
Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 30
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

AQPrius: Offline Approximate Query Processing Enhanced by
Error Assessment using Bootstrap Sampling

Feng Yu fyu@ysu.edu
Computer Science and Information Systems
Youngstown State University
Youngstown, OH 44555, USA

Sabin Maharjan smaharjan02@student.ysu.edu
Computer Science and Information Systems
Youngstown State University
Youngstown, OH 44555, USA

Lucy Kerns xlu@ysu.edu
Statistics and Mathematics
Youngstown State University
Youngstown, OH 44555, USA

Xiangjia Min xmin@ysu.edu
Bioinformatics and Plant Biology
Youngstown State University
Youngstown, OH 44555, USA

Abdu Arslanyilmaz aarslanyilmaz@ysu.edu
Computer Science and Information Systems
Youngstown State University
Youngstown, OH 44555, USA

Michelle Zhu zhumi@montclair.edu
School of Computing
Montclair State University
Montclair, NJ 07043, USA

Abstract

In this work, we present AQPrius, an offline approximate query processing (AQP) engine that can
efficiently answer complex analytic queries on large datasets. Unlike existing systems that
employ the online AQP schemes, AQPrius employs the offline AQP scheme which has two
advantages: (1) it doesn't require high-end hardware or expensive auxiliary data structures such
as indices or hash tables; (2) the synopses collected are reusable for future queries on the same
database which can significantly save computing resources. However, the error assessment for
offline AQP systems is still a challenging problem. The contributions of this research are four-fold.
First, AQPrius is an offline AQP engine that can quickly answercommon analytic queries including
selection conditions, join conditions, and aggregate functions. It can speed up complex query
processing on big data. Second, AQPrius enables error assessment using a non-parametric
statistic method, namely bootstrap sampling, that can provide the standard error of query
estimation. Third, using the standard error by bootstrap sampling, we extend the traditional offline
AQP system from providing a single-point query estimation to a range estimation which is a
bounded answer presented as a confidence interval (CI). Finally, the system is developed using
the Rust programming language which can prevent many security issues and potential
vulnerabilities. We evaluate AQPrius using the well-known TPC-H benchmarks. The experimental
results show that AQPrius can rapidly generate accurate bounded query answers for various test
queries with selection and join conditions.

Keywords: Approximate Query Processing, Bootstrap Sampling, Big Data.

Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 31
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

1. INTRODUCTION
Efficiently processing complex queries has always been a challenge for big data management
systems. Much work has been focused on promptly executing data queries using advanced
hardware and software solutions (D. L. Quoc et al., 2018; M. Sch et al., 2015). One fact ignored
by many big data management systems is that computing the exact query answer can be
expensive and unnecessary in many scenarios. For example, one user may only desire
quickapproximations to some testing queries at the beginning of an exploratory data analysis (or
EDA) project. This stimulates the study of fast query estimation on big data (J. Bater, 2020; T.
Tian, 2020; D. Wilson et al., 2019; Z. Zhou et al., 2018; T. Siddiqui et al., 2020).

Approximate query processing (or AQP) is an alternative scheme to answer queries
approximately with satisfying accuracy and within a short time (S. Agarwal et al., 2014; K. Li et
al., 2018; Q. Liu, 2009). Compared with traditional query processing techniques, AQP doesn't
need to execute a query on the original data which can be very costive. Instead, it usually collects
statistic summaries, named synopses, from the original data and runs the query on the synopses
to produce a synopsis query result which can be substantiallyfaster and less costive. The
synopsis query result will later be used by AQP statistic estimators to produce query estimations.

Depending on how the synopses are collected, AQP schemes can be categorized into the online
AQP and the offline AQP (S. Chaudhuri et al., 2017). The online AQP (Y. Chen et al., 2017; V.
Leis et al., 2017; F. Li et al., 2019), by the name, collects statistic synopses on the flywhen the
user query for approximation is submitted. The procedure of synopsis collection can be time-
consuming given a large dataset. Therefore, online AQP techniques usually rely on auxiliary and
expensive data structures, such as indices and hash tables, to collect statistics quickly. These
data structures can be either costly to build or expensive to maintain on big data. Another
drawback of online AQP schemes is that the collected statistics are not reusable and must be re-
collected for estimation by a different user query.

Opposite to online AQP, offline AQP (S. Acharya et al., 1999; F. Yu et al., 2013) collects statistic
synopses before a user query is submitted. This technique usually needs knowledge of the
schema of a database to summarize it into smaller synopses. Offline AQP doesn't require
auxiliary data structures to collect statistics because the synopses are already available when a
user query is submitted. This avoids the extra time of synopses collection and will not delay the
query estimation during the system runtime. One challenge for offline AQP systems is to
efficiently assess the errorofquery estimation.

The common applications of AQP include estimation for selection queries (or selection-AQP or �-
AQP) and multi-table join queries (or join-AQP, ⋈-AQP). The challenge is that when query
conditions change the underlying distributions of the query result sets will also change and are
hard to predict. For online AQP schemes, because the synopses are collected before a query is
submitted, the distribution of the results can be calculated. Therefore, the variance of online AQP
estimators can be computed. However, for offline AQP schemes, it's hard to predict the
distribution of the query result set before a query is submitted. Therefore, the error assessment of
offline AQP schemes can be challenging.

To this end, we propose AQPrius, a sampling-based offline AQP system that not only can provide
users with accurate query estimation at lower costs but also can provide error assessment for
query estimation. This system uses the offline AQP technique to collect synopses from the
original database which is suitable to run on resource-constraint platforms. The system includes a
general database connector that can communicate with various data sources such as centralized
or distributed databases. AQPrius can take common user queries including selection and join
queries with various query conditions and analytic functions. This system provides users with fast
and satisfying query answers.

