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Abstract 

 
Identifying instances of network attacks by comparing current activity against the 
expected actions of an intruder has become an important. Most current 
approaches to misuse detection involve the use of rule-based expert systems to 
identify indications of known attacks. Artificial neural networks provide the 
potential to identify and classify network activity based on limited, incomplete, 
and nonlinear data sources. Transmission of data over the internet keeps on 
increasing, which needs to protect connected systems also increasing. Intrusion 
Detection Systems (IDSs) are the latest technology used for this purpose. 
Although the field of IDSs is still developing, the systems that do exist are still not 
complete, in the sense that they are not able to detect all types of intrusions. 
Some attacks which are detected by various tools available today cannot be 
detected by other products, depending on the types and methods that they are 
built on. In this work, an artificial neural network using echo state network 
algorithm has been used to implement the IDS. This paper proposes an 
approach to implement recurrent echo state network real time IDS. Twenty four 
packet information both normal and intrusion have been considered for training. 
Testing has been done with new sets of packet information. The result of 
intrusion detection (ID) is very close to 90%. The topology of the echo state 
network is (41 X 20 X 1). The network converged with 24 iterations. However, 
very huge amount of packets are to be evaluated to know the complete 
performance of the developed system. 
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1.       INTRODUCTION 
The complexity, as well as the importance, of distributed computer systems and information 
resources is rapidly growing. Due to this, computers and computer networks are often exposed to 
computer crime. Many modern systems lack properly implemented security services; they contain 
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a variety of vulnerabilities and, therefore, can be compromised easily. As network attacks have 
increased in number over the past few years, the efficiency of security systems such as firewalls 
have declined. 
 
It is very important that the security mechanisms of a system are designed to prevent 
unauthorized access to system resources and data. Building a complete secure system is 
impossible and the least that can be done is to detect the intrusion attempts so that action can be 
taken to repair the damage later. Organizations are increasingly implementing various systems 
that monitor IT security breaches. Intrusion detection systems (IDSs) have gained a considerable 
amount of interest within this area. The main task of IDS is to detect an intrusion and, if 
necessary or possible, to undertake some measures eliminating the intrusions.  
 
Because most computer systems are vulnerable to attack, intrusion detection (ID) is a rapidly 
developing field. Intrusion Detection Systems (IDSs) detect intrusions using specific 
methodologies that are specific to each of them. A method describes how an IDS analyzes data 
to detect possible intrusions, based on the analysis approaches. The analysis approaches are 
anomaly detection and misuse detection. There are many methods that are used. Examples of 
them include statistical approaches, protocol anomaly detection, neural networks [4-
6][14][18][20][24] , file checking, expert systems , rule-based measures[19], and genetic 
algorithms (GAs) [26][35]. 
 
 

2.     BACKGROUND 
Intruders tend to find new ways to compromise systems each day. As more intrusions occur, the 
weaknesses of existing technologies like firewalls are exposed. Since it is impossible to build a 
complete secure system, IDSs are used to detect the intrusions that occur. This is why IDSs are 
gaining acceptance in every organization. To understand what an  IDS is, first one should know 
what intrusion and intruders are. Intrusion is the unauthorized attempt to access information, 
manipulate information, or render a system unreliable or unusable. To detect intrusions and to 
prevent them, one has to be aware of how an intruder can cause intrusions.  
 
The primary ways an intruder can get into the system is through primary intrusion, system 
intrusion and remote intrusion. ID is the process of monitoring the events occurring in a computer 
system or network, and analyzing them for intrusions. The prevention of intrusions should be 
done through effective IDSs. An IDS is a software or hardware product that automates this 
monitoring and analysis process.  
 
The types of IDSs can be described in terms of three fundamental functional components. They 
are the information source, analysis and response. The information source of the system mainly 
depends on where the IDSs are being placed, hence it is also known as the monitoring locations 
of the IDS. The information sources are mainly of three types: network-based IDSs, host-based 
IDSs and application-based IDSs [Bace, 2002]. Since the focus of this work is on network-based 
IDS, the other two types will not be considered here. Network-based IDSs detect attacks by 
capturing and analyzing network packets.  
 
