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Abstract 

 
Most of the association rules mining algorithms to discover frequent itemsets do 
not consider the components of transactions such as total cost, number of items 
or quantity in which items bought. In a large database it is possible that even if 
the itemset appears in a very few transactions, it may be purchased in a large 
quantity for every transaction in which it is present, and may lead to a very high 
profit. Therefore the quantity and the total cost of the item bought are the most 
important components, lack of which may lead to loss of information. Our novel 
method discovers all frequent itemsets based on items quantity, in addition to the 
discovery of frequent itemsets based on user defined minimum support. In order 
to achieve this, we first construct a tree containing the quantities of the items 
bought, as well as the transactions which do not contain these items in a single 
scan of the database. Then, by scanning the tree, we can discover all frequent 
itemsets based on user defined minimum quantity as well as support. This 
method is also found to be more efficient than the Apriori and the FP-tree, which 
require multiple scans of the database to discover all frequent itemsets based on 
user defined minimum support.  
 
Keywords: Confidence, Minimum total cost, Number of items, Quantity, Support. 

 
 

1. INTRODUCTION 

Data mining is the extraction of the hidden predictive information from large databases. It is a 
powerful new technology with great potential to analyze important information stored in large 
volumes of data. It is one of the steps in knowledge discovery in databases. The goal of 
knowledge discovery is to utilize the existing data to find  new facts and to uncover new 
relationships that were previously unknown, in an efficient manner with minimum utilization of 
space and time. There are several data mining techniques [2]. One of them is Association Rules 
Mining.  Among the areas of data mining, the problem of deriving association [1, 2] from data has 
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received a great deal of attention. This describes potential relations among data items (attribute, 
variant) in databases.  Agarwal et al [1] formulated the problem in 1993. In this problem, we are 
given a set of items and a large collection of transactions, which are subsets of these items. The 
task is to find relationship between the presences of various items within this database. An item is 
a thing that is sold in each transaction. For every item, its item number appears in a particular 
transaction. Some transactions also contain relevant information of the transactions such as, 
quantity in which it is bought, cost of the item, customer’s age, salary etc. An itemset [1] (this term 
is used for item set in all books and papers on data mining) is a set of all items. Let A = {l1, l2, … 
lm} be a set of items. Let D, the transaction database, be a set of transactions, where each 
transactions t is a set of items. Thus, t is a subset of A.  A transaction t is said to support an item li 
, if  li,  is present in t. Further, t is said to support a subset of items X contained in A, if t supports 
each item in X. An itemset X contained in A has a support s in D, if s% of transactions in D 
support X. For a given transaction database D, an association rule[1] is an expression of the form 