A unique feature of this system is it employs bootstrap sampling (B. Efron et al., 1994) which is a
special statistical method that can assess the errors of query estimations of offline AQP. An
advantage of bootstrap sampling is that it doesn't require prior knowledge of the data distribution

Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 32
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

but can work like “pull itself up by its bootstrap”. Bootstrap sampling performs a special sampling
method, named resampling, which generates many random samples with replacement, named
bootstrap samples, from the original sample. By applying the statistic estimator on the bootstrap
samples, a set of scalar values of estimation, named bootstrap replications, is obtained. The
standard error of the bootstrap replications can be computed as the error assessment of the
statistic estimator.

The AQPrius system consists of three major components including a query processing engine, a
synopses engine, and a bootstrap engine. The query processing engine is the system manager
coordinating other components in the system. It has a query parser that can read and analyze
common user queries with various query conditions. The synopses engine can access external
databases to collect statistic synopses. This system employs the CS2 (F. Yu et al., 2013) which is
an efficient offline AQP scheme capable of answering common analytic queries while only taking
tiny storage. The collected synopses will be reduced in size to fit into a centralized storage. The
bootstrap engine utilizes the intermediate results from the query processing engine for error
assessment. It will provide a standard error and a confidence interval to enrich the user feedback.

The contributions of this work are listed as follows.

1. AQPrius is a practical offline AQP framework that answers common queries including
selection and join conditions with aggregate functions. It is capable of systematically
reducing big data into smaller-sized statistic synopses. The collected synopses can be
stored in centralized storage systems such as hard drives or main memory to speed up
the query estimation time.

2. This system extends the existing offline AQP systems by introducing the error assessment
functionality. It employs bootstrap sampling, a non-parametric statistic method to
efficiently estimate the standard error of query estimations just in time. Bootstrap sampling
doesn't need prior knowledge of the query result set distributions and can provide an
accurate standard error for query estimation.

3. The system can not only provide a point estimation (or single value estimation) of the
query result; but can also extend the offline AQP by providing a range estimation (or
confidence interval, CI) which enriches the user feedback. The CI will provide a user with
upper and lower bounds of the query estimation to better help the decision-making
process.

4. The system is developed using Rust which is a popular systematic programming
language. Rust is designed to prevent to the maximum extent common security bugs and
vulnerability issues, such as unsafe pointers and memory leaks. In addition, Rust enables
fast runtime performance comparable to traditional systematic programming languages
such as C or C++. The system is designed in self-contained modules which makes future
extensions of the system easier. The source code of the system is available at:
https://github.com/YSU-Data-Lab/aqprius.

The rest of the work is organized as follows. Section 2 introduces the background of query
estimation and bootstrap sampling. Section 3 presents the overview of the developed system.
Section 4 formulates the framework of query estimation. Section 5 describes the error
assessment framework. Section 6 presents the system design. The experiment results are
presented in Section 7. Section 8 includes the related work. Section 9 states the conclusion and
future work.

Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 33
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

2. BACKGROUND

2.1 Join Graph

FIGURE1: An Example Join Graph.

Definition 1.(Join Graph) A join graph is a visual representation of a database in which the flow
of joins is depicted. The tables of a database are depicted as circles or nodes. The join graph can
also entail information on types of join relationships such as many-to-many, many-to-one, and
one-to-one. The joinable relationships are depicted as edges between the nodes. The edge with
an arrow denotes a many-to-one relationship where the arrow points to the "one" side of the
relationship.

Definition 2. (Joinable Relation) Two relations, namely �� and ��, � ≠ �, are considered joinable
relations, when there exists a connected path between them with a length greater than 1.

Definition 3. (Joinable Tuple) Assume that �� and �� are joinable relations. A tuple in ��, denoted
by 	�, and a tuple in ��, denoted by 	� are considered joinable tuples if 	� can match a tuple 	�
� in ��
�, 	�
� can match a tuple 	�
� in ��
�, …, and 	�
� can match 	� in ��
� . In this context, the
matching is to associate two tuples following the joinable relations between the tables.

Figure 1 depicts an example join graph of a database including five tables ��, ��,…, and ��. As
shown in the figure, table �� is joinable with tables �� and ��. Table �� is joinable with Table ��,
but it’s not joinable with �� or ��.Table �� is joinable with table ��, but it’s not joinable with �� or ��. In addition, �� → �� denotes a many-to-one or one-to-one join relation from �� to ��, or�� is on
the one side.

2.2 Correlated Sampling
Simple random sampling was originally introduced as a synopsis only for simple queries such as
selection. However, simple random sampling is not suitable to answer more complex queries,
such as join queries, because the joinable tuples between relations will introduce correlation
which is not retained by sample random sampling across multiple tables.

To this end, correlated sampling is introduced to retain the joinable relationship between sample
tuples. Both JS (S. Acharya et al., 1999) and CS2 (F. Yu et al., 2013) employ correlated sampling
to generate sample-based synopses for AQP purposes. The first step starts from a simple
random sampling without replacement (SRSOWR) on a relation, namely �� , where random
sample ��∗ is collected. The next joinable relation with ��, denoted by ��, will be sampled. To
retain the correlation between �� and ��, instead of randomly sampling ��, the joinable tuples of �� with ��∗ are collected. This procedure will continue if there is another joinable relation.

