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ABSTRACT 

 
An important challenge to database researchers in mobile computing 
environments is to provide a data replication solution that maintains the 
consistency and improves the availability of replicated data. This paper 
addresses this problem for large scale mobile environments. Our solution 
represents a new binary hybrid replication strategy in terms of its components 
and approach. The new strategy encompasses two components: replication 
architecture to provide a solid infrastructure for improving data availability and a 
multi-agent based replication method to propagate recent updates between the 
components of the replication architecture in a manner that improves availability 
of last updates and achieves the consistency of data. The new strategy is a 
hybrid of both pessimistic and optimistic replication approaches in order to exploit 
the features of each. These features are supporting higher availability of recent 
updates and lower rate of inconsistencies as well as supporting the mobility of 
users. To model and analyze the stochastic behavior of the replicated system 
using our strategy, the research developed Stochastic Petri net (SPN) model. 
Then the Continuous Time Markov Chain (CTMC) is derived from the developed 
SPN and the Markov chain theory is used to obtain the steady state probabilities. 
 
Keywords: pessimistic replication, optimistic replication, availability, consistency, Stochastic Petri net. 
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1. INTRODUCTION 

Rapid advancements in wireless technologies and mobile devices have made mobile computing 
enjoying considerable attention in the past few years as a fertile area of work for researchers in 
the areas of database and data management. As mobile computing devices become more and 
more common, mobile databases are also becoming popular. Mobile database has been defined 
as database that is portable and physically separate from a centralized database server but is 
capable of communicating with server from remote sites allowing the sharing of corporate data 
[1].  
 
Mobility of users and portability of devices pose new problems in the management of data [2, 3], 
including transaction management, query processing, and data replication. Therefore, mobile 
computing environments require data management approaches that are able to provide complete 
and highly available access to shared data at any time from any where. One way to achieve such 
goal is through data replication techniques. The importance of such techniques is increasing as 
collaboration through wide-area and mobile networks becomes popular [4].  However, 
maintaining the consistency of replicated data among all replicas represents a challenge in 
mobile computing environments when updates are allowed at any replica. 
 

This paper addresses the problem of maintaining consistency and improving availability of 
replicated data for large scale distributed database systems that operate in mobile environments. 
This type of systems is characterized by a large number of replicas (i.e. hundreds of replicas) and 
a large number of updates (i.e. tens of updates per data items are expected at any period of time) 
are performed in these replicas. Examples of such systems include mobile health care, mobile 
data warehousing, news gathering, and traffic control management systems. 
 
In such type of mobile environments, the concurrent updates of large number of replicas during 
the disconnection time influences consistency and availability of the replicated data, by leading to 
divergence in the database states (i.e. the data in the database at a particular moment in time). 
As a solution to the aforementioned problems, this paper proposes a new replication strategy that 
acts in accordance with the characteristics of large scale mobile environments.  
 
This paper is organized as follows. The next section provides the background and related work. 
Section 3 describes the proposed replication strategy. Section 4 gives the details of the behavior 
modeling. Section 5 presents the contribution and discussions. Section 6 concludes the paper. 

 
2. BACKGROUND AND REALTED WORK  
Data replication strategies are divided into optimistic and pessimistic approaches [5, 6, 7]. 
Pessimistic replication avoids update conflicts by restricting updates to a single replica based on 
the pessimistic presumption that update conflicts are likely to occur. This ensures data 
consistency because only one copy of the data can be changed. Pessimistic replication performs 
well in local-area networks in which latencies are small and failures uncommon. Primary-copy 
algorithms [8] are an example of pessimistic approaches. However, pessimistic approaches are 
not suitable for mobile environments, because they are built for environments in which the 
communication is stable and hosts have well known locations. 
 
An optimistic replication, in contrast, allows multiple replicas to be concurrently updatable based 
on the optimistic presumption that update conflicts are rare. Conflicting updates are detected and 
resolved after they occurred. Therefore, this schema allows the users to access any replica at 
any time, which means higher write availability to the various sites. However, optimistic replication 
can lead to update conflicts and inconsistencies in the replicated data.  
 
Using optimistic replication in mobile environments has been studied in several research efforts. 
ROAM [9] is an optimistic replication system that provides a scalable replication solution for the 
mobile user. ROAM is based on the Ward Model [10]. The authors group replicas into wards 
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(wide area replication domains). All ward members are peers, allowing any pair of ward members 
to directly synchronize and communicate.  
 
A multi-master scheme is used in [11], that is, read-any/write-any. The servers allow access (read 
and write) to the replicated data even when they are disconnected. To reach an eventual 
consistency in which the servers converge to an identical copy, an adaptation in the primary 
commit scheme is used.  
 
A hybrid replication strategy is presented in [12] that have different ways of replicating and 
managing data on fixed and mobile networks. In the fixed network, the data object is replicated to 
all sites, while in the mobile network, the data object is replicated asynchronously at only one site 
based on the most frequently visited site. 
 
Cedar [13] uses a simple client-server design in which a central server holds the master copy of 
the database. At infrequent intervals when a client has excellent connectivity to the server (which 
may occur hours or days apart), its replica is refreshed from the master copy. 
 
However, aforementioned strategies have not explicitly addressed the issues of consistency and 
availability of data in large scale distributed information systems that operate in mobile 
environments. Therefore, this paper comes to a conclusion that additional research toward a new 
replication strategy is needed to investigate and address above mentioned issues. 

 
2.1 SPN Background  

 
Petri Nets (PNs) are an important graphical and mathematical tool used to study the behavior of 
many systems. They are very well-suited for describing and studying systems that are 
characterized as being concurrent, asynchronous, distributed, and stochastic [17, 19]. A PN is a 
directed bipartite graph that consists of two types of nodes called places (represented by circles) 
and transitions (represented by bars). Directed arcs connect places to transitions and transitions 
to places. Places may contain tokens (represented by dots).  
 