X->Y, where X and Y are the sets of A and where X ⊆ A, Y ⊆ A, and X∩Y=Ф. The intuitive 
meaning of such a rule is that the transaction of the database which contains X tends to contain 
Y. The rule X->Y has support s in a given transaction database D if s% of transactions in D 
support XUY (i.e., both X and Y). This is taken to be the probability, P(X∩Y). The rule X->Y has 
confidence c in the transaction database D if c percentage of transactions in D containing X that 
also contain Y. This is taken to be the conditional probability, P(Y|X). That is, Support(X-
>Y)=P(X∩Y)=s, Confidence(X->Y)=P(Y|X)  = Support(X->Y)/Support (X)=c. 
Let D be the transaction database and s be the user specified minimum support. An itemset X 
contained in A is said to be frequent in D with respect to s, if support value of X is greater than or 
equal to s. Every frequent itemset satisfies downward closure property, i.e every subset of 
frequent itemset is frequent. 
Mining of association rules is to find all association rules that have support and confidence 
greater than or equal to the user-specified minimum support and minimum confidence 
respectively [2,3,4,6]. This problem can be decomposed into the following sub problems:  
a) All itemsets that have support above the user specified minimum support are discovered. 
These itemset are called  frequent itemsets.  
b) For each frequent itemset, all the rules that have user defined minimum confidence are 
obtained. 
There are many interesting algorithms proposed recently and some of the important ones are the 
candidate generation based Apriori and its variations and non candidate generation  based 
algorithms such as FP-tree, PC- Tree  algorithms.  
The algorithm Apriori called as level-wise algorithm operates in a bottom-up, breadth-first search 
method. It is the most popular algorithm to find all frequent sets, proposed in 1994 by Agrawal et 
al [7]. It makes use of the downward closure property. The nicety of the method is that before 
reading the database at every level, it graciously prunes many of the sets, which are unlikely to 
be frequent.  
The number of database passes is equal to the largest size of the frequent itemset. When any 
one of the frequent itemsets becomes longer, the algorithm has to go through several iterations 
and, as a result, the performance decreases.  
The FP- Tree Growth algorithm is proposed by Han et al [2, 3].  It is a non candidate generation 
algorithm and adopts a divide and conquers strategy. The following steps are used. (i) Compress 
the database representing frequent items into FP-tree, but retain the itemset association 
information (ii) Divide such a compressed database into a set of conditional databases, each 
associated with one frequent item (iii) Mine each such database separately. 
This algorithm requires two scans of the database to discover all frequent sets.  The main idea of 
the algorithm is to maintain a Frequent Pattern Tree of the database. 
 A frequent pattern tree is a tree structure consisting of an item-prefix-tree and a frequent-item-
header table. The FP-Tree is dependent on the support threshold. For different values of 
threshold the trees are different. Also, it depends on the ordering of the items. The ordering that is 
followed is the decreasing order of the support counts.  
When the database is large, it is sometimes unrealistic to construct a main memory based FP-
tree. An interesting alternative is to first partition the database into a set of projected databases, 
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and then construct an FP-tree and mine it in each projected databases. Such a process can be 
recursively applied to any projected databases if its FP-tree still can not fit in main memory. 
A study on the performance of the FP-growth method shows that it is efficient and scalable for 
mining both long and short frequent patterns, and is about an order of magnitude faster than the 
Apriori algorithm.  
The Pattern Count tree (PC-tree) is the contribution of V. S. Ananthanarayana et al [5] which is a 
complete and compact representation of the database. PC-tree is a data structure, which is used 
to store all the patterns occurring in the tuples of a transaction database, where a count field is 
associated with each item in every pattern, which is responsible for  compact realization of the 
database. 
Each node of the PC-tree consists of (i) item-name (ii) count   and (iii) two pointers called child 
pointer(c) and sibling pointer(s).  
In the node, the item-name field specifies the item that the node represents, the count field 
specifies the number of transactions represented by a portion of the path reaching this node, the 
c-pointer field represents the pointer to the following pattern and the s-pointer field points to the 
node which indicates the subsequent other patterns from the node under consideration. 
It is proved that, construction of PC-tree and generation of all large itemsets requires a single 
database scan.  Because of compactness of PC-tree, the algorithms based on PC-tree are 
scalable. Also, in ordered to discover large itemsets a unique ordered FP-tree, called 
Lexicographically Ordered FP-tree is constructed from a PC-tree without scanning the database. 
 

1.1 Motivation 
One of the key features of most of the existing algorithms is that they assume underlying 
database size is enormous, and involves either a candidate generation process or a non-
candidate generation process. The algorithms with candidate generation process require multiple 
passes over the database and are not storage efficient. In addition, the existing algorithms 
discover all frequent itemsets based on user defined minimum support without considering the 
components such as quantity, cost and other attributes which lead to profit.  
Consider for example a sample database given in Table 1 in which every element of each 
transaction represents either the quantity of the respective attribute or the item. 

