
Preetham Kumar & Ananthanarayana V S

International Journal of Computer Science and Security, (IJCSS) Volume (3) : Issue (3) 216

Discovery of Frequent Itemsets Based on Minimum Quantity and
Support

Preetham Kumar preetham.kumar@manipal.edu
Senior Lecturer
Department of Information and
Communication Technology
Manipal Institute of Technology
Manipal University
Manipal, 576104, India

Ananthanarayana V S anvs@nitk.ac.in
Professor & Head
Department of Information Technology
National Institute of Technology Karnataka,
Surathkal, 575025, India

Abstract

Most of the association rules mining algorithms to discover frequent itemsets do
not consider the components of transactions such as total cost, number of items
or quantity in which items bought. In a large database it is possible that even if
the itemset appears in a very few transactions, it may be purchased in a large
quantity for every transaction in which it is present, and may lead to a very high
profit. Therefore the quantity and the total cost of the item bought are the most
important components, lack of which may lead to loss of information. Our novel
method discovers all frequent itemsets based on items quantity, in addition to the
discovery of frequent itemsets based on user defined minimum support. In order
to achieve this, we first construct a tree containing the quantities of the items
bought, as well as the transactions which do not contain these items in a single
scan of the database. Then, by scanning the tree, we can discover all frequent
itemsets based on user defined minimum quantity as well as support. This
method is also found to be more efficient than the Apriori and the FP-tree, which
require multiple scans of the database to discover all frequent itemsets based on
user defined minimum support.

Keywords: Confidence, Minimum total cost, Number of items, Quantity, Support.

1. INTRODUCTION

Data mining is the extraction of the hidden predictive information from large databases. It is a
powerful new technology with great potential to analyze important information stored in large
volumes of data. It is one of the steps in knowledge discovery in databases. The goal of
knowledge discovery is to utilize the existing data to find new facts and to uncover new
relationships that were previously unknown, in an efficient manner with minimum utilization of
space and time. There are several data mining techniques [2]. One of them is Association Rules
Mining. Among the areas of data mining, the problem of deriving association [1, 2] from data has

Preetham Kumar & Ananthanarayana V S

International Journal of Computer Science and Security, (IJCSS) Volume (3) : Issue (3) 217

received a great deal of attention. This describes potential relations among data items (attribute,
variant) in databases. Agarwal et al [1] formulated the problem in 1993. In this problem, we are
given a set of items and a large collection of transactions, which are subsets of these items. The
task is to find relationship between the presences of various items within this database. An item is
a thing that is sold in each transaction. For every item, its item number appears in a particular
transaction. Some transactions also contain relevant information of the transactions such as,
quantity in which it is bought, cost of the item, customer’s age, salary etc. An itemset [1] (this term
is used for item set in all books and papers on data mining) is a set of all items. Let A = {l1, l2, …
lm} be a set of items. Let D, the transaction database, be a set of transactions, where each
transactions t is a set of items. Thus, t is a subset of A. A transaction t is said to support an item li
, if li, is present in t. Further, t is said to support a subset of items X contained in A, if t supports
each item in X. An itemset X contained in A has a support s in D, if s% of transactions in D
support X. For a given transaction database D, an association rule[1] is an expression of the form

