
Lung-Lung Liu 

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 76 

Embedding Software Engineering Disciplines 
in Entry-Level Programming 

 
 

Lung-Lung Liu            llliu@mcu.edu.tw 
Associate Professor, International College 
Ming Chuan University 
Gui-Shan, Taoyuan County, Taiwan, ROC 333 

 

 
ABSTRACT 

 
Software engineering disciplines can be embedded in entry-level programming 
assignments as a very basic requirement for teachers to the students in the 
classrooms and mentors to their apprentices in the offices. We are to use three 
examples to demonstrate how easily some of these software engineering 
disciplines can be embedded, and we will then prove that they are helpful for 
quality and productive software development from the point of being with “no 
source code modification” when some requirements are changed. In fact, 
convergence can be confirmed even there have been these changes. If the 
entry-level programming works are with software engineering disciplines, then 
the total software development effort should be decreased. With this concept in 
mind for project managers, actually, there are simple refactoring skills that can be 
further applied to those programs already coded. 
 
Keywords: Software Engineering Practice, Preventive Maintenance, Requirement Change. 

 

 

1. INTRODUCTION 

We had the experience to give software engineering courses to computer science (junior/senior) 
students in the campus and software company (programmer) employees in the industry. They are 
with good programming language skills, such as the handling of syntax details by using Java or 
C#; but to most of them, software engineering is just like extra requirements to their previous 
works. They have to change even from their minds. The reasons are clear. The conventional 
education strategy in computer science is to divide the software courses into programming 
groups and software engineering groups, and the programming ones are the mandatory. Having 
studied the programming related courses, the students may want to select the software 
engineering related ones. That is, when people are to take a software engineering course, their 
personal programming styles have been set already. However, the styles may be improper for 
software development if necessary attentions were not paid. 
 
Why don’t we embed some of the software engineering disciplines in those programming related 
courses, especially the entry-level ones? In the following sections we are to demonstrate this by 
providing three examples: the popular “hello, world” program [1] introduced as the first trial in 
various programming languages, the state transition [2] handling program, and the sorting [3] 
program. We will show that some software engineering disciplines can be easily embedded in 
these entry-level programming exercises. These disciplines are for “no source code modification” 
to possible requirements change, which are usually to happen. In other words, a considerable 
programming style (with software engineering disciplines) can help reduce the chance to modify 



Lung-Lung Liu 

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 77 

the source code. It is true that if code need not be modified when there is a requirement change, 
then there is the higher possibility for quality and productive software.  
 
The theoretical background of the disciplines is preventive maintenance [4], or a convergence 
software process, which makes sure that consecutive processes can really approach to the 
target. We will discuss this after the demonstration of the examples. The other software 
engineering technology can be directly applied here is refactoring [5]. It is for programs already 
coded by students or junior employees. To the teachers and managers, asking them to do the 
refactoring works is a challenge. Nevertheless, automated skills but not labor-intensive routines 
should be considered. When the students and programmers are used to embedding software 
engineering disciplines in their daily coding works, Personal Software Process [6] is then 
significant. 
 

2. THE “HELLO, WORLD” EXAMPLE 

The program titled “hello, world” has been the first trial in learning different kinds of programming 
languages for years. Although there are versions of the program, the major function is to output 
the words: hello, world. In the following, we use a common pseudo code to specify the program. 
A typical and simple version may look like this: 
 
 function hello_world() 

begin 
  print(“hello, world’) 
 end 
 
From a programmer’s point of view, it is well done. However, even the program is titled as 
hello_world, a customer or stakeholder may request a change for alternative output of the words: 
hi, globe. They are the same, technically in programming skills, but they are actually different 
programs since the code should be modified. There are risks to introduce human errors in the 
modification processes. 
 