  

TABLE 1: Sample Database 
TID/Attributes A B C D 

1 10 5 0 0 

2 0 0 3 0 

3 4 0 4 0 

4 5 2 5 0 

5 0 0 0 10 

 
If an itemset appears in a very few transactions but  in a large quantity, then it is possible that  
buying of this itemsets leads to profit,  will not qualify as frequent itemset based on user defined 
minimum support. This results in a loss of information. In the sample database given in Table 1, if 
the user defined minimum support is 2 transactions, then an item D is not frequent and will not 
appear in the set of frequent itemsets, even though it is bought in a large quantity and leads to 
more profit than other frequent items. This motivated us to propose the following method which 
discovers all frequent itemsets based on user defined minimum quantity. With this method it is 
also possible to discover frequent itemsets based on user defined minimum support. 
 
 

1.2 Frequent itemset and quantity based Frequent itemset or weighted minimum 
support 
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If an itemset satisfies user defined minimum support then we call it a  frequent itemset. If an 
itemset satisfies user defined minimum quantity then we say that it is a quantity based frequent 
itemsets. The weight of an itemset is the ratio of the quantity in which the itemset is bought to the 
number of transactions in which it is present.  For example, if a user defined minimum quantity is 
equal to 4 then the items A, C, D become quantity based frequent one itemets. 

2. PROPOSED METHOD 

Our novel method uses the concept of tree called Q-TID Tree. The Q-TID tree consists of 
information regarding items, the quantity in which the items have been purchased and the TIDs in 
which these items are not present. The structure of this tree is as follows.  

2.1 Structure of the  Q-TID 
The Q-TID tree has three different nodes and is shown in  Figure 1. 

(i) The first type of node is labeled with item name or attribute name and two pointers, one 
pointing to the nodes containing quantity, and another is a child pointer pointing to the 
next attribute. This node represents the head of that particular branch. 

(ii) The second type of node labeled as Quantity1, Quantity2 etc, indicates which particular 
item is purchased. This node has only one pointer pointing to the next object having this 
particular attribute. 

(iii) The third type of node, appears as the last node in every branch of the tree, and is similar 
to the second type, but consists of information corresponding to the transactions 
ids(TIDs),  which do not contain the particular item. This information represents a whole 
number which is obtained, forming prime product of prime numbers. If this product is 
factorized, then it is possible to obtain all the TIDs which do not contain the particular 
item. 

 

 

 
 

FIGURE 1: A  Branch of Q-TID Tree 

 
2.2 Forming the product  corresponding to the TIDs 
In this step mapping of every transaction which does not contain the particular item to a prime 
number, and then its product, is obtained with the already existing number in the last node of 
every branch of the tree. The prime numbers assigned to the TID are shown in  Table 2. For 
example, the first prime number  2 is assigned to 1

st
  TID and a second prime number 3 is 

assigned  to the  2
nd

 TID and so on.   
 
 

TABLE 2: Prime Number Table 
Positive 

integers 

1 2 3 4 5 6 7 8 9 

Prime 

numbers 

2 3 5 7 11 13 17 19 23 
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The prime numbers are used to make our process very simple because of their following 
property. 
If a, b are any two prime numbers with multiplicity m and n then their product is a

m 
b

n
. With this 

product, it is possible to obtain the original prime numbers used for forming the product. 
For example, consider the prime numbers 2, 3, 5 and its product is 30. With this product it is 
possible derive all prime numbers involved in forming the product. Therefore one can see that the 
prime numbers 2, 3 and 5 are involved in forming the product. In our case, these numbers 
represent the TIDs 1, 2 and 3.   The Q-TID tree corresponding to the sample database given in 
Table 1 is shown in Figure 2.  