They search for attack signatures within the packets. Signatures might be based on actual packet 
contents, and are checked by comparing bits to known patterns of attack. If the bits are matched 
to known patterns of attack, then an intrusion is triggered. Once the information sources have 
monitored network traffic, the next step is to analyze the events to detect the intrusion. The two 
main techniques or approaches used to analyze events to detect attacks are misuse detection 
and anomaly detection. Response is the set of actions that the system takes once it detects 
intrusions. Some of the responses [11-13] involve reporting results and findings to a pre-specified 
location, while others are more actively automated responses. 
 
Commercial IDSs support both active and passive responses, and sometimes a combination of 
the two. IDSs can be viewed as the second layer of protection against unauthorized access to 
networked information systems because despite the best access control systems, intruders are 
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still able to enter computer networks. IDSs expand the security provided by the access control 
systems by providing system administrators with a warning of the intrusion. 
 
They also provide the system administrators with necessary information about the intrusions. This 
assists the system administrators in controlling the intrusions that has occurred, in order to avoid 
them in the future or to minimize the damage that may occur due to an intrusion [15-17]. Although 
IDSs can be designed to verify the proper operation of access control systems by looking for the 
attacks that get past the access control systems, IDSs are more useful when they can detect 
intrusions that use methods that are different from those used by the access control systems. For 
this purpose, they must use more general and more powerful methods than simple database 
look-ups of known attack scenarios. 
 
2.1.     Signature basics  
 
A network IDS signature is a pattern that we want to look for in traffic. Some of the methods that 
can be used to identify each one:  
 

• Connection attempt from a reserved IP address. This is easily identified by checking the 
source address field in an IP header.  
 

• Packet with an illegal TCP flag combination. This can be found by comparing the flags set in 
a TCP header against known good or bad flag combinations.  
 

• Email containing a particular virus. The IDS can compare the subject of each email to the 
subject associated with the virus-laden email, or it can look for an attachment with a particular 
name.  
 
 

• DNS buffer overflow attempt contained in the payload of a query. By parsing the DNS fields 
and checking the length of each of them, the IDS can identify an attempt to perform a buffer 
overflow using a DNS field. A different method would be to look for exploit shell code sequences 
in the payload.  
 

• Denial of service attack on a POP3 server caused by issuing the same command thousands 
of times. One signature for this attack would be to keep track of how many times the command is 
issued and to alert when that number exceeds a certain threshold [21].  
 

• File access attack on an FTP server by issuing file and directory commands to it without first 
logging in. A state-tracking signature could be developed which would monitor FTP traffic for a 
successful login and would alert if certain commands were issued before the user had 
authenticated properly [22-23].  
 
2.1.1 Purpose of Signatures  
 
Different signatures have different goals. The obvious answer is that, want to be alerted when an 
intrusion attempt occurs. Why we might want to write or modify a signature. Perhaps seeing some 
odd traffic on network and want to be alerted the next time it occurs. It has been noticed that it 
has unusual header characteristics, and want to write a signature that will match this known 
pattern. Perhaps are interested in configuring IDS to identify abnormal or suspicious traffic in 
general, not just attacks or probes. Some signatures may tell which specific attack is occurring or 
what vulnerability the attacker is trying to exploit, while other signatures may just indicate that 
unusual behavior is occurring, without specifying a particular attack. It will often take significantly 
more time and resources to identify the tool that’s causing malicious activity, but it will give more 
information as to why being attacked and what the intent of the attack is.  
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2.1.2     Header Values  
 
Simple signature characteristic header values are presented. Some header values are clearly 
abnormal, so they make great candidates for signatures. A classic example of this is a TCP 
packet with the SYN and FIN flags set. This is a violation of request for comments (RFC 793) 
(which defines the TCP standard), and has been used in many tools in an attempt to circumvent 
firewalls, routers and intrusion detection systems. Many exploits include header values that 
purposely violate RFCs, because many operating systems and applications have been written on 
the assumption that the RFCs would not be violated and don’t perform proper error handling of 
such traffic.  
 
Many tools either contain coding mistakes or are incomplete, so that crafted packets produced by 
them contain header values that violate RFCs. Both poorly written tools and various intrusion 
techniques provide distinguishing characteristics that can be used for signature purposes [25]. 
There’s a catch. Not all operating system (OS) and applications completely adhere to the RFCs. 
In fact, many have at least one facet of their behavior that violates an RFC. Over time, protocols 
may implement new features that are not included in an RFC. 
 