Even though both JS and CS2 employ correlated sampling, their generated synopses are distinct.
JS requires performing SRSOWR on each relation followed by correlated sampling in the join
graph of a database. This may lead to high sampling costs in a database with a complex join
graph. However, CS2 doesn't need SRSOWR on each relation; it only needs the relations on top
of the paths in a join graph named source relations. There can be multiple source relations in a
join graph. By SRSOWR the source relations and correlated sampling on the joinable relations
with the joinable relations, the CS2 synopses can retrieve all needed tuples for join query
estimations. A special case is, that when some join queries do not include the source relation,

Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 34
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

named no-source join queries, there can be bias in the query estimation. To address this, the
CS2 framework introduced the JR value and RV estimator which doesn't need additional simple
random samples from the database and can produce unbiased estimations for non-source join
queries.

(a) Bootstrap Resamples (b) Bootstrap Distributions

FIGURE 2: Bootstrap Sampling Example.

2.3 Bootstrap Sampling
Bootstrap sampling (B. Efron et al., 1994) is a well-known non-parametric method with versatile
applications in statistical analysis. A popular application of bootstrap sampling is for the error
assessment of a statistic estimation based on a given sample when there is no prior knowledge of
the source data distribution.

Bootstrap sampling uses a unique procedure named resampling or simple random sampling with
replacement (SRSWR). Each resampling from the original sampled data generates a new
distribution named bootstrap sample. The desired statistic estimator or analytic function is then
applied to the bootstrap sample to compute a scalar value named bootstrap replication. Bootstrap
sampling usually generates a large number of bootstrap replications (typically between 1000 to
2000) to estimate statistical features, such as the standard deviation of the statistic estimator,
even when the population (or ground truth) distribution is unknown.

Figure 2 depicts a simple example of the bootstrap resampling procedure. The original sample
dataset �⃗ = �������� is obtained from a population with unknown distribution �. A bootstrap sample �⃗∗ = ���∗����� is obtained by performing SRSWR on�⃗ for n times. For example, if n=5, there can be
multiple possibilities of SRSWR on �⃗ , such as �⃗�∗ = ���, ��, ��, ��, ��� , �⃗�∗ = ���, ��, ��, ��, ��� , �⃗�∗ = ���, ��, ��, ��, ���, etc. These resamples are depicted in Figure2 (a). Applying a statistic
estimator on each �⃗�∗ generates a bootstrap replication ��∗, � = 1, … , !. The standard error of all ��∗,
denoted by "#$%, will be used to estimate the standard error of the statistic estimator.

The distribution of each bootstrap sample �& = '()� , ()� , … * can be obtained by summarizing the
frequency of each sampled element, where ()� = #,��∗ = ��-// . Figure 2(b) depicts the
distributions of bootstrap samples in this example.

3. SYSTEM OVERVIEW
Figure 3depicts the overview of the developed system AQPrius. It extends the capabilities of
existing AQP systems in three aspects: (1) It includes an offline AQP synopses engine for
complex query estimations including join queries. It only needs to collect synopses once in an
offline manner and can be used to estimate all future queries following the join graph of the
database. (2) It includes an error assessment component that can rapidly evaluate the errors

2

1

1

0

1

1

2

0

1

1

0

1

3

1

0

1

1

0

0

3

5 5 5 5

Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 35
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

produced from AQP query estimations. The error assessment module employs a nonparametric
statistic method named bootstrap sampling to produce an unbiased estimation of the standard
deviation of a query estimation result. (3) It extends the original offline AQP system from
providing a point estimation (or a single value) to a range estimation (or a bounded answer) when
doing query estimation. The bounded answer will be presented as a confidence interval (CI) to a
user to enhance the usability of the system.

FIGURE3: System Overview.

There are three layers of workflows entailed in the system: (1) the query processing workflow:
When a complex query is submitted by a user, the system will parse the query and produce a
query estimation. After that, the error assessment will be performed to evaluate the accuracy of
the query estimation. Finally, a bounded answer will be presented to the user. (2) the synopses
management workflow: Before any query is given, the system will produce offline statistic
synopses from the original raw database. This will reduce the big data into smaller synopses. The
statistic synopses will produce tuple results during the query estimation. The tuple results will be
employed by the bootstrap sampling to produce an error assessment for query estimation. (3) the
data storage workflow: The original database may contain big data and be stored in the cloud or a
big data cluster. The system will reduce the original big data into small statistic synopses and can
be stored on a centralized storage server. Finally, the tuple results and bootstrap resamples are
created which will be further reduced to fit into the main memory or the device memory of a
computing accelerator, such as a GPU. In general, these three layers will collaborate to achieve
the designed functionalities of the system.

3.1 Query Formulation
The developed system supports common analytic SQL queries. Compared with other systems, it
can accept more complex query operators, such as a selection with multiple conditions and a
multi-table join, which are widely used in business databases. It also supports common data
analytic operators. The query pattern, Q, supported in this system is formulated as follows.

SELECT Fn(attribute collection) FROM table collection WHERE query conditions;

where Fn is a common and "smooth" aggregate function such as COUNT, AVG, and SUM. It's
well-known that non-smooth aggregate functions, for example, MEDIAN and COUNT DISTINCT,
are not suitable for sample-based AQP frameworks; the table collectionincludes all tables
involved in the query (denoted by �0 = 1��02���3

); the attribute collection includes the attributes

needed by the query result (denoted by 40 = 14��0 2); the conditions in the WHERE clause can
include both selection conditions and join conditions. Particularly, the selection conditions will
filter which results will be included and the join conditions will decide how multiple tables are

Bootstrap
Samples

SELECT COUNT(*) FROM
R1 JOIN R2 JOIN R3

WHERE R1.A in [V1, V2];

Query Estimation Error Assessment Bounded Answer

Raw Database Statistic Synopsis

Synopsis Query
Tuple Result

Cloud

Main MemoryCentral Storage

Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 36
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

associated. The system does not limit the number of selection conditions and join conditions in
the query.

