
Muhammad Nabeel Tahir

International Journal of Computer Science and Security (IJCSS), Volume(3): Issue(1) 62

 Testing of Contextual Role-Based Access Control Model (C-RBAC)

Muhammad Nabeel Tahir m_nabeeltahir@hotmail.com
Multimedia University, Melaka
75450, Malaysia

Abstract

In order to evaluate the feasibility of the proposed C-RBAC model [1], the work in
this paper presents the prototype implementation of C-RBAC model. We use
eXtensible Access Control Markup Language (XACML) as a data repository and
to represent the extended RBAC entities including purpose and spatial model.

Key words: C-RBAC Testing, XACML and C-RBAC, Policy Specification Languages

1 INTRODUCTION

1.1 EXtensible Access Control Markup Language (XACML)

The OASIS eXtensible Access Control Markup Language (XACML) is a powerful and flexible
language for expressing access control policies used to describe both, policy and access control
decision request / response [2]. XACML is a declarative access control policy language
implemented in XML and a processing model, describing how to interpret the policies. It is a
replacement for IBM's XML access control language (XACL) which is no longer in development.
XACML is a language primarily aimed at expressing privacy policies in a form such that computer
systems can enforce them. The XACML has been widely deployed and there are several
implementations of XACML in various programming languages available [3]. The XACML is
designed to support both centralized and decentralized policy management.

1.2 Comparison Between EPAL, XACML and P3P

Anderson [3] suggested that a standard structured language for supporting expression and
enforcement of privacy rules must meet the following requirements:

Rq1. The language must support constraints on who is allowed to perform which action on which
resource;

Rq2. The language must support constraints on the purposes for which data is collected or to be
used;

Rq3. The language must be able to express directly-enforceable policies;

Rq4. The language must be platform-independent; and

Muhammad Nabeel Tahir

International Journal of Computer Science and Security (IJCSS), Volume(3): Issue(1) 63

Rq5. The language used for privacy policies must be the same as or integrated with the language
used for access control policies.

Keeping in mind the above requirements, the comparison of P3P, EPAL, and XACML are
summarized in Table 1 in which “√” means the language can satisfy the requirement, “×” means
the language cannot satisfy the requirement and “?” means it is an unknown feature for the
corresponding requirement and may depend on the language extension and implementation.

Table 1: Comparison of P3P, EPAL, and XACML (Anderson, 2005).

 P3P EPAL XACML

Rq1: Constraints on subject × √ √

Rq2: Constraints on the purposes √ √ √

Rq3: Directly-enforceable policies × √ √

Rq4: Platform-independent √ ? √

Rq5: Access control × × √

Although P3P is a W3C recommended privacy policy language that supports purpose
requirements and is platform-independent, P3P does not support directly-enforceable policies.
P3P policies are not sufficiently fine-grained and expressive to handle the description of privacy
policies at the implementation level. P3P mainly focuses on how and for what purpose
information is being collected rather than on how and who can access the collected information.
Thus, P3P is not a general-purpose access control language for providing technical mechanisms
to check a given access request against the stated privacy policy especially in ubiquitous
computing environment. EPAL supports directly-enforceable policies but it is a proprietary IBM
specification without a standard status. According to a technical report comparing EPAL and
XACML by Anderson [3], EPAL does not contain any privacy-specific features that are not readily
supported in XACML. EPAL does not allow policies to be nested as each policy is separate with
no language-defined mechanism for combining results from multiple policies that may apply to a
given request whereas XACML allows policies to be nested. A policy in XACML, including all its
sub-policies, is evaluated only if the policy's Target is satisfied. For example, policy “A” may
contain two sub-policies “B1” and “B2”. These sub-policies could either be physically included in
policy “A” or one or both could be included by a reference to its policy-id, a unique identifier
associated with each XACML policy. Thus making XACML more powerful in terms of policy
integration and evaluation. EPAL [4] functionality to support hierarchically organized resources is
extremely limited whereas XACML core syntax directly supports hierarchical resources [data-
categories] that are XML documents. In an EPAL rule, obligations are stated by referencing an
obligation that has been defined in the (vocabulary) element associated with the policy; in
XACML, obligations are completely defined in the policy containing the rule itself. EPAL lacks
significant features that are included in XACML and that are important in many enterprise privacy
policy situations. In general, XACML is a functional superset of EPAL as XACML supports all the
EPAL decision request functionality. XACML provide a more natural way of defining role
hierarchies, permissions, permission-role assignment and it support the idea of complex
permissions that are used in the systems implementing role-based access control models for
distributed and ubiquitous environments. As a widely accepted standard, it is believed that