 New standards emerge over time, which may “legalize” values that were previously illegal; RFC 
3168, for Explicit Congestion Notification (ECN), is a good example of this. So an IDS signature 
based strictly on an RFC may produce many false positives. Still, the RFCs make a great basis 
for signature development, because so much malicious activity violates RFCs. Because of RFC 
updates and other factors, it’s important to review and update existing signatures periodically [27] 
[29].  
 
2.1.3    Sample signature  
 
• Various source IP addresses  

• TCP source port 21, destination port 21  

• Type of service 0  

• IP identification number 39426  

• SYN and FIN flags set  

• Various sequence numbers set  

• Various acknowledgment numbers set  

• TCP window size 1028   
 
Packet values that are completely normal don’t make good signature characteristics by 
themselves, although they are often included to limit the amount of traffic that we study. By 
including the normal IP protocol value of 6 for a protocol, so that only check TCP packets. But 
other characteristics that are completely normal, such as the type of service set to 0, are much 
less likely to be helpful in signature development.  
 
A signature based on few suspicious characteristics may be too specific [32-34]. Although it 
would provide much more precise information about the source of the activity, it would also be far 
less efficient than a signature that only checks one header value. Signature development is 
always a tradeoff between efficiency and accuracy. In many cases, simpler signatures are more 
prone to false positives than more complex signatures, because simpler signatures are much 
more general [36][39-40]. But more complex signatures may be more prone to false negatives 
than simpler signatures, because one of the characteristics of a tool or methodology may change 
over time.  
  
 
 
2.1.4.     Schematic flow diagram 
 
The sequence of steps required for the IDS by implementing an ESNN has been given in Figure 1 
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FIGURE.1 Schematic diagram of the IDS 

 
After training the ESNN, a set of final weights are obtained and stored in a file. During the 
process of testing, a test packet converted into uncorrelated features followed by classification by 
ESNN using  final weight values arrived during training phase.  

 
 
2.2. Echo State Neural Network (ESNN)  
 
An artificial neural network (ANN) is an abstract simulation of a real nervous system that contains 
a collection of neuron units, communicating with each other via axon connections. Such a model 
bears a strong resemblance to axons and dendrites in a nervous system. Due to this self-
organizing and adaptive nature, the model offers potentially a new parallel processing paradigm. 
This model could be more robust and user-friendly than the traditional approaches. ANN can be 
viewed as computing elements, simulating the structure and function of the biological neural 
network. These networks are expected to solve the problems, in a manner which is different from 
conventional mapping. Neural networks are used to mimic the operational details of the human 
brain in a computer. Neural networks are made of artificial ‘neurons’, which are actually simplified 
versions of the natural neurons that occur in the human brain. A neural architecture comprises 
massively parallel adaptive elements with interconnection networks, which are structured 
hierarchically.  
 
Artificial neural networks are computing elements which are based on the structure and function 
of the biological neurons [3]. These networks have nodes or neurons which are described by 
difference or differential equations. The nodes are interconnected layer-wise or intra-connected 
among themselves. Each node in the successive layer receives the inner product of synaptic 
weights with the outputs of the nodes in the previous layer [1], [8-9]. The inner product is called 
the activation value  
 
Dynamic computational models require the ability to store and access the time history of their 
inputs and outputs. The most common dynamic neural architecture is the time-delay neural 
network that couples delay lines with a nonlinear static architecture where all the parameters 
(weights) are adapted with the back propagation algorithm. Recurrent neural networks (RNNs) 
implement a different type of embedding that is largely unexplored. One of the main practical 
problems with RNNs is the difficulty to adapt the system weights. Back propagation through time 
and real-time recurrent learning; have been proposed to train RNNs. These algorithms suffer from 
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computational complexity, resulting in slow training, complex performance surfaces, the 
possibility of instability, and the decay of gradients through the topology and time. The problem of 
decaying gradients has been addressed with special processing elements (PEs). 
 