4. QUERY ESTIMATION
The estimation of query results is formulated in this section. We divide the scenarios into two
parts including the estimation for selection queries and the estimation for multi-table join queries.
The estimation principles and estimator formulas are presented.

4.1 Selection Query Estimation
When a query Q only includes SELECTION operations, we perform query estimation based on
the query result on the sample table S. Each sample tuple 5� ∈ � will produce a tuple query result �� based on the aggregate function in the SELECT clause. For example, if the aggregate function
is COUNT, then �� will be either 1 if the sample tuple 5� satisfies the selection or 0 otherwise. The
query result 78 on the sample table S is calculated as 78 = ∑ ������ where / = |�| is the sample
size. Suppose the size of the original table � is ; , and the sample fraction (= �< , then the

estimation of the ground truth query result is 7& = =>? .

4.2 Multi-Join Query Estimation
When a query Q includes JOIN operations, we perform query estimation using the query result on
the sample tables in a synopsis @. Suppose the synopsis @ is constructed on the original dataset � = ,��-���A . The top relation in the join graph of query, denoted by �0 , is ��0 and its
corresponding sample table is ��0. When a query Q is executed on the synopsis @, each sample
tuple 5� in ��0, � = 1 … /, will produce a tuple query result �� based on the query conditions. Let �0 = ,��-���� denote the collection of tuple query results. For instance, if the aggregate function is
COUNT, then each �� will be either 1 if the tuple 5� satisfies the query conditions or 0 otherwise.

The synopsis query result78 of Q can be calculated as 78 = ∑ ���B��� where /� is the size of ��0 or /� = C��0C. Suppose N� = CR�FC and the sample fraction (= �B<B, then the estimation of the ground

truth query result of Q, denoted by 7GH, is 7& = =>? .

The estimation of the query doesn't include the top relation of the synopses are named no-source
queries (F. Yu et al., 2013). Estimations of no-source queries will need additional data structures
such as JR values and RV estimators to produce unbiased estimation. The current system
doesn't consider these special join queries. Estimation of these queries will be implemented in
later versions of the system.

5. ERROR ASSESSMENT
The system implements the error assessment of query estimation by employing a non-parametric
method named bootstrap sampling. The bootstrap sampling performs many resamples on the
synopsis results generated during the query estimation procedure. These resamples can help to
estimate the standard deviation of the query estimation.

5.1 Bootstrap Sampling
Without loss of generality, we take the error assessment for join query estimation as an example.
The error assessment for selection query estimation is a simplified case compared with the join
query estimation.

During the estimation of a join query Q, there are tuple query results �0 = ,��-���� obtained on the
synopsis @ . We perform bootstrap resampling on the �0 for a total of ! iterations. In each

iteration, �0 is uniformly sampled with replacement for n times. For example, �⃗� = 1��,�2����
 is a

bootstrap resample where each ��,� is uniformly sampled with replacement from �0. A query result
based on the bootstrap resample 7IJ⃗ K can be obtained when applying the same query estimator

Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 37
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

using �⃗�. The query estimation 7&� can be calculated as 7&� = =LJJ⃗ K? where (is the sample fraction. For

instance, if the aggregate function is COUNT, the estimation 7&� = �? ∑ ��,����� . 7&� is named a

bootstrap replication of the query estimation.

The collection of all ! bootstrap replications is denoted by 7&% = 17&�2���%
. The standard error of 7&% is

"#$% = M 1! − 1 OP7&� − 7&Q%R�%
��� S

BT
 (1)

where 7&Q% is the mean of all bootstrap replications 7&%. By the theory of bootstrap sampling, Eq (1)
is the bootstrap estimation for the standard error of 7& which is the estimation of the ground truth
query result 7GH. The accuracy of "#$% increases as the value of ! becomes larger. In practice,
setting the value of ! between 1000 to 2000 is considered as sufficient.

5.2 Bootstrap Confidence Interval (CI)
A confidence interval (CI) with a lower bound and upper bound is a range estimation of the
ground truth query result. There are various schemes to compute the CI using bootstrap
sampling, such as the standard method and the percentile method. These methods are usually
efficient and quite accurate. Improved methods are also available, such as BCA and ABC, which
can increase the estimation accuracy and reduce the bias. However, these methods often have
slower performance when applied to large datasets (B. Efron et al., 1994). The developed system
employs the commonly used standard method which is a generally applied method.

We elaborate on how the standard bootstrap CI is calculated. Let a probabilistic value U be the
significant level of CI. The value of U is commonly set to 5% for the 90% level of confidence and
2.5% for the 95% level of confidence, respectively. The bootstrap CI calculated by the standard
method is as follows.

'7& − V��
W� ⋅ "#$% , 7& + V��
W� ⋅ "#$%* (2)

where 7& is the query estimation and V��
W� is the 100�1 − U�th percentile of a standard normal
distribution. For example, for the 90% level of confidence, V�[.]��=1.645, and for the 95% level of
confidence, V�[.]^��=1.960.

6. SYSTEM IMPLEMENTATION

6.1 System Architecture
Figure 4 depicts the system architecture of the developed system which consists of three major
modules including a query estimation module, an error assessment module, and a query
processing model. Among them, the query processing model coordinates the other two modules
and keeps the system running. The system can produce three categories of information for user
feedback including the ground truth query result, the estimated query result, and the bounded
answer for query estimation, namely the confidence interval of the query estimation.