Literals should be avoided in programs, and variables and parameters are suggested in general. 
We skip the use of variables and go straight for the use of parameters. The new version of the 
program may now look like this: 
 
 function hello_world() 
 begin 
  print(get_whatever_requested()) 
 end 
 
The nested function get_whatever_requested() is flexible and powerful. It can be another system 
supported function just like the print(something) function. The programmer is then waiting there, 
for all possible words requested as the desired output, since there is no need to modify any of the 
code. (Actually, no re-compilation is necessary.) 
 
There are ways to let the system know where to get those whatever requested by providing a 
customizable profile, and the contents may indicate the input source such as the keyboard, a file, 
a database entry, or those through a network. The format of the input data can be further 
specified, such as whether the requested words are in English or Chinese. 
 
In the past, we seldom saw students (or junior programmers) go this way at their earlier 
programming learning stages. Their styles were pure “hello, word” by referencing the books of 
introduction to programming languages. Although the programming (development) environments 
have been greatly improved since Java and C# were introduced years ago, the design of them 
together with software engineering basics is still blocked. 



Lung-Lung Liu 

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 78 

 

3. THE STATE TRANSITION HANDLING EXAMPLE 

The handling of state transition is another typical exercise for computer science students and 
business application oriented junior programmers. The processes in a multitasking operating 
system is basically synchronized by a scheduler, and the processes are well controlled to be with 
ready, running, or waiting states. The current status of a running business can also be managed 
by a control system, and each of the possible sales cases (can be specified by using sales forms) 
can be associated with a current state, such as initial, in review, waiting for approval, or final. The 
following is a state transition diagram of processes in an operating system, and it is actually the 
requirement for the implementation of the handling program: 
 

 
 
According to the diagram, a direct program with a lot of conditional statements is obtainable. 
However, we know that conditional branches and expressions in conditional statements are with 
high risk to introduce errors in a program. Furthermore, when the customer or the stakeholder 
once raised a change, the effort of modifying the code will be with even higher risks of new errors. 
 
An advanced approach is to use the state transition table, which is equivalent to the state 
transition diagram but is much more precise for programming: 
 

 
 
The controlling of state change is now with no conditional statement coded, since the change can 
be determined by checking with row index (the current state) and column index (the input). The 
cell with proper indices in the table tells the next state. In addition, the size of the table doesn’t 
need to be fixed. Or, the number of rows and that of columns can be assigned outside of the 
code, hence again, like we have mentioned in the previous example, they and the whole contents 
of the table can be specified in a customizable profile. 
 
We experienced so many cases that students’ (and employees’) programs are designed with long 
and deep conditional statements, but it seemed that some of them did enjoy this style. Actually, a 



Lung-Lung Liu 

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 79 

professional state transition handling mechanism (software) is with only limited size (lines of 
code), and it is almost always reusable. The programming books should guide the readers how to 
design the contents in a state transition table but not how to code according to a diagram. 
 

4. THE SORTING EXAMPLE 

To solve the sorting problem is a typical exercise to beginning programmers, especially to 
computer science students whose teacher wanted them to get into algorithms as early as 
possible. Usually, after students have tried the bubble sort and quick sort skills, the job is done. 
However, in practical programming concerns, there are much more. The following is the list of 
weekdays in their conventional sequence: 
  
 Sunday 
 Monday 
 Tuesday 
 Wednesday 
 Thursday 
 Friday 
 Saturday 
 
What is the result if we let a common sorting program to run with this list as input? If no further 
information is provided, the output is this: 
 
 Friday 
 Monday 
 Saturday 
 Sunday 
 Thursday 
 Tuesday 
 Wednesday 
 
It is somewhat funny since common users will get confused with the result, but the computer 
science students will support the result with explanations in technical terms. A tentative 
conclusion may be that the computer is not as clever as human beings, because it does not 
understand what weekdays really are. However, the actual problem is the sorting program but not 
the computer. The truth is that the program is lack of the thoughtful considerations of user 
friendly. 
 