The state of a PN is defined by the number of tokens contained in each place and is denoted by a 
vector M, whose i

th
 component represents the number of tokens in the i

th
 place. The PN state is 

usually called the PN marking. The definition of a PN requires the specification of the initial 
marking M'. A place is an input to a transition if an arc exists from the place to the transition. A 
place is an output from a transition if an arc exists from the transition to the place. A transition is 
said to be enabled at a marking M when all of its input places contain at least one token. A 
transition may fire if it is enabled. The firing of a transition t at marking M removes one token from 
each input place and placing one token in each output place. Each firing of a transition modifies 
the distribution of tokens on places and thus produces a new marking for the PN. 
 
In a PN with a given initial marking M', the reachability set (RS) is defined as the set of all 
markings that can be "reached" from M' by means of a sequence of transition firings. The RS 
does not contain information about the transition sequences fired to reach each marking. This 
information is contained in the reachability graph, where each node represents a reachable state, 
and there is an arc from M1 to M2 if the marking M2 is directly reachable from M1. If the firing of t 
led to changing M1  to M2, the arc is labeled with t. Note that more than one arc can connect two 
nodes (it is indeed possible for two transitions to be enabled in the same marking and to produce 
the same state change), so that the reachability graph is actually a multigraph. 
 
SPNs are derived from standard Petri nets by associating with each transition in a PN an 
exponentially distributed firing time [16, 18]. These nets are isomorphic to continuous-time 
Markov chains (CTMCs) due to the memoryless property of exponential distributions. This 
property allows for the analysis of SPNs and the derivation of useful performance measures. The 
states of the CTMC are the markings of the reachability graph, and the state transition rates are 
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the exponential firing rates of the transitions in the SPN. The steady-state solution of the 
equivalent finite CTMC can be obtained by solving a set of algebraic equations.   
 

3. REPLICATION STRATEGY 
The proposed replication strategy encompasses two components: replication architecture and 
replication method. The purpose of the replication architecture is to provide a comprehensive 
infrastructure for improving data availability and supporting large number of replicas in mobile 
environments by determining the required components that are involved in the replication 
process. The purpose of the replication method is to transfer data updates between the 
components of the replication architecture in a manner that achieves the consistency of data and 
improves availability of recent updates to interested hosts. 
 
The new strategy is a hybrid of both pessimistic and optimistic replication approaches. The 
pessimistic approach is used for restricting updates of infrequently changed data to a single 
replica. The reason behind this restriction is that if the modifications of these data are allowed on 
several sites, it will influence data consistency by having multiple values for the same data item 
(such as multiple codes for the same disease or multiple codes for the same drug). On the other 
hand, the optimistic replication is used for allowing updates of frequently changed data to be 
performed in multiple replicas. The classification into frequently and infrequently changed data is 
specified according to the semantic and usage of the data items during the design phase of the 
database.   

 
3.1. System Model 
This research considers a large-scale environment consists of fixed hosts, mobile hosts, a replica 
manager on each host, and a replicated database on each host. A replicated database is called 
mobile database when it is stored in a mobile host. A part of fixed hosts represent servers with 
more storage and processing capabilities than the rest.  The replicated database contains a set of 
objects stored on the set of hosts. The database is fully replicated on the servers, while it is 
partially replicated on both fixed and mobile hosts. 
Definition 3.1.1 An object O is the smallest unit of replication and it represents a tuple O = <D, R, 
S>, where D = {d1, d2,…, dn} is a set of data items of the object O, R = {r1, r2, …, rm} is a set of 
replicas of O, and S is the state of the object O.  
Definition 3.1.2 The state S of an object O is a set consisting of states that identifies current 

values for each data item di ∈ D, i.e., S = {s1, s2,…, sn}. 
Definition 3.1.3 A replica R is a copy of an object stored in a different host and is defined as a 
function as follows. For a set of updates U that is performed on a set of objects Ō, the function R : 

U × Ō → S identifies a new separate state si ∈ S for an object O∈Ō as a result of performing 

update u∈U on an object O in a different host. 
Definition 3.1.4 For a replica R in a host H, Interested Data Items is a subset I of the set of all 

data items, which is required for H to perform its duties, i.e., I ⊆ { U

n

1i

iO
=

} , where n is the number 

of objects in the system. 

Definition 3.1.5 A replicated data item di ∈ D is consistent if and only if its values are identical 
and in same order as the values of the similar data item in the replica that is stored in the master 
server, which exists in the fixed network 

Definition 3.1.6 A replica R is consistent if and only if each interested data item di ∈ {D ∩ I} is 
consistent. 

Definition 3.1.7 A replica R in a mobile host is in Available-State for a data item di ∈ D if and only 
if all updates that are performed on di in other replicas (either in fixed hosts or mobile hosts) are 
merged with the updates that are performed on di in R. 
Definition 3.1.8 Consistent-Available State (CA State) for a replica R that is stored in a mobile 
host is the state in which: 

1. R is consistent  
2. R in Available-State for each interested data item di in R. 



Ashraf A Fadelelmoula, P.D.D.Dominic, Azween Abdullah & Hamidah Ibrahim    

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 87 

 
3.2 Replication Architecture 
The proposed replication architecture considers a total geographic area called the master area, 
divided into a set Z = {z1, …, zn} of zones. Each zone consists of a set C = {c1,…, cm} of smaller 
areas called cells (see figure 1). Each cell represents an area, where the mobile users can 
perform their duties at a particular period of time before moving to another cell. In this 
architecture, the network is divided into fixed network and mobile network. The fixed network 
consists of Fixed Hosts (FH) and wired local area network to connect the fixed hosts in the 
master area, and also include wide area network to connect fixed hosts in the master and zone 
areas, and the servers of the cell area. The cell server is augmented with a wireless interface and 
acts as a mobile support station for connecting mobile hosts to the fixed network. On the other 
hand, the mobile network consists of wireless network and Mobile Hosts (MH) in the cell area.  
 