Muhammad Nabeel Tahir

International Journal of Computer Science and Security (IJCSS), Volume(3): Issue(1) 64

XACML is suitable for expressing privacy specific policies in a privacy-sensitive domain as
healthcare.

2 CORE C-RBAC IMPLEMENTATION USING XACML

The implementation of core RBAC entities (USERS, ROLES, OBJECTS, OPS, PRMS) in XACML
are presented in table 2.

Table 2: Core RBAC Entities in XACML.

Core RBAC Entities XACML Implementation

USERS

<Subjects>

ROLES

<Subject Attributes>

OBJECTS

<Resources>

OPS

<Actions>

PRMS

<Policyset>

<Policy>

The current XACML specification does not include the work for extended RBAC model but it has
the core RBAC profile to implement the standard RBAC model. Therefore, XACML is further
investigated and extended to support the proposed privacy access control model C-RBAC and
privacy policies. Table 3 shows the proposed XACML extension for the privacy access control
model.

Table 3: Extended Entities of C-RBAC Model.

C-RBAC ENTITIES
XACML/XML

IMPLEMENTATION

PHYSICAL LOCATION

<PLOC>

LOGICAL LOCATION

<LLOC>

LOCATION HIERARCHY SCHEMA

<LHS>

LOCATION HIERARCHY INSTANCE

<LHI>

SPATIAL DOMAIN OVER LHS

<SSDOM>

SPATIAL DOMAIN OVER LHI

<ISDOM>

PURPOSE

<PURPOSE>

SPATIAL PURPOSE

<SP>

SPATIAL PURPOSE ROLES

<SPR>

Muhammad Nabeel Tahir

International Journal of Computer Science and Security (IJCSS), Volume(3): Issue(1) 65

2.1 Experimental Evaluation

We created different healthcare scenarios to analyze behavior of the proposed C-RBAC entities.
By simulating different healthcare scenarios, we calculated response time including the access
time (with and without authorization) and response time to derive spatial granularity, spatial
purpose and spatial purpose role enabling and activation, have showed that the time required to
collect contextual attributes, to generate a request and to authorize an access request have been
in milliseconds and seconds that are considered to be tolerable in real time situations.

The use of XML as a tool for authorization raises questions as to expressiveness versus
efficiency, particularly in a large enterprise. Ideally, authorization should account for a negligible
amount of time per access but it is necessary that all access conditions be expressed and context
be checked completely. In this implementation, all authorization policies are loaded into memory,
independent of request comparison. Therefore, the time to read policies is not included into
access time. Instead, authorization time consists of formal request generation, request parsing,
contextual attribute gathering, request-policy comparison and context evaluation, response
building, and response parsing. The experiments have been performed on a 2.66 GHz Intel
machine with 1 GB of memory. The operating system on the machine is Microsoft Windows XP
Professional Edition, and the implementation languages used is Microsoft C-Sharp (C#).