 
FIGURE 2: Q-TID tree for Table1 

 
 

The Q-TID tree algorithm involves following steps. They are 
A Construction of Q-TID Tree.  
B Removal of infrequent items based on user defined minimum quantity of Q-TID  Tree 
C Discovery of frequent itemsets based on user defined minimum quantity 
D Discovery of frequent itemsets based on user defined weighted minimum support 
 
A Algorithm for constructing Q-TID Tree 

Input:    The database D 
Output:  Q-TID  tree 
Create an attribute or item node labeled with respective item and its corresponding  TID 
node labeled with 1 
for each item I  in a transaction t € D  
do  begin 
    create a node labeled with its quantity and add     
                these nodes  to the respective item or attribute  
                node.  
         If I  is not in t  
        find t

th
  prime number and  its  product with   

          already existing prime number in the last node TID of  
         the branch corresponding to  I. 

            end  
 

B Algorithm for Reducing the  Q-TID  Tree  
Input :   weighted_min_qsup =user specified minimum quantity 
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             n = number of transactions in which a particular item is present 
            Output: Q-TID tree contains only frequent items based on   

user defined quantity in addition to the information  corresponding to the TIDs which 
do not contain a   particular item. 

            for each item or attribute  in  a Q-TID tree   
            do begin 

If sum (quantities of all nodes except a last node/n)  <  weighted_min_qsup   then  
remove those nodes corresponding to the quantities from the branch which 
originates from the attribute node labeled with I  

        end 
 

C Algorithm to discover all frequent itemsets based on quantity  
     Input: A Reduced Q-TID tree, weighted_min_qsup=user specified minimum quantity. 

         F= {set of all frequent one itemsets based on quantity} 
                P=set of all non empty subsets of F excluding the sets containing one attribute. 

    Output: set of all frequent itemsets =FQ . 
    begin 
         FQ = { set of all frequent attributes or one itemset based on quantity } 
         for each f in P do  

begin 
                          T = { TIDs of first attribute in f }  
      for each m in f other than first attribute do 

  begin 
T=T ∩ { TIDs  of m} 

  end 
               If  T is non empty then  
                         If  (sum of quantities of T /|T| ) >= weighted_min_qsup 
      FQ = FQ   U f   

end 
 

D Algorithm to discover all frequent itemsets based on minimum support. 
Input: A Reduced Q-TID tree, min_sup=user specified minimum support, N =Total number of 
transactions. 
L= {set of all frequent one itemsets based on minimum support} 
P(L) ={set of all non empty subsets of L excluding the sets containing one attribute or one 
item }. 
FM = {set of all frequent attributes or one itemset based on minimum support} 
Output: set of all frequent itemsets. FM  
 
for each f in P   
do begin  

T = {prime factors corresponding to TIDs which do not contain the  first attribute in f }  
     for each m in f other than first attribute  
     do begin 
               T=T U { prime factors of corresponding TID s which do not contain m} 
      end 
      If T is non empty  
             If  ( N -  | T | ) >= min_sup 
            FM = FM   U f   
end  

 

Illustration: 

Consider for example, a sample database given in Table 1, 
If  we consider weighted_min_qsup = 4 then  the attributes A, C and D will be frequent in the 
database.  The Reduced Q-TID is shown in  Figure 3. 
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FIGURE 3: A Reduced Q-TID Tree 

 