To provide more flexibility and application areas for this architecture, replicas are divided into 
three levels: 
Master Level: This level contains the master replica, which must be synchronized with the 
replicas from the zone level. The server in this level is responsible for synchronizing all changes 
that have been performed on infrequently changed data with the lower level.  
Zone Level: In this level, each replica must be synchronized with replicas from the lower level. 
The zone server is responsible for synchronizing all intra-level data with the master server.  
Cell Level: Each replica in this level is updated frequently, and then synchronized with the cell 
server’s replica and in turn the cell server synchronizes all intra-level data with the zone server.  

 

 
 

FIGURE 1: The Replication Architecture for Mobile Environments 

 
 
3.3. Replication Method 
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The replication method is based on a multi-agent system called IIRA-dependant multi-agent 
system. This system is proposed based on a new type of software agent called Instance-
Immigration-Removed Agent (IIRA) that is introduced in this research.  The research chose this 
name, according to IIRA working nature, since it creates an instance of itself and this instance 
migrates to another host and performs its task before removing itself. The purpose of the instance 
is to propagate recent updates that occurred or are collected in one level to other level in the 
proposed replication architecture. The following definition will formally define IIRA. 
Definition 3.3.1 IIRA is a 5-tuple <T, S, D, I, U>, where: 
T= {t1, t2, t3, t4} is a finite set of IIRA types. A type ti maps each IIRA to a certain level (i.e. the type 
determines the location of IIRA). 
S = {s1, s2, s3, s4, s5, s6} is a finite set of IIRA states. Each state represents the current activity that 
is carried out by IIRA. 
D = {d1, …,dn} is a finite set of data items that are required to store recent updates that are 
performed on the similar data items, which are stored in the database.  
I = {i1, …, in} is a finite set of primitives/instructions that are required to perform IIRA activities and 
the transitions. 

U: T → {1, 2, 3,…,k} is a function for assigning a unique identifier for IIRA in the system. 
According to the abovementioned formal definition, the IIRA consists of code and database and 

it has type, state, and unique identifier. 
IIRA Types: The research divides IIRA into four types according to the level in which the IIRA 
carries out its activities. The four types share common structure and behavior, but they inhabit 
different levels. These types are: 
MH-Resident IIRA (MHR-IIRA): Every MH has IIRA, and it is responsible for propagating recent 
updates that are performed in the MH to other hosts in the mobile network or to the cell server 
that covers the cell where the MH is located at the time of connection.  
Cell Server-Resident IIRA (CSR-IIRA):   This type acts as a broker for propagating recent 
updates between the fixed network and the mobile network. It propagates all updates that are 
received from MHR-IIRA to the zone server and vice versa.  
Zone Server-Resident IIRA (ZSR-IIRA): This type receives all updates that are performed in the 
fixed network and the mobile network, which are associated with specific zone level, and resolves 
update conflicts on this level. Then it propagates these updates directly to the master server.  
Master Server-Resident IIRA (MSR-IIRA): This type receives all updates that are performed in 
the zone level and resolves update conflicts. Then it propagates these updates directly to each 
zone server, which in turn propagates these updates to underlying levels.  
IIRA States: The possible states of the IIRA in the proposed replication strategy are: 
Monitoring: In this state, the IIRA monitors the connection with the other devices through 
interacting with its environment (i.e. hosted device) via message passing. 
Retrieving: The IIRA retrieves the set of recent updates from the hosted device. The IIRA enters 
this state when the monitoring state results in a connection that is realized with the other host.  
Creating Instance: The IIRA creates an instance of it and stores the set of recent updates on 
this instance. 
Migration: The IIRA instance migrates from the hosted device to other device that the connection 
is realized with it.  
Insertion: In this state, the IIRA instance inserts its stored recent updates in the database of the 
IIRA in the other device. 
Removing: The migrated instance of IIRA removes itself after completion of the insertion 
process. 

 
3.3.1 IIRA-Dependant Multi-Agent System 
The IIRA-dependent multi-agent system (see figure 2) is composed of the four types of IIRA. 
Each type interacts with others through a synchronization process, in which two types exchange 
their recent updates via their created instances. In this system, each type can exchange updates 
directly with the same type or a different type in the server of the level where it inhabits or in a 
server from underlying level (e.g. the MHR-IIRA can exchange updates directly with CSR-IIRA or 
other MHR-IIRA).  
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The exchanging of updates between two types occurs only during the connection period between 
their owner hosts. The time period that MH waits for the connection with a cell server in the fixed 
network is not deterministic and it depends on its own conditions, such as connection availability, 
battery, etc. On the other hand, the research assumes that the time period that a server in the 
fixed network must wait to connect with the server in the higher level is deterministic and its value 
depends on the availability and consistency requirements of the replicated system. To decide this 
value, the research views the connection timing system for connecting servers in the fixed 
network should mimics the shifting behavior, where the shift time is exploited in collecting recent 
updates from underlying level   (e.g. the cell server should connect to the zone server every one 
hour to propagate the collected updates from underlying mobile hosts during the last past hour).  
 
When the connection takes place between any two IIRA types, an instance of IIRA type that 
inhabits the lower level will propagate a set of recent updates called Updates-Result (UR), which 
is produced by an application, in addition to updates that may have been collected from the 
underlying level to the database of IIRA type that inhabits the higher level. Then, an instance of 
the type that inhabits the higher level propagates a set of updates called Recent-Resolved-
Updates (ReRU) that is received from the higher level to the replicated database in the lower 
level. According to this fact, the research defines three types of propagation, as follows: 
Bottom-Up Propagation: In this type, each MHR-IIRA propagates the set of recent updates 
(MH-UR) that occurred in its host to the database of the type that inhabits a cell server. Also, 
each server’s IIRA collects the received Updates-Result from underlying level in addition to its 
server’s updates-result in a set called Set of Updates Result (SUR) and resolves updates conflict 
in this set and then propagates this set to the database of IIRA in the higher level.  
 