For the experimental evaluation, different healthcare scenarios that are mentioned
throughout the thesis (the one presented in chapter 5 and section 7.3) have been executed to
analyze the performance and expected output of C-RBAC model (Tahir, 2009a). According to
those healthcare scenarios, contextual values including purpose setup, location modeling that
include locations, location hierarchy schemas and instances, spatial purposes, spatial purpose
roles and privacy policies have been defined in the system with their selectivity to 100 percent i.e.
all policies, operations, purposes, locations and spatial purpose roles have been set to allow
access for every access request. After creating the necessary objects and relations the response
has been analyzed in order to verify that whether the proposed model correctly grant or deny
access according to the privacy rules or not. Moreover, the response time has been also
calculated at different levels to measure the computational cost for monitoring and evaluating the
dynamic contextual values like purpose, location and time.

Figure 1 shows purpose inference algorithm based on the contextual values of the user.
It includes time, location, motion direction, distance and user motion direction with measurement
unit as meter, centimeters etc.

Muhammad Nabeel Tahir

International Journal of Computer Science and Security (IJCSS), Volume(3): Issue(1) 66

Figure 7.16: Purpose Inference Algorithm.

Figure 1: Purpose inference algorithm

Figure 1: Purpose inference algorithm

PurposeInference (s, pos1, pos2) {

// s ∈ SESSIONS, pos1 and pos2 are user’s current position and the position

to which user is heading to;

//Step 1: Getting the subject roles through the active session

SPR spr = SessionSPR(s);

//Step 2: Getting the current time

Time t = DateTime.Now;

//Step 3: Getting ploc in which user is located

PLOC ploc1 = Ploc(pos1);

PLOC ploc2 = Ploc(pos2);

//Step 4: Getting motion direction

DIRECTION dir = PlocDir(ploc1, ploc2);

//Step 5: Getting distance measurement unit

DUnitPloc(ploc2) → dunit

//Step 6: Getting distance between the two physical locations

Distance dval = DisPloc(ploc1, ploc2)

//Step 7: Retrieving the corresponding spatial purposes from the spatial

purpose global file (refer to figure 7.10)

Purpose p = Get_Purpose(spr, t, dir, pos1, dval, DUnit)

Return p;

}

Muhammad Nabeel Tahir

International Journal of Computer Science and Security (IJCSS), Volume(3): Issue(1) 67

Figure 2 shows the response time of purpose inference algorithm. As shown, the response time
increases as the number of purpose inference requests increase. This is because of the constant
movement of the user over the space defined within the system. For a single request, the system
takes approximately 38 milliseconds to compute the purpose from the collected contextual
attributes that are necessary input to the purpose inference algorithm.

Figure 2: Purpose Inference Response Time.

Figure 3 shows the response time in general for purpose collection based on the user’s current
contextual attributes. Figure 4 shows the response time for purpose collection at location
hierarchy schema and instance level. As shown, the response time increases as the number of
logical or physical locations defined in schema or instances increases. It also shows that the
response time at schema level is less than that of instance. This is because for each instance, the
system collects the spatial purposes defined not only at an instance level but also from its
corresponding schema from which it is instantiated (lhi is instance of lhs). Thus, the response
time increases as the location granularity becomes finer.

Muhammad Nabeel Tahir

International Journal of Computer Science and Security (IJCSS), Volume(3): Issue(1) 68

Figure 3: Purpose Collection Response Time in General.

Figure 4: Purpose Collection Response Time at LHS and LHI Level.

Figure 5 shows spatial granularity mapping from LHS to logical locations lloc defined

within the schema. It also shows the mapping response time to generate a set of physical

locations ploc that are derived from lloc defined within the given LHS. Figure 6 shows the

response time to derive physical locations from a given LHI.

Muhammad Nabeel Tahir

International Journal of Computer Science and Security (IJCSS), Volume(3): Issue(1) 69

Figure 5: Response Time to Derive Physical and Logical Locations from a Given

LHS.

Figure 6: Response Time to Derive Physical Locations from a Given LHI.

