Zhang et al., 2023). These unnecessary uses often stem from performance optimizations or a
lack of awareness of safe Rust constructs. To help developers, the study further identifies
common patterns of unnecessary unsafe usage and developed a VS Code plugin that suggests
safe alternatives. When the plugin detects unnecessary unsafe code, the plugin directly suggests
code transformations that eliminate the need for the unsafe keyword while preserving
functionality. By guiding developers towards safer Rust practices, the plugin would contribute to a
reduction in memory-related bugs and vulnerabilities in Rust projects. This plugin demonstrates
the potential for improving Rust code safety, and evaluations showed that many safe suggestions
have minimal performance impact. While some safe alternatives may have slight performance
overhead, the impact is generally minimal (Zhang et al., 2023). The effectiveness of the plugin
was tested on 140 unsafe blocks from the RustSec Advisory Database, successfully suggesting
safe replacements in 28.6% of cases, thus potentially reducing the number of bugs and
vulnerabilities associated with unsafe code (Zhang et al., 2023).

4. DISCUSSION

Programmers use unsafe Rust primarily due to the need for flexibility and control over low-level
operations that are not readily available within the language's strict safety rules. The study
conducted on the use of unsafe Rust programs identified several key reasons for this:

1. Performance and flexibility: Unsafe code is often used to optimize performance or to
interact directly with hardware or system components where safe abstractions of the
language may introduce overhead or be insufficient. For example, unsafe operations
might involve direct memory management or bypassing certain compiler checks that
enforce safety but can limit direct control over hardware or execution logic.

2. Reuse of existing code: Another common reason for using unsafe code is the need to
interface or integrate with existing libraries, particularly those written in other languages
like C or C++. This is necessary to leverage existing functionality without rewriting
substantial amounts of code in a safe manner.

3. Limitations of safe abstractions: While languages like Rust aim to provide robust safety
guarantees, these can sometimes be too restrictive, preventing valid low-level operations
necessary for certain system programming tasks. Unsafe code blocks allow developers
to perform these operations by opting out of some of the language’s safety guarantees.

4. Necessity in systems programming: In system programming, where direct interaction with
system resources is frequent, unsafe code is often a necessity. It allows programmers to
write highly efficient and low-level code that interacts directly with operating system
kernels or hardware devices.
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The use of unsafe code, while necessary in many scenarios, does introduce risks, particularly
related to memory safety and security vulnerabilities. As such, its use is typically surrounded by
strong recommendations to limit the scope of unsafe operations and to ensure that unsafe code is
well-reviewed and tested. The potential issues associated with the use of Unsafe Rust are
highlighted below:

e Compiler Guarantees: When developers use Unsafe Rust, the compiler is unable to
guarantee memory safety, which is one of Rust’'s primary benefits. Without a compiler
check, the unsafe Rust code may lead to software vulnerabilities that are difficult to
detect.

¢ Propagation of Unsafeness: The study found that even if a small part of a Rust library
uses Unsafe Rust, the unsafeness can propagate through the library’s call chain. This
means that applications depending on such libraries might also be compromised, even if
they do not directly use Unsafe Rust.

e Prevalence in Popular Crates: Unsafe Rust is more commonly used in popular Rust
libraries (crates), which are widely used across the Rust ecosystem. This increases the
risk that a large number of applications built on these popular crates may inadvertently
include unsafe code.

e Difficulty in Auditing: Auditing Rust libraries for Unsafe Rust usage is challenging,
especially since it requires a thorough examination of all dependent libraries. This
complicates security reviews and can lead to overlooked vulnerabilities.

¢ False Sense of Security: Developers might have a false sense of security due to Rust's
inherent safety features, not realizing that the use of unsafe Rust can introduce safety
risks. This complacency can lead to less rigorous testing and code review practices.

e Potential for Memory-Safety Bugs: While Rust aims to eliminate common memory-
safety issues found in languages like C and C++, the use of Unsafe Rust reintroduces the
potential for these types of bugs, such as buffer overflows, use-after-free errors, and race
conditions.

e Impact on Rust’s Ecosystem: The widespread use of Unsafe Rust, especially in
foundational or heavily used libraries, could have a broader impact on the perceived
reliability and safety of the Rust ecosystem as a whole.

4.1 Future Directions

Make the unsafe code more visible to the programmers. Unsafe Rust is used in a significant
portion of Rust libraries and projects. While less than 30% of Rust libraries explicitly use the
unsafe keyword, more than half of all libraries cannot be fully statically checked for safety
because they depend on other libraries that use Unsafe Rust (Evans et al., 2020). The
propagation of unsafeness through library dependencies challenges Rust’s claim as a memory-
safe language, as even libraries that do not directly use unsafe can be affected by the unsafe
code in their dependencies (Evans et al., 2020). To enhance the visibility and management of
Unsafe Rust, one possible solution is that some modifications to the Rust compiler and the
central repository interfaces can be applied to better inform developers about the presence and
implications of unsafe code in their projects.

Improve the IDE plugins to help programmers find safer alternatives when they use unsafe Rust.
Implementation of new plugins and tools that can provide automated suggestions for safe coding
practices where feasible. This tool could leverage static analysis techniques to detect patterns
where unsafe code could be replaced with safe Rust constructs. For instance, it could identify
instances where code unnecessarily uses unsafe for global mutable states and recommend
encapsulating such states in thread-safe constructs using Rust’s concurrency primitives.

International Journal of Computer Science & Security (IJCSS), Volume (18) : Issue (2) : 2024 27
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php




Abbas Alshuraymi & Jia Song

Use advanced code analysis frameworks adoption of advanced code analysis frameworks that
could help in encapsulating unsafe code safely and detecting bugs in a proactive manner.

4. CONCLUSION

In conclusion, Rust’s growing adoption in systems programming indicates a fundamental shift
toward safer and more secure software development. The language’s unique ownership and
borrowing system, coupled with a strong type system and efficient abstractions, empowers
developers to create reliable and high-performance code. By design, Rust prevents many
common errors that often plague systems-level programming in languages like C and C++.

This paper primarily focuses on the use of unsafe Rust. When the unsafe keyword is used to
define a block of code or a function, the compiler abandons its usual safety checks, which means
the programmers are responsible for the safety and security of the unsafe code. The use of
unsafe code can help in certain cases, such as improving the performance of the code or
interacting with other programming languages. However, the use of unsafe Rust requires careful
consideration and thorough review to make sure there are no security issues associated with the
unsafe Rust. Studying existing research on the use of unsafe Rust shows that programmers
extensively use unsafe Rust, and the unsafeness of such code often goes unnoticed by the
programmers due to a large number of unsafe codes existing in the Rust libraries that are
inherited by the written program. Based on the identified issues, we suggest some future
directions to help with the use of unsafe Rust.
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