A proper sorting program should be able to handle different data types, formats, languages, and 
even semantics. Data definitions, data dictionaries, and even guidelines can be associated with 
the program as changeable supports, but the code can be kept unchanged at all. Although we 
have not seen a universal sorting program developed by the students and employees until now, it 
is encouraged for them to think this way. It is the embedding of software engineering disciplines 
in entry-level programming. 
 

5. CONVERGENCE 

The three demonstrated examples should have indicated some of the software engineering 
disciplines such as: no literal in the code, simplifying the code whenever it is possible, and real 
information hiding. There may be debates, although they are just examples for better 
understanding. In the following, we are to prove that they are helpful for quality and productive 
software development from the point of being with “no source code modification” when some 
requirements are changed, and it is easy to do so.  
 



Lung-Lung Liu 

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 80 

Fact 1. Some requirement change can be handled by changing the contents in a provided user-
customizable profile. 
 
A typical example of this is the use of the win.ini file in the popular MS Windows systems. When a 
user is to change his/her desktop’s background color, a setting in the profile satisfied the request. 
Either a direct text editing or a mouse clicking through graphical user interface completes the 
setting. 
 
Fact 2. A program is composed of data sections and instruction sections. No source code 
modification of a program means that there is no change, neither in the data sections, nor in the 
instruction sections. 
 
Data sections are declared as variables and literals (such as specific numerals and strings), and 
instruction sections are specified as statements. The instructions refer to literals and current 
values of variables, and then new data values of variables as computation results are generated. 
 
Fact 3. The total number of errors in a program will not increase unless the program (source 
code) has been modified. 
 
There is the number as the total number of errors in a program, although it is very hard to find the 
number. (Usually we use testing record to estimate the number.) However, if the program has 
been modified, then the relationship between the new number of errors and the original one is 
unclear (although both of the two numbers are unknown). What we are sure is this: If there is no 
change in the code, then everything is still fixed as it was before. 
 
Theorem 1. For some of the requirement change, no source code modification can be achieved 
by replacing literals with contents in a user profile. 
[Proof] Let R be the requirement. A source code C is programmed to first read from the user 
profile F for a value, and then assign the value to variable V in C as the requirement. R is 
originally in F, and C can get R for V. According to Fact 1, when there is a requirement change 
from R to R’, we first replace R by R’ in F, and we then have C perform the same process for V. 
R’ is now the value assigned to V. However, according to Fact 2, there is no source code 
modification in C. 
 
Theorem 2. No source code modification is helpful for quality and productive software 
development. 
[Proof] According to Fact 3, the total number of errors will not increase if there is no source code 
modification in a program. For quality software development, this shows a convergence (or at 
least, non-divergence) in the programming versus requirement change processes, since the trend 
of introducing new errors does not exist. For productive software development, it is clear that the 
language translation procedures such as the recompilation of the modified program, the make of 
a new load module, and the adjusting for a new run environment, can be avoided. Hence, it is 
with higher productivity. 
 
Theorem 3. It is doable to embed software engineering disciplines in entry-level programming. 
[Proof] There is no special programming skill for students or junior employees to embed software 
engineering disciplines in their works. According to the three examples demonstrated, it is easily 
doable. 
 

6. REFACTORING 

Refactoring is the process to modify a program but with no functional change. It was introduced 
recently for advanced software development approaches such as extreme programming 
techniques. However, for entry-level programmers, the concept is applicable. In short, it is not the 
work for requirement change from the customers and the stakeholders, but it is the work for a 



Lung-Lung Liu 

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 81 

student or junior programmer to enhance his/her current code. The purpose, from a software 
engineering point of view, is also for quality and productive software development. 
 
Most of the cases for students and junior employees in their programming experience indicated 
that, after a supposed to be correct output has been obtained, the programs will not be modified. 
Actually, the teachers or managers should ask or guide the students or junior employees to 
continue their works for no source code modification to some of the requirement change, as was 
discussed before. The theorems say that the literals in their programs can be easily replaced by 
contents in a user customizable profile. If this has been the discipline naturally embedded in the 
programming works, then they are on the right software engineering way. 
 