Figure 7 shows the response time to activate a spatial purpose through C-RBAC
constraints defined within the system. It has been observed that the activation of spatial purposes
depends on the spatial granularity. For example the spatial purposes defined at location hierarchy
schema level took more time to activate as compared to spatial purpose at physical location level.
This is because at physical level, the system directly activate the spatial purpose for the given
purpose and physical location whereas in case of location hierarchy schema, the system had to

Muhammad Nabeel Tahir

International Journal of Computer Science and Security (IJCSS), Volume(3): Issue(1) 70

derive all logical locations and then to its corresponding physical locations first and then activate
those corresponding physical locations with the given purpose.

Figure 7: Response Time to Activate Spatial Purposes.

Muhammad Nabeel Tahir

International Journal of Computer Science and Security (IJCSS), Volume(3): Issue(1) 71

Figure 8 shows the response time to enable spatial purpose roles defined with different spatial
granularities and purposes. The results have been analyzed by enabling a single spatial purpose
role spr (without spatial purpose role hierarchy) and multiple spr in the presence of hierarchy. It is
noticed that the enabling of roles defined without hierarchical relationships is less than to those
defined with hierarchical relationships. This is because in case of hierarchical relationships,
constraints are applied and evaluated based on the contextual values of the user before the
system enable/disable spatial purpose roles defined within the C-RBAC implementation.

Figure 8: Response Time for Spatial Purpose Roles Enabling

(with and without Hierarchical Relationships).

Muhammad Nabeel Tahir

International Journal of Computer Science and Security (IJCSS), Volume(3): Issue(1) 72

Figure 9 and 10 shows the response time for spatial purpose role activation and mapping

of user session onto enabled and active spatial purpose roles respectively.

Figure 9: Response Time for Spatial Purpose Roles Activation.

Figure 10: Response Time for Mapping a User Session Onto Enabled and Active

Spatial Purpose Roles.

Muhammad Nabeel Tahir

International Journal of Computer Science and Security (IJCSS), Volume(3): Issue(1) 73

Figure 11: Access Control Decision Algorithm for the Proposed Privacy Based C-RBAC

while(true){

 //Step 1: Gets the access requests from the subject

 If request(SUBJECTS s, OPS op, OBJECTS o, PURPOSES {p1,p2 …, pn },

 RECIPIENTS {rp1,rp2 …, rpn}) {

 //Step 2: Processes the request

 //Step 2.1: Checks the object ownership

 OWNERS owr = object_owner(o)

 //Step 2.2: Checks the subject role

 ROLES r = subject_roles(s)

 //Step 2.3: Retrieves the corresponding privacy rules

PRIVACY-RULES rule = GetPrivacyRules(r, op, o, {p1,p2 …, pn},{rp1,rp2 …,

rpn})

 //Step 3: Makes a decision by

 DECISIONS d = deny or allow;

 //Step 3.1: Checks permission from the core C-RBAC model

 PRMS prms = assigned_permission(sprloc_type, p)

 //Step 3.2: Checks legitimate purposes

 If(p’ ∧ rule.p = {p1,p2 …, pn}){

 //Step 3.3: Checks legitimate recipients

 If(rule.rp = {rp1,rp2 …, rpn}){

 //Step 3.4: Checks the location granularity

 If (loc_type ∧ rule.loc_type = {lloc, ploc, lhs, lhi, sdomlhs, sdomlhi}) {

 //Step 3.5 Checks ssod and dsod constraints

 If (rloc_type, p) {

 Apply_SSoDConstraints(rloc_type, p);

 Apply_DSoDConstraints(rloc_type, p);

 //Step 3.6 Final decision

 d = rule.decisions

 OBLIGATIONS {obl1, obl2 …, obln} = rule.obligations

 RETENTIONS rt = rule.retentions

 } } } }

 //Step 4: Returns a response and an acknowledgement

 If(d = allow){

 //Step 4.1: Returns: allow, Obligations, Retention policy

 Response(d, {obl1, obl2 …, obln},rt)