As previously mentioned, the time period that the server in the current level should wait for 
receiving recent updates (i.e. updates collection) from underlying level is deterministic. The value 
of this period in a server in the higher level is greater than its value in a server in the lower level 
(e.g. waiting period for the zone server > waiting period for the cell server). This is because the 
number of hosts, where updates occurred increases as we move to the higher levels. After 
elapsing of this deterministic period, the IIRA carries out the required operations for this type of 
propagation. 
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FIGURE 2: IIRA-Dependant Multi-Agent System 

 

The typical operations that are involved in this propagation, which are performed by IIRA are: 

•  Resolving updates conflict through ordering the collected updates on the database of the 
IIRA type that inhabits the host in the current level and  assigning the value of the update 
timestamp data item (in case of the update is generated on the same host). 

• Creating the instance and storing the ordered updates on it. 

• Migration of the instance to the host that exists in the higher level and assigning the value of 
the send timestamp data item to each update before the migration start and after migration 
request is accepted. 

• Execution of the instance in the destination host through insertion of recent updates in its 
IIRA type’s database. 

 
Top-Down Propagation: In this type, each server’s IIRA propagates the set of recent resolved 
updates (ReRU) that is received from the higher level to the lower level. For example, each ZSR-
IIRA propagates the ReRU that is received from the master server to the underlying cell servers 
and in turn each cell server propagates a subset of this set called Interested-Recent Resolved-
Updates (IReRU) to underlying mobile hosts. 
 
The typical operations that are performed by IIRA for carrying out this propagation are: 

• Creating the instance and storing the set of recent resolved updates on it. 

• Migration of the instance to the host that exists in the lower level. 

• Execution of the instance in the destination host.  
 



Ashraf A Fadelelmoula, P.D.D.Dominic, Azween Abdullah & Hamidah Ibrahim    

International Journal of Computer Science and Security (IJCSS), Volume (3) : Issue (2) 91 

Peer-to-Peer Propagation: In this type, two IIRA of the same type may exchange their updates. 
The typical operations that are performed by IIRA in this type are same as in Bottom-Up 
propagation with a distinction that both hosts, which are involved in the synchronization process, 
are of the same level. 

 

4. BEHAVIOR MODELING  
The paper models the dynamic behavior of the proposed multi-agent system with respect to the 
synchronization process between its components by using SPNs. The purposes are to trace how 
the mobile database will reach the CA state and to calculate the steady-state probabilities. 
 
The reason of using SPNs is that the research views the synchronization process between the 
different levels of the replication architecture as a discrete-event stochastic system that 
encompasses states and events. Each state captures either a snapshot of a set of recent updates 
or a snapshot of a set of tuples currently is stored in the database. Each event represents either 
execution of IIRA instance in another level or retrieving of a subset of tuples. The system is 
stochastic due to its stochastic state transitions since it is evolving over continuous time and 
making state transitions when events associated with states occur.  
 
The behavior modeling approach using SPN follows a systematic approach described in [14, 15], 
which incorporates the following steps. 

• Modeling of the behavior of the IIRA-dependant multi-agent system using a stochastic Petri 
net. 

• Transforming the developed SPN into its equivalent Markov chain for calculation of the 
steady state probabilities of marking occurrences.  This step requires generating the 
reachability graph. The Markov chain is obtained by assigning each arc with the rate of the 
corresponding transition. 

• Analyze the Markov chain to obtain steady state probabities.  
 
The research interests in a state in which the mobile database in the mobile host receives a set of 
recent updates that occurred on the other hosts in both fixed and mobile networks.  
  
 
4.1 The SynchSPN 
The following definition will formally define the developed SPN that is used to model the behavior.  
Definition 4.1.  The SynchSPN is a six-tuple <P, T, A, W, m0 , Λ> where: 
1. P = {p1, p2, …, p11} is a finite set of places, each place represents either a synchronization state 
for IIRA database (IIRA-Synch-State) or a synchronization state for the replicated database (DB-
Synch-State) in each level. The former contains the set of recent updates, while the latter 
contains the set of tuples currently stored in the database. 
 
2. T= {t1, t2, …, t14} is a finite set of transitions, each transition represents an operation carried out 
by the IIRA in different levels. These operations are:  

i. Retrieving the set of recent updates.  
ii. Execution of the IIRA instance in the other level to transfer the recent updates. 
 

3. A⊆ (P×T) ∪ (T×P)  is a finite set of arcs that represents the number of updates, which have to 
be transferred after the execution process or the number of updates that have to be retrieved 
after the retrieving process. 
 

4. W: A→ {1, 2,…} is the weight function attached to the arcs. This function maps each arc to the 
number of updates that are to be propagated in each synchronization process between the 
different levels. 
 

5. m0: P → {0, 0, 0, 0, |MH-DBS|i, |CS-DBS|j, |ZS-DBS|k, |MS-DBS|, 0, 0, 0 } is the initial marking, 
which represents the number of recent updates at the synchronization state for each IIRA (p1, p2, 
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p3, p4, p9, p10, p11) and the number of tuples that are currently stored in each database (p5, p6, p7 , 
p8). (In the context of discrete-event systems, the marking of the PN corresponds to the state of 
the system). 
 
6. Λ = {λ1, λ2, ..., λ14} is the set of firing rates  associated with the SPN transitions. 
 
SynchSPN is developed based on the following theorem. 
Assertion 4.1.   The synchronization process has a Markov property. 
 
Proof. Let U(t) denotes the number of recent updates that should be propagated by IIRA instance 
from a host to another during their synchronization at time instant t, where t varies over a 
parameter set T. The value of U(t) is not deterministic because it depends on the number of 
generated updates, which means U(t) is a random variable.  Accordingly, the synchronization 

process can be defined as a family of random variables {U(t)|t∈T}, where the values of U(t) 
represent the states of the synchronization process. Thus, the synchronization process 
represents a stochastic process. By introducing a flag data item to mark the updates that are 
propagated at the current synchronization instant n, we find that the number of the recent updates 
that should be propagated on the next instant n+1 equals to the number of unmarked updates at 
n, which represent the recent updates that occur after n. Therefore, the value of U(n+1) depends 
only the value of U(n) and not on any past states. 