Automated skills but not labor-intensive works are suggested for refactoring. For example, a first 
exercise to entry-level programmers may be the scanning of literals in a program, and then the 
second step is to properly replace the code. The refactoring process is to modify the code where 
a literal is used by function calls (reading an external user profile) that can return a value 
equivalent to the original literal. Actually, the use of literals in a specific programming language 
can be handled in compilers as an optional feature. Hence, the automated skills for refactoring 
can be applied. 
 

7. CONCLUSIONS 

Software engineering disciplines can be easily embedded in entry-level programming exercises 
as requirements. We have tried to use three examples to demonstrate how software engineering 
disciplines can be embedded, and we proved that they are helpful for quality and productive 
software development. No source code modification when some requirements were changed is 
the theme. The theoretical background of the disciplines is preventive maintenance, or a 
convergence of a software process, which makes sure that consecutive process steps can really 
get approach to the target. In fact, convergence can be confirmed even there have been 
requirement changes, since the code is not changed. If the entry-level programming works are 
with software engineering disciplines, then the quality of software development should be with 
well control, and the total software development effort should be decreased. To be more 
aggressive, there are simple refactoring skills that can be further applied to those programs 
already coded. 
 
Our results are logically significant, and they are also practical. For example, there have been the 
studies on software maintenance and software reusability, such as (1) the handling of 
maintainability, especially the changeability [7], and (2) the metrics of reusable code [8]. Our 
results may indicate that (1) the handling effort of changeability can be easier, no matter the 
design is aspect oriented or not, and (2) the CRL LOC (i.e., the Component Reusability Level 
based on Lines of Code) is actually 100%. The reason is obvious since there is no code 
modification. (However, the proof is beyond the scope here.) The other example is with the 
discussion of emphasizing on preventive maintenance in the introducing of a software process to 
an organization [9]. The experience also indicated that the case of individual programmers with 
good software engineering disciplines is a key successful factor . 
 
The future work of this study is on the requirement analysis of a practical universal sorting 
program. No matter what the requirement change is, the code of the sorting program is not to be 
changed. Although we have collected many requirements from groups of end users, it is still on 
going. One typical requirement is to provide a sorting program for a list of postal addresses in 
Chinese. 
 

8. REFERENCES 

1. Brian W. Kernighan, “Programming in C: A Tutorial,” Bell Laboratories, Murray Hills, N.J., 
USA, 1974 



Lung-Lung Liu 

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 82 

 
2. Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne, “Operating Systems Concepts,” 

Seventh Edition, John Wiley and Sons, Inc., Ch. 5, 2005 
 
3. Donald. E. Knuth, “The Art of Computer Programming, Volume 3: Sorting and Searching,” 

Second Edition, Addison Wesley, Ch. 5, 1998 
 
4. Roger S. Pressman, “Software Engineering: A Practitioner’s Approach,” Sixth Edition, 

McGraw-Hill, Ch. 31, International Edition, 2005 
 
5. Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts, “Refactoring: 

Improving the Design of Existing Code,” Addison Wesley, Ch. 8, 2000 
 
6. Watts Humphrey, “PSP, A Self-Improvement for Software Engineers,” Addison Wesley, Ch. 1, 

2005 
 
7. Avadhesh Kumar, Rajesh Kumar, and P S Grover, “An Evaluation of Maintainability of 

Aspect-Oriented Systems: a Practical Approach,” in International Journal of Computer 
Science and Security, Volume 1: Issue (2), pp. 1~9, July/August 2007 

 
8. Arun Shamar, Rajesh Kumar, and P S Grover, “Managing Component-Based Systems with 

Reusable Components,” in International Journal of Computer Science and Security, Volume 
1: Issue (2), pp, 60~65, July/August 2007 

 
9. Lung-Lung Liu, “Software Maintenance and CMMI for Development: A Practitioner’s Point of 

View,” in Journal of Software Engineering Studies, Volume 1, No. 2, pp. 68~77, December 
2006 

 