The query processing module stands in the center of the system. Once a query is submitted to
the system. The query parser will analyze the query statement and collect the necessary
information later used by the query estimation module. The information includes tables in the
query, selection conditions, join conditions, analytic functions, and result attributes. They will be
then transferred to the query estimation module for query estimation.

Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 38
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

The query estimation module consists of three parts including a database connector, a synopsis
engine, and a synopsis store. This module also enables three functionalities including synopsis
creation, query estimation, and ground truth query computation.

(1) For synopsis creation, the database connector contacts an external database system or
data API to retrieve the schema information and sampled data tuples. The schema
information includes the table schema information (or data dictionary) and the
relationships between tables (such as joinable relationships). The synopsis engine
creates the statistic synopses for the usage of query estimation in an offline manner. It
needs to explore the joinable relationships of the database during the synopses creation
procedure. The produced synopsis will be stored in the synopsis store. To achieve high
speed of query estimation, the system usually employs a smaller sampling fraction to
produce synopses small enough to fit into a centralized storage.

(2) During the query estimation procedure, the parsed query statement will be executed on
the synopsis store first to collect the intermedia query results, namely the synopsis tuple
results. The query execution engine will collaborate with the synopsis store in this
process. Depending on the type of the submitted query, they will be used by various
query estimators coded in the system to produce query estimations. The synopsis tuple
results will be retained in the query execution engine for error assessment.

(3) If the ground truth query result is requested by the user, the query processing module will
connect to the original database to compute the ground truth query result.

Theerror assessment module includes two parts including the bootstrap engine and the bootstrap
sample store. During the error assessment procedure, the error assessment module will retrieve
the synopsis tuple results from the query estimation engine. Many iterations of bootstrap
resampling will be conducted using the synopsis tuple results to derive the standard deviation of
the query estimation which will be used by the error assessment. To reduce storage overheads,
only one collection of bootstrap resamples will be maintained in each iteration. Finally, a bounded
answer, or a confidence interval, of the query estimation will be computed based on the standard
deviation obtained from bootstrap resampling, and it will be provided to the user.

6.2 System Implementation
The AQPrius system is developed using the Rust programming language. Rust has
becomepopular for systems programming. Traditional operating and database systems are
predominately developed in C, C++, or Java. As the system becomes more complex,
manysoftware issues arise such as memory leaks and vulnerabilities. To address these issues,
Rust has introduced many new features to its compiler and toolkits. The components of the
developed system are built using Rust which can significantly limit the possibility of producing
vulnerabilities and bugs.

The data storage and synopsis store can utilize external database systems. The system has a
database connector that can connect to various database systems. The current system is
implemented using SQLite as a backend data store. SQLite is a simple, fast, and versatile
database system that can reach high throughput of data access on centralized storage. It serves
as the central data storage for synopsis creation and reading.

AQPrius can be used across multiple platforms or operating systems. A user can run the system
using the command line interface (CLI) in any operating system that supports the Rust
programming language.

Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 39
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

FIGURE4: System Architecture.

6.3 System Runtime
Figure 5 depicts a demo of the system runtime. The system parameters for the demo include
sample fraction as 1.0% and total bootstrap iterations as 2000. For a small-scale demo, the
source database employed is TPC-H 100MB. The test query for estimation is as follows:

select count (*) from lineitem, orders, customer where 1_orderkey = o_orderkey

and o_custkey = c_custkey and c_acctbal< 10000 and c_acctbal> 5000

The test query is a three-table join query with selections. The system can parse the query and
collect the necessary information for query estimation. The tables in the query include lineitem,
orders, and customer from the TPC-H benchmark. The join conditions and selection conditions
are analyzed and displayed in a format similar to JSON. The demo generated the synopses
needed for query estimation and displayed the operation information for user feedback.

The user feedback includes the database ground truth result, sample query estimation result,
standard deviation of the query estimation, and the confidence interval (CI) of the query
estimation with a 95% confidence interval. The demo showed the ground truth query result is
included within the CI as desired. This shows the system successfully provided the user with an
accurate bounded answer including the ground truth query result.

The system displayed the elapsed time for bootstrap sampling, synopsis creation time, and the
total execution time.In reality, synopses can be created before a query is submitted which will not
affect the query estimation speed.

7. EXPERIMENT
In this section, we benchmark the accuracy of the developed system when answering analytic
queries, especially join queries, on variate scales of data. The setup of experiments is presented
in Section 0. The design of accuracy tests is presented in Section 7.2. The impact of system
hyperparameters such as sampling fractions ((), bootstrap resample iterations (!), and data
volumes (sizes) are evaluated in sections 7.3, 7.4, and 7.5.

 Database

Synopsis
Store

Bootstrap
Engine

Bootstrap
Samples

Query Query Engine

Confidence IntervalYGround Truth ŶEstimate

Query Parser

Synopsis
Engine

Query Estimation Error Assessment

Query Processing

Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 40
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

FIGURE5: System Runtime.

7.1 Experiment Setup
The experiment was performed on a server equipped with an Intel(R) Core(TM) i7-10710U CPU
which operates at a base frequency of 1.10GHz. The system is equipped with 21GB of RAM and
runs the operating system of CentOS 7 with the Linux kernel version 3.10. The experiment scripts
are developed using the Python 3 programming language which interacts with the
systemimplemented in Rust.

The datasets used for experiments are generated using the TPC-H benchmark (TPC-H
Benchmark, 2024) in different data volumes, including 100 MB, 1 GB, and 10 GB. Since the focus
is to test the accuracy of the query estimation, all test datasets are stored on a centralized
database system, namely SQLite. The test queries for accuracy tests are generated by the TPC-
H benchmark with randomvalues in the query conditions. The queries are grouped by the number
of joins which ranges from one to four joins, where each group includes 10 test queries. To obtain
reliable running results, each test query is executed 10 times, and the average running result is
calculated.