 
By using SPN to model the synchronization system (see figure 3 and tables 1-3), the system is 

composed of eleven places and fourteen transitions.  
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FIGURE 3: The SynchSPN 

 

Place Description 

p1 IIRA-Synch-State in  MHi for execution in CSj 

p2 IIRA-Synch-State in CSj for execution in ZSk 

p3 IIRA-Synch-State in ZSk for execution in MS 

p4 IIRA-Synch-State in MS for execution in MS 

p5 DB-Synch-State in MHi 

p6 DB-Synch-State in CSj 

p7 DB-Synch-State in ZSk 

p8 DB-Synch-State in MS 

p9 IIRA-Synch-State in CSj for execution in MHi 

p10 IIRA-Synch-State in ZSk  for execution in CSj 

p11 IIRA-Synch-State in MS for execution in ZSk 
                           

TABLE 1: Description of Places 
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Places.  They are called synchronization states. The research looks abstractly at the 
synchronization state as a state/place that contains a set of updates. There are three types of 
places:  

• IIRA-Synch-State for execution in the higher level: It contains the set of recent updates 
that occurred in its host in addition to the set of collected updates from underlying level. For 
example, the synchronization state p2 represents the set of all recent updates that issued on 
cell server j in addition to the set of all updates that are transferred from mobile hosts that are 
synchronized with this server in the last synchronization period. This type includes p1, p2, p3, 
and p4. Note that the set of all recent updates that occurred in the servers that exist in the 
fixed network are assumed that they include also the recent updates that are received from 
the fixed hosts in the level of those severs. 

• IIRA-Synch-State for execution in the lower level: It contains the set of all recent resolved 
updates that are received from the higher level. For example, the synchronization state p10 for 
zone server k represents the set of all recent resolved updates that are received from the 
master server.  This type includes p9, p10, and p11.  

• DB-Synch-State: This type stores the set of all tuples that are currently stored in the 
replicated database.  It includes p5, p6, p7, and p8.  

 
Transition Description 

t1 Retrieving recent updates from the replicated database in MHi 

t2 Execution of MHR-IIRA instance on CSj 

t3 Execution of CSR-IIRA instance on ZSk 

t4 Execution of ZSR-IIRA instance on MS 

t5 Execution of MSR-IIRA instance on MS 

t6 Retrieving recent updates from the replicated database in MS 

t7 Retrieving recent resolved updates from the replicated database in MS 

t8 Execution of MSR-IIRA instance on ZSk 

t9 Retrieving recent updates from the replicated database in ZSk 

t10 Retrieving recent resolved updates from the replicated database in ZSk 

t11 Execution of ZSR-IIRA instance on CSj 

t12 Retrieving recent updates from the replicated database in CSj 

t13 Retrieving recent resolved updates from the replicated database in CSj 

t14 Execution of CSR-IIRA instance on MHi 
 

TABLE 2: Description of Transitions 
 
Transitions. Also, the research looks abstractly at the transition as an event that leads to either 
retrieving or propagating the set of recent updates. There are three types of transitions: execution 
of the IIRA instance on the higher level, execution of the IIRA instance on the lower level, and 
retrieving of recent updates. 
 
Execution of the IIRA instance on the higher level. This type inserts the contents of 
synchronization state for IIRA for execution in the higher level in the database of the IIRA type 
that inhabits the higher level. Some conditions must be satisfied in order to fire this type of 
transitions. These conditions are: 

1. Enabling condition. It is composed of two conditions as follows.  
i. There is at least one recent update in the input place of the execution transition.  
ii. The connection with the other host should happen.  

The waiting time for the occurrence of the connection is not considered in the period that is 
required for firing transitions. This is because as previously mentioned, the waiting process for 
the connection is not considered as a required IIRA’s operation for updates propagation. 
Moreover, the waiting time has a random value for MHs and a deterministic value for the 
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servers in the fixed network. Therefore, the research interests on the occurrence of the 
connection as a required condition for firing. 
2. Completion of the updates conflicts resolution through ordering process for the collected 

updates.  
3. Migration of the IIRA instance to the other host for execution of its parent synchronization 

state in that host. 
4. Getting the permission for execution in the other host. 

 

 
TABLE 3: Notations and Their Meanings 

 
 
 
Each transition from this type can fire in a time instance equals to T

+
 that is reached after 

elapsing of a time period of length T
up

.  The value of T
up

 consists of the time period that is 
required for ordering the collected updates (Ot

+
), the time period that is required for IIRA instance 

to migrate to the higher level host (Mt
+
), and the time period that IIRA instance takes for waiting to 

get the permission for execution in the higher level host (Wt
+
). Since, each one of these values is 

not deterministic; this means that T
up

 is a random variable. Here, we omit the time that is required 
for creating the instance, because it is performed locally. 
 
Execution of the IIRA instance on the lower level. This type inserts the contents of 
synchronization state for IIRA for execution on the lower level in the replicated database of the 
host that inhabits the lower level. For firing this type, the same conditions that should be satisfied 
for the first type are applied here, excluding the completion of the updates ordering process. 