ESNN [28],[30-31] possesses a highly interconnected and recurrent topology of nonlinear PEs 
that constitutes a “reservoir of rich dynamics” and contains information about the history of input 
and output patterns. The topology of the network is shown in Figure 2. The outputs of internal 
PEs (echo states) are fed to a memory less but adaptive readout network (generally linear) that 
produces the network output. The interesting property of ESNN is that only the memory less 
readout is trained, whereas the recurrent topology has fixed connection weights. This reduces the 
complexity of RNN training to simple linear regression while preserving a recurrent topology, but 
obviously places important constraints in the overall architecture that have not yet been fully 
studied.  
 
The echo state condition is defined in terms of the spectral radius (the largest among the absolute 
values of the eigen values of a matrix, denoted by ( || . || ) of the reservoir’s weight matrix (|| W || 
< 1). This condition states that the dynamics of the ESNN is uniquely controlled by the input, and 
the effect of the initial states vanishes. The current design of ESNN parameters relies on the 
selection of spectral radius. There are many possible weight matrices with the same spectral 
radius.  
 
ESNN is composed of two parts (Jaeger, H 2002): a fixed weight (|| W || < 1) recurrent network 
and a linear readout. The recurrent network is a reservoir of highly interconnected dynamical 
components, states of which are called echo states. The memory less linear readout is trained to 
produce the output. The recurrent discrete-time neural network is given in with M input units, N 
internal PEs, and L output units.  
 
The value of the input unit at time n is 
 u(n) = [u1(n), u2(n), . . . , uM(n)]

T
 ,                                                       (1) 

 
The internal units are  
x(n) = [x1(n), x2(n), . . . , xN(n)]

T
 , and                                                 (2) 

 
Output units are 
  y(n) = [y1(n), y2(n), . . . , yL (n)]

T
.                                                       (3) 

 
The connection weights are given  

• in an  N x M weight matrix 
back

ij

back
WW =  for connections between the input and the 

internal PEs,  

• in an N × N matrix 
in

ij

in
WW =  for connections between the internal PEs  

• in an L × N matrix 
out

ij

out
WW =  for connections from PEs to the output units and 

• in an N × L matrix 
back

ij

back
WW =  for the connections that project back from the output 

to the internal PEs.  
Here 
M is the no. of neurons in the input layer 
N is the no. of neurons in the hidden layer and 
L is the no. of neurons in the output layer 
The activation of the internal PEs (echo state) is updated by using the relation  
 

                                               x(n + 1) = f(W
in
 u(n + 1) + Wx(n) +W

back
y(n)),                                   

(4) 
 
where  
f = ( f1, f2, . . . , fN) are the internal PEs’ activation functions.  
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All fi’s are hyperbolic tangent function
xx

xx

ee

ee
−

−

+

−
. The output from the readout network is computed 

as follows 
y(n + 1) = f

out
(W

out
x(n + 1)), .                                                              (5) 

 
where  

),....,,( 21

out

L

outoutout ffff =  are the output unit’s of nonlinear functions.  

 
The ESNN topology specified in this work is {41 x no. of reservoirs x 1}, where two nodes are in 
the input layer, one in the output layer and any number of reservoirs in the hidden layer. The 
connections between input-hidden layers, hidden-output layer are initialized with random 
numbers. The training of the ESNN is done with choosing initial random weights in a range of 
0.25 to 0.55. The random weights are chosen within a small range for easier quicker settlement of 
final weights and also to prevent the network from further oscillation. 
 
 
 

 
FIGURE.2: An echo state neural network (ESNN) 

 
2.2.1    Implementation of IDS using ESNN  
 
To obtain the final trained weights by training the ESNN 
 
Step 1: Find the uncorrelated features of the packet 
Step 2: Fix the target values (class label) 
Step 3: Set the no. of inputs, no. of reservoirs, and no. of outputs 
Step 4: Initialize connection matrices-using random weights for 
no.of reservoirs versus no. of inputs,  
no.of outputs versus no. of reservoirs, 
no. of reservoirs versus no. of reservoirs 
Step 5: Determine values of matrices less than a threshold for updating the weights 
Step 6: Normalize the reservoir matrix by finding its eigen value. 
Step 7: The initial state matrix is updated with  tanh() function. The inputs for the tanh() function 
are 
{input pattern  X  weights between input and hidden layer + 
desired output  X weights between output and hidden layer + 
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normalized reservoir matrix} 
Step 8: Store the weight matrices. 
 