The statistic synopses were created using CS2 (F. Yu et al., 2013), where sampling fractions
employed include 0.1%, 0.5%, and 1.0% which demonstrated synopses using small, medium,
and large sampling sizes. The iterationsof bootstrap resample used include B=200 and B=2000 to
test their impact on the accuracy of error estimation.

7.2 Accuracy Tests
The accuracy tests aim to evaluate the error assessment functionality and the accuracy of the
bounded answers produced by the developed AQP system. After a query is submitted to the

Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 41
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

developed AQP system, it will generate multiple responsesto a user including the ground truth
query result, estimated query result, error assessment, and a confidence interval (CI) of the query
estimation. The desired CI shall include the ground truth query result, i.e. the ground truth query
result shall be between the lower and upper bound of the CI, or the ground truth query result “hit”
within the CI; otherwise, the CI “misses” the ground truth query result. In order to quantify the
accuracy performance of error assessment and the developed AQP system, we introduce an
easy-understanding measurement named hit percentage (or hit ratio). The hit percentage during
the tests can be calculated as follows.

hit percentage = times(total hits)

times(total experiments)
 × 100% (3)

The test queries are grouped by the total number of joins. The hit percentage is calculated for
each group of test queries. We analyze the impact of hyperparameters, including the sampling
faction, bootstrap resample iteration, and dataset volume, on the hit percentage. In general, it is
observed that the average hit percentages are above 90% across all figures. The hit percentages
observed in the experiments are considerably accurate even given small sample fractions and
few bootstrap resample iterations.

7.3 Impact of Sampling Fractions
Figures 6, 7, and 8 depict the experiment results of average hit percentages for various sample
fractions (or sample sizes, () in test queries. The results are further grouped by number of joins in
test queries and the bootstrap resample iterations (!) employed. The statistic synopsis employed
in the AQP system is based on the CS2 scheme with sampling fractions set to 0.1%, 0.5%, and
1% in each of the test datasets. These simulate the scenarios of tiny, medium, and large samples.
In each group, the test results are further divided according to ! set to 200 and 2000. These
simulate the scenarios of small and large bootstrap resample iterations.

The volumes of AQP synopses were observed to progressively increase given larger sample
fractions. This was due to more sampled data being included in the synopses. A larger synopsis
includes more samples from the original raw database and will improve the accuracy of AQP
estimations. As observed from the experiment results, when setting the ! value fixed, the hit
percentage generally increases when the sample fraction increases.

Another perspective is the changing of join numbers. When join numbers increase, the AQP
estimation accuracy tends to be lower as the query becomes more complex. Therefore, the hit
percentage tends to progressively decrease when the join number increases.

7.4 Impact of Bootstrap Resample Iterations
Figures 9, 10, and 11 depict the change of the average hit percentages given different numbers
of bootstrap resample iterations in each group of join query and sample fraction. Take Figure6 (a)
as an example, the sampling fraction is set to 0.1% and the join numbers in test queries are
increasing from 1 to 4. The two hit percentages of bootstrap resample iterations, namely !=200
and !=2000, are depicted in each test query group respectively.

As observed in the results, the hit percentages of !=2000 are generally greater than !=200.
Provided more iterations of bootstrap resampling, more bootstrap replications are produced which
will increase the accuracy of error assessment. Therefore, setting the sampling fraction fixed, the
hit percentage generally increases when more bootstrap resamples are computed.

7.5 Impact of Data Volumes
Figures 12, 13, and 14 depict the variation of hit percentage with fixed total bootstrap iterations
and sampling fraction when data volume changes, including 100 MB, 1 GB, and 10 GB. The hit
percentages are grouped according to the number of joins in test queries in the line graphs. As
observed in the results, when !=200, there is no obvious impact of changing the data volumes.

Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 42
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

However, when !=2000, the hit percentages gradually increase with the data volume. One
reason can be, that when !=200, the error assessment accuracy may not be stable as there are
fewer bootstrap resamples; however, when !=2000,the error assessment accuracy tends to be
more stable. Another potential reason is the statistic synopsis tends to be more accurate when
data volume is larger as more distinct tuples are sampled in a larger dataset even if the sample
fraction is unchanged. In general, the AQP system produces better accuracy given larger
datasets.

(a) 100 MB, B=200 (b) 100 MB, B=2000

FIGURE6: Hit percentage for 100 MB data set with different bootstrap iterations.

(a) 1 GB, B=200 (b) 1 GB, B=2000

FIGURE7: Hit percentage for 1GB data set with different bootstrap iterations.

(a) 10 GB, B=200 (b) 10 GB, B=2000

FIGURE8: Hit percentage for 10GB data set with different bootstrap samples.

Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 43
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

(a) 100 MB (b) 1 GB (a) 10 GB

FIGURE9: Hit percentage for 0.1% sample size and different data sizes.

(a) 100 MB (b) 1 GB (a) 10 GB

FIGURE10: Hit percentage for 0.5% sample size and different data sizes.

(a) 100 MB (b) 1 GB (a) 10 GB

FIGURE11: Hit percentage for 1% sample size and different data sizes.

(a) B=200 (b) B=2000

FIGURE12: Line Graph for Different data sizes for sample fraction (=0.1%.

Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 44
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

(a) B=200 (b) B=2000

FIGURE13: Line Graph for Different data sizes for sample fraction (=0.5%.

(a) B=200 (b) B=2000

FIGURE14: Line Graph for Different data sizes for sample fraction (=1%.