Symbol Meaning 

MH, FH, CS, ZS, 

and MS 

Mobile Host, Fixed Host, Cell Server, Zone Server, and Master Server, respectively 

T Total number of database objects 

d Total number of database objects that are replicated in MHi  (d<T) 

| X | The number of updates in the set X 

MH-R, CS-R, ZS-

R, and MS-R 

Set of recent updates for object O in MHi, CSj, ZSk, and MS, respectively 

MH-UR, FH-UR Set of recent updates for all replicated objects in MHi and FHl, respectively 

CS-RUR, ZS-RUR, 

and MS-RUR 

Set of resolved recent updates at CSj, ZSk, and MS, respectively 

MS-ReRU, ZS-

ReRU, and CS-

ReRU 

Set of recent resolved updates that are propagated to underlying level  from MS, 

ZSk, and CSj, respectively 

MS-DBS, ZS-DBS, 

CS-DBS, and MH-

DBS 

Replicated database state in MS, ZSk, CSj, and MHi, respectively 

I Total number of mobile hosts that have synchronized with CSj before the 

synchronization of MHi during the CSj updates collection period 

N Total number of cell servers that have synchronized with ZSk before 

synchronization of CSj during the ZSk updates collection period 

M Total number of zone servers that have synchronized with MS before 

synchronization of ZSk during the MS updates collection period 

E, F, G Total number of fixed hosts that have synchronized with CSj, ZSk, and MS, 

respectively, during their updates collection period 

H Set of recent updates that are propagated from MHi to CSj in the last 

synchronization period 
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Each transition from this type can fire in a time instance equals to T

-
    that is reached after 

elapsing of a time period of length T
down

. The value of T
down

 consists of the time period that is 
required for IIRA instance to migrate to the lower level host (Mt

-
) and the value of the period that 

IIRA instance takes for waiting to get the permission for execution in the lower level host (Wt
-
). 

Also, the time that is required for creating the instance is omitted, since it is performed locally in 
the same host. 
 
Retrieving recent updates. This type involves either retrieving recent updates for 
synchronization with the higher level (propagating it to the higher level) or retrieving recent 
resolved updates for synchronization with the lower level. For firing this type, the enabling 
condition of the first type should be satisfied. 
Each transition from this type can fire in a time instance equals to T

r
    that is reached after 

elapsing of a time period of length T
ret

. The value of T
ret

 represents the time period that is required 
for IIRA to retrieve either recent updates or recent resolved updates from the replica. This value 
depends on the number of updates that should be retrieved in each synchronization process. 
Therefore, T

ret
 is a random variable. The periods T

up
, T

down
, and T

ret
 represent random variables 

because their values are obtained depending on non deterministic values. 
 
Note that instead of adding a transition for representing the migration and its associated input 
place for representing the migrated state, we incorporate them into the execution transition and in 
the synchronization state, because the migrated state represents the synchronization state itself 
and the execution of the migration transition encompasses that the synchronization state is 
already migrated to the other host. Thus, incorporation is performed to prevent the complexity of 
SynchSPN. 
 
Firing rates. Each transition in SynchSPN is associated with a firing rate (i.e. the parameter λ). 
This is because the periods T

up
, T

down
, and T

ret
 that represent the firing delays after 

correspondence transitions are enabled are random variables and are assumed exponentially 
distributed.  
 
The initial marking. In this marking (i.e. m0), the replicated databases that are stored in the 
servers in the fixed network (i.e. CSj, ZSk, and MS) are assumed identical. Also, the mobile 
database that is stored in the MHi is assumed that has received a set of last updates. This 
received set may represent either all or a subset of the last updates, which occurred or 
propagated to the fixed network in the period  that precedes the time of the last synchronization of 
MHi with the fixed network (i.e. during the disconnection time before the time of the last 
synchronization), which equals to MHi-SynchTn-1 - MHi-SynchTn-2, where MHi-SynchTn-1 is the time 
of the last synchronization of MHi with the fixed network and MHi-SynchTn-2 is the time of the 
synchronization that precedes the last synchronization. Thus, according to the time of the last 
synchronization (i.e. MHi-SynchTn-1), the mobile database in MHi is assumed to be in CA state in 
the marking m0 if it contains all recent resolved updates. And if for each marking m

-
 reachable 

from m0, the mobile database contains a set of recent updates, this means that m
-
 is equivalent to 

m0. 
 
4.2 System Behavior 
The system behavior (i.e. evolution in time or dynamic changing of markings) is simulated by 
firing of transitions. The mechanism of firing in SynchSPN is based on the type of transition as 
follows. 
� If t represents the execution of IIRA instance on the higher level, then t will remove the 

updates that exist in the input place and add them to the previously accumulated recent 
updates on the synchronization state of the IIRA in the higher level. The accumulated 
updates represent the updates received from other underlying hosts before the execution of 
IIRA instance on the higher level in the same time period for updates collection. 

� If t represents the execution of IIRA instance on the lower level, then t will remove the recent 
resolved updates that exist in the input place and add them to the synchronization state of the 
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replicated database of the host in the lower level and this happens after removing the set of 
updates that are propagated from the host in the lower level and are included in the set of the 
recent resolved updates. This is to avoid storing same updates once again.  

� If t represents the retrieving of recent updates, then t will take a snapshot of the recent 
updates from the input place and add them to the synchronization state for IIRA for execution 
in either the lower or higher level. This transition does not remove the recent updates from 
the input source, which represent the synchronization state of the replicated database 
according to the fact that the retrieving process does not change the state of the database.   

 
Note that when the connection takes place between any two hosts, the firing of the transition that 
represents the retrieving of recent updates always occurs before the firing of the other two types. 
This is because updates should be retrieved first before propagation them to the other host.  
 
Based on the initial marking and the firing mechanism, the changing of the markings of 
SynchSPN is tracked starting from the time of the current synchronization of MHi with the fixed 
network, which is denoted by MHi-SynchTn and ending with the time of the next synchronization, 
which is denoted by MHi-SynchTn+1.  For obtaining a set of last updates, MHi-SynchTn+1 should 
occur in this tracking after firing of all transitions. The tracking of marking changing is also 
depends on the fact that the MHi will obtain the  last updates that are performed on both fixed and 
mobile networks  only after propagating these updates from their sources to  the higher levels , 
where these updates are resolved. Therefore, bottom-up propagation is considered first then the 
top-down propagation. Thus, the firing sequence of the transitions is divided into two sequences 
as shown in table 4.  
 