X->Y, where X and Y are the sets of A and where X ⊆ A, Y ⊆ A, and X∩Y=Ф. The intuitive
meaning of such a rule is that the transaction of the database which contains X tends to contain
Y. The rule X->Y has support s in a given transaction database D if s% of transactions in D
support XUY (i.e., both X and Y). This is taken to be the probability, P(X∩Y). The rule X->Y has
confidence c in the transaction database D if c percentage of transactions in D containing X that
also contain Y. This is taken to be the conditional probability, P(Y|X). That is, Support(X-
>Y)=P(X∩Y)=s, Confidence(X->Y)=P(Y|X) = Support(X->Y)/Support (X)=c.
Let D be the transaction database and s be the user specified minimum support. An itemset X
contained in A is said to be frequent in D with respect to s, if support value of X is greater than or
equal to s. Every frequent itemset satisfies downward closure property, i.e every subset of
frequent itemset is frequent.
Mining of association rules is to find all association rules that have support and confidence
greater than or equal to the user-specified minimum support and minimum confidence
respectively [2,3,4,6]. This problem can be decomposed into the following sub problems:
a) All itemsets that have support above the user specified minimum support are discovered.
These itemset are called frequent itemsets.
b) For each frequent itemset, all the rules that have user defined minimum confidence are
obtained.
There are many interesting algorithms proposed recently and some of the important ones are the
candidate generation based Apriori and its variations and non candidate generation based
algorithms such as FP-tree, PC- Tree algorithms.
The algorithm Apriori called as level-wise algorithm operates in a bottom-up, breadth-first search
method. It is the most popular algorithm to find all frequent sets, proposed in 1994 by Agrawal et
al [7]. It makes use of the downward closure property. The nicety of the method is that before
reading the database at every level, it graciously prunes many of the sets, which are unlikely to
be frequent.
The number of database passes is equal to the largest size of the frequent itemset. When any
one of the frequent itemsets becomes longer, the algorithm has to go through several iterations
and, as a result, the performance decreases.
The FP- Tree Growth algorithm is proposed by Han et al [2, 3]. It is a non candidate generation
algorithm and adopts a divide and conquers strategy. The following steps are used. (i) Compress
the database representing frequent items into FP-tree, but retain the itemset association
information (ii) Divide such a compressed database into a set of conditional databases, each
associated with one frequent item (iii) Mine each such database separately.
This algorithm requires two scans of the database to discover all frequent sets. The main idea of
the algorithm is to maintain a Frequent Pattern Tree of the database.
 A frequent pattern tree is a tree structure consisting of an item-prefix-tree and a frequent-item-
header table. The FP-Tree is dependent on the support threshold. For different values of
threshold the trees are different. Also, it depends on the ordering of the items. The ordering that is
followed is the decreasing order of the support counts.
When the database is large, it is sometimes unrealistic to construct a main memory based FP-
tree. An interesting alternative is to first partition the database into a set of projected databases,

Preetham Kumar & Ananthanarayana V S

International Journal of Computer Science and Security, (IJCSS) Volume (3) : Issue (3) 218

and then construct an FP-tree and mine it in each projected databases. Such a process can be
recursively applied to any projected databases if its FP-tree still can not fit in main memory.
A study on the performance of the FP-growth method shows that it is efficient and scalable for
mining both long and short frequent patterns, and is about an order of magnitude faster than the
Apriori algorithm.
The Pattern Count tree (PC-tree) is the contribution of V. S. Ananthanarayana et al [5] which is a
complete and compact representation of the database. PC-tree is a data structure, which is used
to store all the patterns occurring in the tuples of a transaction database, where a count field is
associated with each item in every pattern, which is responsible for compact realization of the
database.
Each node of the PC-tree consists of (i) item-name (ii) count and (iii) two pointers called child
pointer(c) and sibling pointer(s).
In the node, the item-name field specifies the item that the node represents, the count field
specifies the number of transactions represented by a portion of the path reaching this node, the
c-pointer field represents the pointer to the following pattern and the s-pointer field points to the
node which indicates the subsequent other patterns from the node under consideration.
It is proved that, construction of PC-tree and generation of all large itemsets requires a single
database scan. Because of compactness of PC-tree, the algorithms based on PC-tree are
scalable. Also, in ordered to discover large itemsets a unique ordered FP-tree, called
Lexicographically Ordered FP-tree is constructed from a PC-tree without scanning the database.

1.1 Motivation
One of the key features of most of the existing algorithms is that they assume underlying
database size is enormous, and involves either a candidate generation process or a non-
candidate generation process. The algorithms with candidate generation process require multiple
passes over the database and are not storage efficient. In addition, the existing algorithms
discover all frequent itemsets based on user defined minimum support without considering the
components such as quantity, cost and other attributes which lead to profit.
Consider for example a sample database given in Table 1 in which every element of each
transaction represents either the quantity of the respective attribute or the item.

TABLE 1: Sample Database
TID/Attributes A B C D

1 10 5 0 0

2 0 0 3 0

3 4 0 4 0

4 5 2 5 0

5 0 0 0 10

If an itemset appears in a very few transactions but in a large quantity, then it is possible that
buying of this itemsets leads to profit, will not qualify as frequent itemset based on user defined
minimum support. This results in a loss of information. In the sample database given in Table 1, if
the user defined minimum support is 2 transactions, then an item D is not frequent and will not
appear in the set of frequent itemsets, even though it is bought in a large quantity and leads to
more profit than other frequent items. This motivated us to propose the following method which
discovers all frequent itemsets based on user defined minimum quantity. With this method it is
also possible to discover frequent itemsets based on user defined minimum support.