8. RELATED WORK
Existing work ofAQP broadly focuses on two different directions including the online AQP and
offline AQP (K. Li et al., 2018; S. Chaudhuri et al., 2017).

The online AQP accepts a user query for estimation first and then collects statistic synopses for
query estimation. These synopses can only be collected at query execution time and may require
multiple iterations of sampling to achieve the desired accuracy requirement. New synopses must
be collected when a different user query is submitted. In addition, most online AQP schemes
heavily rely on high-end hardware and the existence of auxiliary data structures such as indices
or hash tables on join attributes. Global indices and hash tables are not only costive to build but
also expensive to maintain.

Examples of online AQP schemes include Wander Join (F. Li et al., 2016), Two-Level Sampling
(Y. Chen et al., 2017), and Index-based Join Sampling (V. Leis et al., 2017). Wander Join
executes random walks to estimate the result of a join operator. A traditional random walk
process randomly collects tuples from the joining tables to calculate the join result. Wander Join
improves random walk to select only the tuples that are joinable in every step to retain the
correlations in the synopsis. However, this procedure can be time-consuming given large
datasets. To achieve a high sampling speed, it depends on the availability of indices on the join
attributes. A later study, two-level sampling, improves the random walk process for join estimation
by combining independent Bernoulli sampling, correlated sampling, and end-biased sampling.
The two-level sampling can reach a higher accuracy for join estimations. The index-based join
sampling is a join estimation technique focusing on querying in-memory data. It designs an
algorithm that can utilize the join indices to quickly estimate the join size and choose the tuples to
be sampled. This will avoid materializing any unnecessary join result and save computing costs
and time. The index-based join sampling critically relies on the existence of join indices and
focuses on the application to in-memory database systems.

Unlike online AQP, offline AQP schemes collect statistic synopses before the submission of user
queries. This will avoid the need for high-end hardware or auxiliary data structure to hasten the
sampling speed. The representative offline AQP schemes include Join Synopses (JS) (S.

Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 45
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

Acharya et al., 1999), Correlated Sampling Synopsis (CS2) (F. Yu et al., 2013), and Tuple Graph
Synopses (TuG) (J. Spiegel et al., 2009).

JS employs correlated sampling to collect joinable tuples across multiple relations to keep the
correlations for join query estimation. Once the JS is created, all future queries can be estimated,
without the need to re-collect the JS, given the database join graph is unchanged. One constraint
of JS is that it strongly requires simple random sampling without replacement (SRSWOR) on
each of the relations in a database. For a database with a complicated join graph and long chains
of joinable tables, building the JS can be considerably complicated. For example, for a join chain
of ; relations, the sampling cost is at least b�;�� which is expensive when ; is large. Second,
JS can only be applied for foreign-key join estimations. It cannot estimate many-to-many joins or
cyclic join queries which are more complex. Third, JS cannot process dangling tuples in relations
that are not joinable with tuples in other relations.

CS2 improves JS by not requiring SRSWOR on each relation in the join graph. Like JS, CS2 also
developed join query estimators that can estimate general join queries. A special type of join
query, named no-source query, does not include the table where a SRSWOR exists. For this type
of query, CS2 introduced a special value named JR value along with the RV estimator to derive
unbiased join query estimations.

TuG was inspired by utilizing a semi-structured view, such as XML, for a relational database. It
summarizes a relational database using graph-model synopses to retain the joinable relationships
between tuples as well as the selectivity information of tuple attribute values. TuG also introduced
methods to reduce the volumes of the synopses to save storage costs. However, the space
reduction of TuG will significantly lower the accuracy of query estimation. Another drawback of
TuG is it requires a long time to generate synopses given a large dataset. Compared with the
sample-based synopses, namely JS and CS2, TuG requires more time to build and produces less
accurate estimation given the same synopsis storage constraint.

Multipleonline AQP systems have been developed including DBO (C. Jermaine et al., 2008),
BlinkDB (S. Agarwal et al., 2013), VertictDB(Y. Park et al., 2018), and XDB (F. Li et al., 2019).
Among them, BlinkDB can provide both query estimation and enable constraints of querying time
limit and error bounds. It is a distributed online AQP system that can work on big data platforms
such as Hadoop and Hive. BlinkDB is mainly designed to estimate select queries. VeridictDB
introduced a database learning approach that uses previous query results to iteratively improve
future query estimations. XDB can answer join queries based on the wander join framework. To
reach the high sampling speed required by online AQP, the above systems either require high-
speed hardware or expensive auxiliary data structures.

Unlike online AQP systems, AQPrius is based on the offline AQP scheme, namely CS2, which
doesn't require a high sampling speed and can significantly reduce computing costs. AQPrius is a
practical system implemented in Rust and fits well in situations where approximated query
answers are needed in a short time such as an exploratory data analysis on big data. In addition,
AQPrius doesn’t require high-end computing devices. Therefore, itcan be a suitable solution to
answer queries on big data given limited computing resources such as in mobile and edge
computing.

9. CONCLUSION
In this paper, we presented AQPrius, a comprehensive offline AQP system that can
approximatecomplex queries on big data and provide error assessment for query estimations.
The AQPrius employs offline AQP to avoid the requirements of high-end hardware or expensive
auxiliary data structures. A unique feature of AQPrius is the employment of a non-parametric
statistic technique, named bootstrap sampling, to estimate the standard error of query estimation.
Bootstrap sampling can provide error assessments even when the population distributions are
unknown. The standard error provided by the bootstrap sampling can also be used to provide
bounded query estimations (or confidence intervals) to enhance user feedback. We evaluated

Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 46
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

AQPrius by utilizing the well-known TPC-H benchmarks. The experimental results showed that
AQPrius can precisely answer complex queries, such as join queries, with high efficiency. The
confidence intervals produced by the system are accurate even the given settings of tiny
sampling fractions and fewer bootstrap iterations.