 } Else {

 //Step 4.1: Returns deny, null, null

Muhammad Nabeel Tahir

International Journal of Computer Science and Security (IJCSS), Volume(3): Issue(1) 74

It is observed that the response time to enable spatial purpose roles is more than that of
activation and mapping time. This is because of object/classes based implementation in C# of the
proposed C-RBAC model. During the execution of different healthcare scenarios, it is observed
that at the time of login, the system has evaluated the contextual values of the user and enabled
all the spatial purpose roles assigned by the administrator. From implementation point of view,
role enabling means that the system loads all the assigned roles into the memory based on the
contextual values and SSoD constraints. Then for each change in the user’s context, the system
decides whether to activate or deactivate the spatial purpose role by based on the DSoD
constraints and new contextual values. Figure 11 shows the access control algorithm to evaluate
the user’s request and to grant/deny access based on the contextual values, enabled and
activated roles.

For authorization, request generation time is approximately 2 seconds. The request parsing time
is 1.28 seconds. The average time for the PDP to gather attributes and authorize a formal
request is 3.5 seconds. All local transfer times are less than 1 seconds. Therefore, the total time
to authorize an access is 6.78 seconds.

The average total time to determine which regular spatial purpose roles a user has assigned is
776 ms. Role assignment is trivially parallelizable because each role can be checked
independently, so taking a distributed approach or using multi-threads could reduce this number
to a fraction of this original value. If the time is reduced to a tenth of the original, it would take 77
ms to determine a user’s roles.

Without authorization, the average time to perform an access is 703 ms. When authorization is
added into this system, the total time for an authorized access is 7483 milliseconds (6.78 * 1000
+ 703 = 7483 milliseconds = 7.5 seconds approximately). The 6.78 seconds access authorization
time is 89% of the total system time. This additional time is easily tolerated in a system where
tens of milliseconds are not critical. Role assignment can be determined per session or per
access. The 77 milliseconds this process took is invisible during the login process. Per access,
this 77 milliseconds added to the 6780 milliseconds (7.78 seconds) for authorization would
account for 88% of the 7483 milliseconds (7.5 seconds) total access time. This result is still
tolerable. Based on the results generated by measuring the response time for spatial granularity
derivation, spatial purpose and spatial purpose role enabling and activation, request generation
and evaluation and response time, it is concluded that the extensions introduced by C-RBAC are
reliable and due to very less overheads, the model can be effectively used for dynamic context-
aware access control applications.

3. CONCLUSION

In this paper, we simulated the different healthcare scenarios to analyze the behavior and to
calculate the response time of the proposed C-RBAC model. Our findings include the access time
(with and without authorization) and response time to derive spatial granularity, spatial purpose
and spatial purpose role enabling and activation, have showed that the time required to collect
contextual attributes, to generate a request and to authorize an access request have been in
milliseconds and seconds that are considered to be tolerable in real time situations. The model
implementation and its results also showed that the extensions introduced by C-RBAC have been
reliable and due to very less overheads, the model can be effectively used for dynamic context-
aware access control applications.

4. REFERENCES

[1] Tahir, M. N. (2007). Contextual Role-Based Access Control. Ubiquitous Computing and

Communication Journal, 2(3), 42-50.

Muhammad Nabeel Tahir

International Journal of Computer Science and Security (IJCSS), Volume(3): Issue(1) 75

[2] OASIS (2003). A brief introduction to XACML. Retrieved November 14, 2008, from

http://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.htm.

[3] Anderson, A. (2005). A comparison of two privacy policy languages: EPAL and XACML.

Sun Microsystems Labortory Technical Report #TR-2005-147, November 2005.
Retrieved November 14, 2008, from

 http://research.sun.com/techrep/2005/abstract-147.html.

[4] IBM (2003). Enterprise privacy authorization language (EPAL). IBM Research Report

June 2003. Retrieved November 14, 2008, from
 http://www.zurich.ibm.com/security/enterprise-privacy/epal.