 
 

Propagation type Firing sequence 

Bottom-Up t1→ t2→ t12→ t3→ t9→ t4→ t6→ t5 

Top-Down t7→ t8→ t10→ t11→ t13→ t14 

 
TABLE 4: The Firing Sequence of the Transitions 

 
 
According to the specified firing sequence, the set of all reachable markings from m0 are shown in 
table 5. This set represents the evolution of the system in the period MHi-SynchTn+1 - MHi-
SynchTn. The marking that reachable from firing of t14 represents the marking in which the 
replicated database in MHi should obtain a set of recent updates that occurred or propagated to 
the fixed network during that period. This means that this marking is equivalent to m0. 
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TABLE 5: The Marking Table 
 
In the marking table, the marking m7 is equivalent to m0 because the former represents the state 
in which the mobile database in MHi receives a set of recent updates that occurred or propagated 
to the fixed network during the period: MH-SynchTn+1 - MH-SynchTn 

The marking table includes the following Equations: 

TMH-CS = ∑

≠=

−
I

ix1x

URMH x

,
|| + |MH-UR|i                                  (1) 

Where TMH-CS is the total number of updates that will be propagated to CSj during its updates 
collection period form I mobile hosts. 
 

|CS-RUR|j =  TMH-CS + |CS-UR|j                                                        (2) 
This equation represents the total number of resolved updates that will be propagated from CSj to 
ZSk  
 

TCS-ZS  = ∑

≠=

−
N

jy1y
RURCS y

,
|| + |CS-RUR|j                              (3) 

Where TCS-ZS is the total number of updates, which will be propagated to ZSk during its updates 
collection period form N cell servers. 

 

  |ZS-RUR|k  =    TCS-ZS + |ZS-UR|k                                                   (4) 
This equation represents the total number of resolved updates that will be propagated from ZSk 
to MS. 
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  TZS-MS = ∑

≠=

−
M

jz1z
RURZS z

,
|| + |ZS-RUR|k                                  (5) 

Where TZS-MS is the total number of updates that will be propagated to MS during its updates 
collection period form M zone servers. 

 

|MS-RUR| =    TZS-MS + |MS-UR|                                                              (6) 
This equation represents the total number of resolved updates that will be stored in the database 
that exists in MS. 
 
TMS-ZS = |MS-ReRU| -|ZS-RUR|k                                                             (7) 
Where TMS-ZS is the total number of resolved updates that will be propagated to ZSk database from 
MS excluding updates that previously propagated from ZSk  

 

   TZS-CS = |ZS-ReRU|k -|CS-RUR|j                                                           (8) 
Where TZS-CS is the total number of resolved updates that will be propagated to CSj database 
from ZSk excluding updates that previously propagated from CSj.  
 

TCS-MH= |CS-ReRU|k -|MH-UR|j                                                                     (9) 
Where TCS-MH is the total number of resolved updates that will be propagated to MHi database 
from CSj excluding updates that previously propagated from MHi.  
 
Reachability graph. This graph is described in figure 4. The markings mi

-
 , where i=0,1,…,6 that 

reachable from firing of retrieve transitions are not included in the reachability graph because this 
type of transitions affects only the local synchronization state for IIRA database. However, these 
transitions are included, since their firing precedes the firing of the execution transitions that leads 
to the markings mj, where j=1, 2,…, 7. 
 

 
 

FIGURE 4: Reachability Graph 

 
 
 

Equivalent Markov chain. In the derived CTMS (see figure 5), the firing rates of the retrieve 
transitions are not considered because as mentioned previously, the retrieve operation is 
performed locally from the replicated database on a given host. 
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FIGURE 5: Derived Markov Chain 
 

Analysis of the Markov chain. The steady-state probabilities, denoted by ∏ = (π0, π1, π2, …, π6) 

are obtained by solving the following equations: 
       ∏ A = 0                                                       (10) 

     ∑

=

6

0i
iπ  = 1                                                   (11) 

Where A is the transition rate matrix. πi is the steady-state probability of marking that is equivalent 
to mi. 
The obtained matrix for the derived Markov chain is shown in figure 6. 
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FIGURE 6: Transition rate matrix 

 
By solving Eq. 1 and Eq. 2, the obtained steady-state probabilities as follows: 
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Where ω0 = 1/ λ3+1/ λ4+1/ λ6+1/ λ8+1/ λ11+1/ λ14, ω1 = ω0 –(1/ λ3+1/ λ2), ω2 = ω0 –(1/ λ4+1/ λ2), ω3 = ω0 –

(1/ λ6+1/ λ2), ω4 = ω0 –(1/ λ8+1/ λ2), ω5 = ω0 –(1/ λ11+1/ λ2), ω6 = ω0 –(1/ λ14+1/ λ2) 
As previously mentioned, the research interests in the state in which the mobile database in the 

mobile host contains a set of recent updates. Therefore, the value of   π0 represents the 
probability of the marking that is equivalent to m0. 
 

Assertion 4.2.1.   There is only a subset C ⊆ R (m0), such that the mobile database in specific 

mobile host in CA State for each m ∈ C. 
Proof. Let tj (j=1,…,m) denotes the transition that represents the execution state of the CSR-IIRA 
in MHi, and ti (i=1,…,n) denotes the transition that represents the execution state of the MHR-IIRA 

in the fixed network. We show that firing of tj will result in CA State for R that is hosted in MHi ⇔ 
each ti is fired during the time period that precedes the current synchronization time of MHi. Since 
the latter condition is not realized at all synchronization times for MHi due to existing of many 
MHs are not connected before the synchronization of MHi with the cell server. Therefore, the 

firing of tj leads to CA State ⇔ all updates that are performed in the mobile network are 
propagated to the fixed network before the synchronization of MHi. This means that if the latter 
condition is realized, the firing of tj will results in a marking that represents an element of C.  
 