In the future, we would like to implement AQPrius to answer more complex query types such as
the GROUPBY queries. We will extend the AQPrius to answer more complicated join queries
such as no-source join queries.A web interface will be developed to improve the system's
usability.

10. ACKNOWLEDGEMENT
This work was partially supported by the Research Professorship at Youngstown State University.

11. REFERENCES
B. Efron and R. J. Tibshirani, An introduction to the bootstrap. CRC press, 1994.

C. Jermaine, S. Arumugam, A. Pol, and A. Dobra, “Scalable approximate query processing with
the DBO engine,” ACM Trans. Database Syst., vol. 33, no. 4, pp. 1–54, 2008, doi:
10.1145/1412331.1412335.

D. L. Quoc et al., “Approximate Distributed Joins in Apache Spark,” ArXiv e-prints, vol.
abs/1805.0, May 2018, [Online]. Available: http://arxiv.org/abs/1805.05874

D. Wilson, W.-C. Hou, and F. Yu, “Scalable Correlated Sampling for Join Query Estimations on
Big Data,” in Proc. of 28th International Conference on Software Engineering and Data
Engineering, F. Harris, S. Dascalu, S. Sharma, and R. Wu, Eds., EasyChair, 2019, pp. 41–50.
doi: 10.29007/87vt.

F. Li et al., “Wander Join: Online Aggregation via Random Walks,” Proc. SIGMOD’16, pp. 615–
629, 2016.

F. Li, B. Wu, K. Yi, and Z. Zhao, “Wander Join and XDB: Online Aggregation via Random Walks,”
ACM Trans. Database Syst., vol. 44, no. 1, p. 2:1-2:41, Jan. 2019.

F. Yu, W.-C. Hou, C. Luo, D. Che, and M. Zhu, “CS2: A New Database Synopsis for Query
Estimation,” in Proc. SIGMOD’13, ACM, 2013, pp. 469–480. doi: 10.1145/2463676.2463701.

F. Yu, W.-C. Hou, C. Luo, D. Che, and M. Zhu, “CS2: a new database synopsis for query
estimation,” in SIGMOD 2013, ACM, 2013, pp. 469–480.

J. Bater, Y. Park, X. He, X. Wang, and J. Rogers, “Saqe: practical privacy-preserving
approximate query processing for data federations,” Proceedings of the VLDB Endowment, vol.
13, no. 12, pp. 2691–2705, 2020.

J. Spiegel and N. Polyzotis, “TuG synopses for approximate query answering,” ACM Trans.
Database Syst., vol. 34, no. 1, p. 3:1—-3:56, Apr. 2009, doi: 10.1145/1508857.1508860.

K. Li and G. Li, “Approximate query processing: what is new and where to go?,” Data Science
and Engineering, vol. 3, no. 4, pp. 379–397, 2018.

M. Sch, J. Schildgen, and S. Deßloch, “Sampling with Incremental MapReduce,” in
Datenbanksysteme für Business, Technologie und Web (BTW), 2015.

Q. Liu, “Approximate Query Processing,” in Encyclopedia of Database Systems, L. LIU and M. T.
ÖZSU, Eds., Springer US, 2009, pp. 113–119. doi: 10.1007/978-0-387-39940-9_534.

Feng Yu, Sabin Maharjan, Lucy Kerns, Xiangjia Min, Abdu Arslanyilmaz & Michelle Zhu

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (3) : 2024 47
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy, “Join Synopses for Approximate
Query Answering,” in Proc. SIGMOD’99, ACM, 1999, pp. 275–286.

S. Agarwal et al., “BlinkDB: Queries with Bounded Errors and Bounded Response Times on Very
Large Data,” in Eurosys’13, 2013, pp. 29–42. doi: 10.1145/2465351.2465355.

S. Agarwal et al., “Knowing When You’re Wrong: Building Fast and Reliable Approximate Query
Processing Systems,” in Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data - SIGMOD, 2014, pp. 481–492. doi: 10.1145/2588555.2593667.

S. Chaudhuri, B. Ding, and S. Kandula, “Approximate query processing: No silver bullet,” in Proc.
SIGMOD’17, 2017, pp. 511–519.

“TPC-H Benchmark.” [Online]. Available: https://www.tpc.org/tpch/

T. Siddiqui, A. Jindal, S. Qiao, H. Patel, and W. Le, “Cost models for big data query processing:
Learning, retrofitting, and our findings,” in Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, 2020, pp. 99–113.

T. Tian, “Social big data: techniques and recent applications,” International Journal of Computer
Science and Security (IJCSS), vol. 14, no. 5, p. 224, 2020.

V. Leis, B. Radke, A. Gubichev, A. Kemper, and T. Neumann, “Cardinality Estimation Done
Right : Index-Based Join Sampling,” in Proc. CIDR’17, 2017.

Y. Chen and K. Yi, “Two-Level Sampling for Join Size Estimation,” in Proc. ICDE’17, ACM, 2017,
pp. 759–774. doi: 10.1145/3035918.3035921.

Y. Park, B. Mozafari, J. Sorenson, and J. Wang, “VerdictDB: universalizing approximate query
processing,” in Proc. SIGMOD’18, ACM, 2018, pp. 1461–1476.

Z. Zhou, H. Zhang, S. Li, and X. Du, “Hermes: A Privacy-Preserving Approximate Search
Framework for Big Data,” IEEE Access, vol. 6, pp. 20009–20020, 2018, doi:
10.1109/ACCESS.2017.2788013.