1.2 Frequent itemset and quantity based Frequent itemset or weighted minimum
support

Preetham Kumar & Ananthanarayana V S

International Journal of Computer Science and Security, (IJCSS) Volume (3) : Issue (3) 219

If an itemset satisfies user defined minimum support then we call it a frequent itemset. If an
itemset satisfies user defined minimum quantity then we say that it is a quantity based frequent
itemsets. The weight of an itemset is the ratio of the quantity in which the itemset is bought to the
number of transactions in which it is present. For example, if a user defined minimum quantity is
equal to 4 then the items A, C, D become quantity based frequent one itemets.

2. PROPOSED METHOD

Our novel method uses the concept of tree called Q-TID Tree. The Q-TID tree consists of
information regarding items, the quantity in which the items have been purchased and the TIDs in
which these items are not present. The structure of this tree is as follows.

2.1 Structure of the Q-TID
The Q-TID tree has three different nodes and is shown in Figure 1.

(i) The first type of node is labeled with item name or attribute name and two pointers, one
pointing to the nodes containing quantity, and another is a child pointer pointing to the
next attribute. This node represents the head of that particular branch.

(ii) The second type of node labeled as Quantity1, Quantity2 etc, indicates which particular
item is purchased. This node has only one pointer pointing to the next object having this
particular attribute.

(iii) The third type of node, appears as the last node in every branch of the tree, and is similar
to the second type, but consists of information corresponding to the transactions
ids(TIDs), which do not contain the particular item. This information represents a whole
number which is obtained, forming prime product of prime numbers. If this product is
factorized, then it is possible to obtain all the TIDs which do not contain the particular
item.

FIGURE 1: A Branch of Q-TID Tree

2.2 Forming the product corresponding to the TIDs
In this step mapping of every transaction which does not contain the particular item to a prime
number, and then its product, is obtained with the already existing number in the last node of
every branch of the tree. The prime numbers assigned to the TID are shown in Table 2. For
example, the first prime number 2 is assigned to 1

st
 TID and a second prime number 3 is

assigned to the 2
nd

 TID and so on.

TABLE 2: Prime Number Table
Positive

integers

1 2 3 4 5 6 7 8 9

Prime

numbers

2 3 5 7 11 13 17 19 23

Preetham Kumar & Ananthanarayana V S

International Journal of Computer Science and Security, (IJCSS) Volume (3) : Issue (3) 220

The prime numbers are used to make our process very simple because of their following
property.
If a, b are any two prime numbers with multiplicity m and n then their product is a

m
b

n
. With this

product, it is possible to obtain the original prime numbers used for forming the product.
For example, consider the prime numbers 2, 3, 5 and its product is 30. With this product it is
possible derive all prime numbers involved in forming the product. Therefore one can see that the
prime numbers 2, 3 and 5 are involved in forming the product. In our case, these numbers
represent the TIDs 1, 2 and 3. The Q-TID tree corresponding to the sample database given in
Table 1 is shown in Figure 2.

FIGURE 2: Q-TID tree for Table1

The Q-TID tree algorithm involves following steps. They are
A Construction of Q-TID Tree.
B Removal of infrequent items based on user defined minimum quantity of Q-TID Tree
C Discovery of frequent itemsets based on user defined minimum quantity
D Discovery of frequent itemsets based on user defined weighted minimum support

A Algorithm for constructing Q-TID Tree

Input: The database D
Output: Q-TID tree
Create an attribute or item node labeled with respective item and its corresponding TID
node labeled with 1
for each item I in a transaction t € D
do begin
 create a node labeled with its quantity and add
 these nodes to the respective item or attribute
 node.
 If I is not in t
 find t

th
 prime number and its product with

 already existing prime number in the last node TID of
 the branch corresponding to I.

 end

B Algorithm for Reducing the Q-TID Tree
Input : weighted_min_qsup =user specified minimum quantity

Preetham Kumar & Ananthanarayana V S

International Journal of Computer Science and Security, (IJCSS) Volume (3) : Issue (3) 221

 n = number of transactions in which a particular item is present
 Output: Q-TID tree contains only frequent items based on

user defined quantity in addition to the information corresponding to the TIDs which
do not contain a particular item.

 for each item or attribute in a Q-TID tree
 do begin

If sum (quantities of all nodes except a last node/n) < weighted_min_qsup then
remove those nodes corresponding to the quantities from the branch which
originates from the attribute node labeled with I

 end

C Algorithm to discover all frequent itemsets based on quantity
 Input: A Reduced Q-TID tree, weighted_min_qsup=user specified minimum quantity.