 
2.2.2      Implementation of ESNN for IDS using the trained weights of ESNN 
 
Step 1: The trained weights are given as inputs.  
Step 2: Apply the uncorrelated features of the packet 
Step 3: Process the inputs with the trained weights 
Step 4: Employ transfer function to get the output of the ESNN  
Step 5: Set threshold and classify intrusion or not. 
Overall algorithms for training and testing 
1.  Obtain the uncorrelated feature of the packet 
2.  Train the ESNN with the inputs and target outputs. Trained weights are obtained  
              once all the Patterns  are presented to the ESNN.  
3. Test the ESNN with a new packet, and classify for intrusion. 
 
2.3 Network Intrusion Detection System (NIDS) using ANN 
 
2.3.1 Packet Capture 
 
Packet capture is the beginning process in NIDS. It can be implemented by setting the working 
mode of the network card as the promiscuous mode. The network card under common mode can 
only receive the packet whose destination address is the network card itself. Only those packets 
are not sufficient to serve for the data source of the NIDS. So it is necessary to set the network 
card's working mode as the promiscuous mode. Under this mode, the network card can receive 
not only the packets sent to itself but also the packets routed to some other hosts. Thus the NIDS 
can monitor the network stream of all hosts of some local area network and detect whether 
intrusion happens or not.  
 
2.3.2 Feature Extraction 
 

Feature selection and extraction [37], [38] is one of the pivotal problems in implementing 
the intrusion detection system. Network stream itself is not suitable directly as the input for the 
ESNN, so it is necessary to extract some features from the network stream. The uncorrelated 
features extracted from the network stream form a feature vector which serves for the description 
of the packet. Whether the feature vector can describe the network stream correctly and 
efficiently or not has a large effect on the efficiency and correctness of the NIDS. 

 
 Selecting several features such as the protocol code, the packet head length, the 

checksum, the port number and some TCP Flags, etc have been done. Based on these features, 
a vector is obtained as follows to describe an intrusion. The following representation is some of 
the intrusion types which contain some sequence of intrusion appearance 

 
Attack(type)=(P-id, H-Len, C-sum ,S-port, D-port, ICMP-type ,ICMP-Code, Flag, P-Len, P-data) 
 
Above is the general description form of an abstract attack. 
 
Perhaps some concrete examples can explain the vector well. 
 
Attack (CGI )=(Tcp,32, O, 2345, 80, null, null, A, 421, get CGI-bin) 
 
Attack(FTP)=(TCP, 24, 16, 21, 21, null, null, PA, 256, ROOM) 
 
Attack(Redirect)=(ICMP, 20, null, null, 8, 3, null, 192, la) 
 
Attack(UDP)=(UDP, 16, 10, 138, 126, null, null, nuli,448,3c) 
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If the features of a packet are found as any of the above, it represents a CGI attack; a 

FTP attack, a REDIRECT attack, and a UDP attack respectively. The feature vector will serve for 
the input of the ESNN Classifier., then the ESNN Classifier will judge whether the feature vector 
represents an intrusion or not. 
 
 

2.3.3.     Experimental Setup 

 
The simulation results were obtained from the standard KDD data set. It is a well defined 

as normal and with different types of attack for TCP, UDP, ICMP, etc. A set of sample data set is 
shown in Table 1. Each row is a pattern. The fields in each pattern describe the properties of 
respective packet. The various attacks considered during training are  

 
back dos 
buffer_overflow u2r 
ftp_write r2l 
guess_passwd r2l 
imap r2l 
ipsweep probe 
land dos 
loadmodule u2r 
multihop r2l 
neptune dos 
nmap probe 
perl u2r 
phf r2l 
pod dos 
portsweep probe 
rootkit u2r 
satan probe 
smurf dos 
spy r2l 
teardrop dos 
warezclient r2l 
warezmaster r2l  
 
 
 
Table 1.             Sample KDD dataset 

 
S.no Packet details 
1 0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,

254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,normal. 

2 0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,
254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,normal. 

3 0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,
254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,normal. 

4 0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,
254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,snmpgetattack. 

5 0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,
254,1.00,0.01,0.01,0.00,0.00,0.00,0.00,0.00,snmpgetattack. 