Assertion 4.2.2. The probability that the mobile database in CA state is: 

          P(CA) = nπ0                                                                         (12) 
Where n is the number of synchronization times for MHi with the fixed network that led to the CA 
state. 
Proof. Let C be the subset of R(m0) satisfying the condition that the place p5 has received all 
recent updates that occurred and resolved before the synchronization time of MHi with the fixed 

network, which led to each marking in C. Then the probability of this condition is: P(C) = ∑

∈ Ci

iπ  , 

Since the probability that MHi receives a set of recent updates is π0. Then πi=π0 for each marking 

mi ∈ C. This means that  P(C) = ∑

=

n

1i
iπ = nπ0 , where n is the number of markings in C. This 

number is equivalent to the number of the synchronization times with the fixed network that led to 
storing all recent updates in p5. 
Assertion 4.2.3. The marking m0, where p5 receives a set of recent resolved updates is recurrent 
after a time period equals to:  MHi-SynchTn+1 - MHi-SynchTn   

, where MHi-SynchTn+1 - MHi-SynchTn  >    λ5 + λ8 + λ11 ,    MHi-SynchTn is the time instant of the 
current synchronization with the fixed network, MHi-SynchTn+1 is the time instant of the next 
synchronization with the fixed network. 
Proof. m0 is recurrent if the following equation is satisfied. 

∑

+

=

 1SynchTn-MHi

 SynchTn-MHii
P

i

mm 00
 = 1                                (13) 

Where P
i
m0m0

    
is the probability that the system returns to state m0 starting from m0.  Suppose 

that the markings that are reachable from m0 occur at the following time instants: 
 MHi-SynchTn, T1, T2, …, Tn, MHi-SynchTn+1, where MHi-SynchTn < T1 < T2 < …< Tn < MHi-
SynchTn+1 . Obviously, the MHi can obtain the last updates that occurred or are propagated to the 
fixed network during the period: MHi-SynchTn+1 - MHi-SynchTn after a time instant > = MHi-
SynchTn+1, which means that: 
P 

MHi-SynchTn
    m0m0 = 0, P 

MHi-SynchTn+1
    m0m0 = 1, P 

T1
m0m0 = 0, P 

T2
m0m0 = 0, …, P 

T0
m0m0 = 0 

To obtain the latest updates, the following condition should hold: 
MHi-SynchTn+1 - MHi-SynchTn    >    λ3 + (λ4 - λ3) + (λ5 – λ4) + λ8 + λ11 = λ5 + λ8 + λ11 

Where λ3   <    λ4    <   λ5. This is because the server in the master level receives updates from all 
underlying levels, while the servers in the zone and cell levels receive updates from the hosts that 
are located in their areas. 
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Assertion 4.2.4.   The SynchSPN is deadlock free. 

Proof. We prove that ∀ m ∈ R (m0), ∃ m
-
   ∈ R (m) such that ∃ t is enabled for m

-
, where R (m0) is 

the set of markings reachable from m0 by firing a sequence of transitions. Recall that our 
assumptions regarding that tens of updates per each data item are expected at any period of time 
and the connection is reliable and fixed between the servers of the fixed network, this means that 
the following conditions are true: 

1. At any period of time, ∃ DB ∈ RDB such that DB is updated recently (has UR) where RDB is 
the set of the replicated databases in either fixed or mobile hosts. This condition ensures 
enabling of selection transactions.  
2. There is at least one host (either fixed or mobile) is synchronized with other host (e.g. MH 
with a cell server or other MH, FH with a server, CS with ZS…etc). This condition ensures that 
there is at least one of the execution transitions is enabled after satisfying condition one. 

 
 

5.  CONTRIBUTION AND DISCUSSIONS  
The contributions of this paper can be summarized as follows: firstly, a new replication strategy is 
presented for replicating data by considering a logical three levels architecture and a multi-agent 
based replication method. The strategy supports frequent disconnections and mobility of hosts by 
enabling the users to perform their updates in a disconnected mode and then synchronizing their 
updates with the higher levels. Second, the proposed architecture supports scalability by allowing 
large numbers of updateable replicas in the cell level and higher levels, since the large scale 
distributed database systems require such a feature. Third, the paper combines both optimistic 
and pessimistic replication approaches, in a hybrid manner that exploits the pertinent features of 
each in mobile environments.   
 
The IIRA-dependant multi-agent system achieves load balance in both propagation and ordering 
processes. This is because these processes are shared by multiple hosts, where each host 
propagates a set of the recent updates to another in either lower or higher level and each host 
participates in ordering the updates that are issued in its replicated database or collected from 
underlying levels.  
 
To decrease the communication cost and provide a better utilization of the connection time in 
environments prone to more frequent disconnections and failures, the proposed strategy relies on 
instance immigration instead of the migration of the agent itself as in mobile agents’ communities. 
When the connection takes place, the instance holding the updates-result will migrate to the other 
host, and performs its task. Then it removes itself without needing to return back as in mobile 
agents’ communities. This minimizes the connection cost to only cost that is needed to transfer 
one instance per connection time. 
 
The availability of all recent updates that occurred in both fixed and mobile networks to the mobile 
hosts depends directly on the propagation of these updates from their sources to the fixed 
network. This propagation should takes place before the synchronization of the mobile host with 
the fixed network.  
 
The replication method ensures achieving the consistency of data in the mobile network 
according to the time of last connection happened. Therefore, data inconsistency here will 
depend on the difference between the connection times.  
 
To minimize the rate of update conflicts, and taking a step on ensuring eventual consistency, data 
are divided into two types: infrequently changed data that are updated only in the master level 
and frequently changed data that are updated on the underlying levels. 
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6.  CONCLUSTIONS  
In this paper, our research has focused on proposing a new replication strategy to maintain 
consistency and improve availability of data in large scale mobile environments. The replication 
strategy encompassed replication architecture and replication method as a binary combination 
that is needed to achieve such a goal. To exploit the features of both optimistic and pessimistic 
replication, the new strategy is based on a hybrid approach that divides data into frequently 
changed data and infrequently changed data, and then updates are restricted or allowed 
according to these types. Stochastic Petri Net is developed to model the dynamic behavior of the 
replicated system in regard to reaching the Consistent-Available state for the replicated database 
at the mobile host. 
 
 As a part of our future research, a plan will be provided to develop the required tools and 

interfaces to implement the proposed strategy in mobile healthcare environments to provide 

healthcare practitioners with an efficient access to healthcare data. 
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