 F= {set of all frequent one itemsets based on quantity}
 P=set of all non empty subsets of F excluding the sets containing one attribute.

 Output: set of all frequent itemsets =FQ .
 begin
 FQ = { set of all frequent attributes or one itemset based on quantity }
 for each f in P do

begin
 T = { TIDs of first attribute in f }
 for each m in f other than first attribute do

 begin
T=T ∩ { TIDs of m}

 end
 If T is non empty then
 If (sum of quantities of T /|T|) >= weighted_min_qsup
 FQ = FQ U f

end

D Algorithm to discover all frequent itemsets based on minimum support.
Input: A Reduced Q-TID tree, min_sup=user specified minimum support, N =Total number of
transactions.
L= {set of all frequent one itemsets based on minimum support}
P(L) ={set of all non empty subsets of L excluding the sets containing one attribute or one
item }.
FM = {set of all frequent attributes or one itemset based on minimum support}
Output: set of all frequent itemsets. FM

for each f in P
do begin

T = {prime factors corresponding to TIDs which do not contain the first attribute in f }
 for each m in f other than first attribute
 do begin
 T=T U { prime factors of corresponding TID s which do not contain m}
 end
 If T is non empty
 If (N - | T |) >= min_sup
 FM = FM U f
end

Illustration:

Consider for example, a sample database given in Table 1,
If we consider weighted_min_qsup = 4 then the attributes A, C and D will be frequent in the
database. The Reduced Q-TID is shown in Figure 3.

Preetham Kumar & Ananthanarayana V S

International Journal of Computer Science and Security, (IJCSS) Volume (3) : Issue (3) 222

FIGURE 3: A Reduced Q-TID Tree

we observe that FQ ={A, C, D} . Therefore
P = {{A, C}, {A, D}{C,D}, {A, C, D} }
Consider a set {A, C}, which appears in transactions 3 and 4.
i.e T={3,4}.
The TIDs are obtained by using the following procedure .
The last node of the item A corresponding to the TID contains 33, which involves prime numbers
3 and 11. Similarly, the last of C contains 22, which involves prime numbers 2 and 11. The union
of these numbers will give us set {2, 3, 11}. These numbers correspond to the transaction 1, 2, 5.
Hence both A and C will occur only in transactions 3 and 4. Further, the sum of their
corresponding quantities is equal to 9+9=18 and weighted support of {A,C} = 18/2 =9.
Hence {A, C}is frequent.
By similar arguments, we found that the sets {A, D}, {C, D} and {A,C, D} are infrequent sets.
Hence FQ = { {A}, {C}, {D},{ A, C}}
Now if user defined minimum support is equal to 2 then the items A, B, C will be frequent one
itemsets.
Therefore L = {A, B, C} . Therefore
P(L) = { {A, B}, {A,C}, {B,C}, {A, B, C} }. Now applying above algorithm, we see that FM = { {A},
{B}, {C}}.
It can be observe from the Q-TID tree that itemsets
{A, B} is not present in transactions 2, 3 and 5.
{A, C } is not present in transactions 1, 2 and 5.
{B, C} is not present in transactions1, 2, 3 and 5.
{A, B, C} is not present in transactions 1, 2, 3 and 5.
Since N =5, we have supports of {A, B} = 2, {A, C } = 2, {B, C}= 2 and {A, B, C} =1. This shows
that the itemset {A, B, C } is not frequent.
Now FM = { {A}, {B}, {C}, {A, B}, {A,C}, {B,C}}.

Note : If an item is present in every transaction, then the node corresponding to the TIDs which
do not contain that particular item will not appear in the Q-TID Tree.

Preetham Kumar & Ananthanarayana V S

International Journal of Computer Science and Security, (IJCSS) Volume (3) : Issue (3) 223

The following example illustrates this situation. Consider a sample database given in Table 3
which has 3 attributes and 3 tuples.

TABLE 3: Sample Database

TID A1 A2 A3

T1 3 2 1

T2 6 2 1

T3 2 2 4

The Q-TID tree corresponding to Table 3 is given in Figure 4. It does not contain nodes
corresponding to the TIDs since every item is present in every transaction.