6 0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,
255,1.00,0.00,0.01,0.00,0.00,0.00,0.00,0.00,snmpgetattack. 

7 0,udp,domain_u,SF,29,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0.00,0.00,0.00,0.00,0.50,1.00,0.00,10,3,
0.30,0.30,0.30,0.00,0.00,0.00,0.00,0.00,normal. 

8 0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,
253,0.99,0.01,0.00,0.00,0.00,0.00,0.00,0.00,normal. 
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9 0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,
254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,snmpgetattack. 

10 0,tcp,http,SF,223,185,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,4,0.00,0.00,0.00,0.00,1.00,0.00,0.00,71,255,
1.00,0.00,0.01,0.01,0.00,0.00,0.00,0.00,normal. 

 
Instead of KDD data set, free sniffer software’s like network sniffer, packet sniffer and more 
software’s can be used to extract the values of a packet, which can be further labeled as normal 
or an attack to be used for training. The contents of the packet should be suitably modified into 
meaningful numerical values. A sample dataset used for training is shown in Table 2. 
 
 

Table 2 .      Sample dataset used for training 

 
S.No Patterns used for training 

Input to ESNN after uncorrelating the features of patterns 
Target 
outputs 

1 0  .2  .01  .1  105  146  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  0.00  0.00  
0.00  0.00  1.00  0.00  0.00  255  254  1.00  0.01  0.00  0.00  0.00  0.00  0.00  
0.00   

.1 

2 0  .2  .01  .1  105  146  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  0.00  0.00  
0.00  0.00  1.00  0.00  0.00  255  254  1.00  0.01  0.00  0.00  0.00  0.00  0.00  
0.00   

.1 

3 0  .2  .01  .1  105  146  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  0.00  0.00  
0.00  0.00  1.00  0.00  0.00  255  254  1.00  0.01  0.00  0.00  0.00  0.00  0.00  
0.00   

.1 

4 0  .2  .01  .1  105  146  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  2  0.00  0.00  
0.00  0.00  1.00  0.00  0.00  255  254  1.00  0.01  0.00  0.00  0.00  0.00  0.00  
0.00   

.2 

5 0  .2  .01  .1  105  146  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  2  0.00  0.00  
0.00  0.00  1.00  0.00  0.00  255  254  1.00  0.01  0.01  0.00  0.00  0.00  0.00  
0.00   

.2 

 

 

 

 
2.3.4.    Results and Discussion 

 
 The topology of ESNN used is 41 X 20 X 1; no. of nodes in the input layer is 41, no. of nodes in 
the hidden layer is 20 and no. of nodes in the output layer is 1. The labeling is set as 0.1 (Normal) 
or 0.2(attack). It is mandatory to use huge amount of patterns to be presented for training ESNN. 
However, it would take enormous amount of time for the ESNN to learn the patterns. Hence, only 
24 patterns have been considered for training purpose. The dataset has been separated as 
training and testing (intrusion detection).  
 
Training indicates the formation of final weights which indicate a thorough learning of intrusion 
and normal packets along with corresponding labeling. Figure 3 shows the performance of the 
ESNN .The x axis represents the packets. It is a combination of accepted packets and intruding 
packets. The legend ‘’ indicates the desired target used for normal and intrusion. The ‘○’ 
represents the output of the network. Table 3 gives number of patterns used for training and 
testing the performance of ESNN in classifying the intrusion packet. Table 4 gives number of 
patterns classified and misclassified. 
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FIGURE 3.  Packet classification  

 
 
Table 3 :   Distribution of patterns chosen for training 

 
Packet Type Total numbers used for training 
Normal 17 

Intrusion 7 

 
 
 
Table 4 :  Classification performance 

 
Packet type Total number 

tested 
No. classified No. misclassified 

Normal 17 15 2 

Intrusion 7 2 5 
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3.   CONCLUSION AND FUTURE WORK  

 
In this work, KDD dataset has been considered to experiment the performance of ESNN in 
classifying the LAN intrusion packets. A topology of 41 X 20 X 1 had been chosen. The future 
work will involve in implementing an echo state neural network for classification of intrusion 
packet. Future work will focus on comparison of echo state work with liquid state machine and 
back-propagation algorithm 
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