Figure 4: Q-TID Tree of Table3

3. PERFORMANCE ANALYSIS

Theoretical Analysis
The algorithm consists of four steps
A Construction of Q-TID Tree
If the given database contains N transactions then this can be done in O(N) time.
B Removal of infrequent items based on user defined weighted minimum support of

Q-TID Tree
If there are m items which are not frequent then all the nodes containing quantity information
of these m attributes are deleted. If there are on an average g nodes for every attribute then
this step is in O(mg).
C Discovery of frequent itemsets based on user defined weighted minimum support
The major step is the process of finding power set P. If there are n frequent 1-item attribute

sets then this step is in O(2
n
).

D Discovery of frequent itemsets based on user defined minimum support
The major step is the process of finding P(L). If there are n frequent 1-item attribute sets then
this step is in O(2

n
)

4. EXPERIMENTAL ANALYSIS

For the performance analysis, a simulation of buying patterns[10] of the customers in retail
patterns was generated and in the data set which we used every attribute value of the transaction

Preetham Kumar & Ananthanarayana V S

International Journal of Computer Science and Security, (IJCSS) Volume (3) : Issue (3) 224

was considered as quantity of the corresponding attribute in the database. We compared our
algorithm with FP- tree and Apriori and found that ours was time efficient.
The above algorithm is implemented and used for discovering frequent itemsets based on
quantity as well as minimum support for data sets containing the transactions 100, 500, 1000,
5000 with 20 attributes or items. The time required to discover all frequent itemsets is shown
Figure 5 and Figure 6 respectively.

FIGURE 5: Q-TID Vs FP-Tree

The proposed algorithm is superior to the FP-tree algorithm in following ways:
1. Scans database only once.
2. No sorting of each item of the transaction.
3. No repeatedly searching the header table for maintaining links, while inserting a new
 node into tree.

FIGURE 6: Q-TID Vs Apriori

The proposed algorithm is superior to the Apriori algorithm in the following ways:

1. Scans database only once.
2. It does not involve candidate generation method.

5. CONCLUSION

The Q-TID Tree Algorithm is a new method for finding frequent itemsets based on user defined
quantity and minimum support. It is found that this algorithm is time efficient when compared to the
FP-tree and Apriori. Since we have used small data sets, this algorithm can be fine tuned with
large databases. This method may be modified further to store TIDs more efficiently.

Preetham Kumar & Ananthanarayana V S

International Journal of Computer Science and Security, (IJCSS) Volume (3) : Issue (3) 225

6. REFERENCES

[1] Jiawei Han Micheline Kamber, Data Mining Concepts and Techniques .Morgan Kaufman,
San Francisco, CA, 2001

[2] Han, J., Pei, J., Yin, Y. “Mining Frequent Patterns without Candidate Generation”, Proc. of
ACM-SIGMOD International Conference Management of Data. Dallas, 2000, TX, 1-12.

[3] Han J, Pei Jian, Runying Mao ” Mining Frequent Patterns without Candidate Generation:
A Frequent Pattern Tree Approach” , Data Mining and Knowledge Discovery, Kluwer
Academic Publishers, Netherland” 2004, pp 53-87.

[4] R. Hemlata, A. Krishnan, C. Scenthamarai, R. Hemamalini. ”Frequent Pattern Discovery
based on Co-occurrence Frequent Tree”. In Proceeding ICISIP-2005.

[5] Ananthanarayana V. S, Subramanian, D.K., Narasimha Murthy M. “Scalable, distributed
and dynamic mining of association rules” In Proceedings of HIPC'00. Springer Verlag
Berlin,Heidelberg,2000, 559-566.

[6] R. Srikant and R. Agarwal. “Mining generalized association rules”, Proceedings of
International Conference on Very Large Data Bases 1995, pages 407-419.

[7] Rakesh Agrawal, Tomasz Imielinski, Arun Swami, “Mining Association Rules between
Sets of Items in Large databases”, Proceedings of the 1993 ACM SIGMOD Conference
Washington DC, USA, May 1993

[8] Rakesh Agarwal, Ramakrishnan Srikant, “Fast algorithms for mining Association Rules”, In
proceedings of the 20th International Conference on Very Large databases, Santigo,
1994, pp 478-499.

[9] S.Y.Wur and Y.Leu, “An effective Boolean Algorithm for mining Association Rules in large
databases”, The 6th International conference on Database systems for Advanced
Applications, 1999, pp 179-186.

[10] IBM/Quest/Synthetic data.