we observe that   FQ ={A, C, D} . Therefore  
P = {{A, C}, {A, D}{C,D}, {A, C, D} } 
Consider a set {A, C}, which appears in transactions 3 and 4.  
i.e  T={3,4}.  
The TIDs are obtained by using the following procedure . 
The last node of the item A corresponding to the TID contains 33, which involves prime numbers 
3 and 11.  Similarly, the last of C contains 22, which involves prime numbers 2 and 11. The union 
of these numbers will give us set {2, 3, 11}. These numbers correspond to the transaction 1, 2, 5. 
Hence both A and C will occur only in transactions 3 and 4. Further, the sum of their 
corresponding quantities is equal to 9+9=18 and weighted support of {A,C} = 18/2 =9.  
Hence {A, C}is frequent.  
By similar arguments, we found that the sets {A, D}, {C, D} and {A,C, D} are infrequent sets. 
Hence  FQ = { {A}, {C}, {D},{ A, C}} 
Now if  user defined minimum support  is equal to 2 then the items A, B, C will be frequent one 
itemsets. 
Therefore L = {A, B, C} . Therefore  
P(L) = { {A, B}, {A,C}, {B,C}, {A, B, C} }. Now applying above algorithm, we see that  FM = { {A}, 
{B}, {C}}. 
It can be observe from the Q-TID tree that itemsets   
{A, B} is not present in transactions 2, 3 and 5.  
{A, C } is not present in transactions 1, 2 and 5. 
{B, C} is not present in transactions1,  2, 3 and 5. 
{A, B, C}  is not present in transactions 1, 2, 3 and 5. 
Since N =5,  we have supports  of {A, B} = 2,   {A, C } = 2, {B, C}= 2 and {A, B, C} =1. This shows 
that the itemset {A, B, C } is not frequent. 
Now  FM = { {A}, {B}, {C}, {A, B}, {A,C}, {B,C}}. 
 
Note : If an item is present in every transaction, then the node corresponding to the TIDs which 
do not contain that particular item will not appear in the Q-TID Tree.  
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The following example illustrates this situation. Consider a sample database given in Table 3 
which has 3 attributes and 3 tuples. 
 

 
TABLE 3: Sample Database 

TID A1 A2 A3 

T1 3 2 1 

T2 6 2 1 

T3 2 2 4 

 

 
The Q-TID tree corresponding to Table 3 is given in Figure 4.  It does not contain nodes 
corresponding to the TIDs since every item is present in every transaction.  
 

 
Figure 4: Q-TID Tree of Table3 

3. PERFORMANCE ANALYSIS 

Theoretical Analysis 
The algorithm consists of four steps 
A Construction of Q-TID Tree 
If the given database contains N transactions then this  can be done in O(N) time. 
B Removal of infrequent items based on user defined weighted minimum support of 

Q-TID  Tree 
If there are  m  items which are not frequent then all the nodes containing quantity information 
of these m attributes are deleted. If there are on an average g nodes for every attribute then 
this step is in O(mg). 
C Discovery of frequent itemsets based on user defined weighted minimum support 
The major step is the process of  finding power set P. If there are n frequent  1-item attribute 

sets then  this step is in  O(2
n
 ).  

D Discovery of frequent itemsets based on user defined minimum support 
The major step is the process of finding P(L). If there are n frequent  1-item attribute sets then 
this step is in  O(2

n
 ) 

4.   EXPERIMENTAL ANALYSIS 

For the performance analysis, a simulation of buying patterns[10] of the customers in retail 
patterns was generated and in the data set which we used every attribute value of the transaction 



Preetham Kumar & Ananthanarayana V S 

International Journal of Computer Science and Security, (IJCSS) Volume (3) : Issue (3) 224 

was considered as quantity of the corresponding attribute in the database. We compared our 
algorithm with  FP- tree  and Apriori  and  found that ours was  time efficient. 
The above algorithm is implemented and used for discovering frequent itemsets based on 
quantity as well as minimum support for data sets containing the transactions 100, 500, 1000, 
5000 with 20 attributes or items. The time required to discover all frequent itemsets  is shown  
Figure 5  and Figure 6 respectively.  
 

 
FIGURE 5: Q-TID Vs FP-Tree  

The proposed algorithm is superior to  the FP-tree algorithm in following ways: 
1. Scans database only once.  
2. No sorting of each item of the transaction. 
3. No repeatedly searching the header table for maintaining links, while inserting a new     
    node into tree. 

 
FIGURE 6: Q-TID Vs Apriori  

 
The proposed algorithm is superior to the Apriori algorithm in the following ways: 

1. Scans database only once.  
2. It does not involve  candidate generation method. 
 

 

5.  CONCLUSION 

The Q-TID Tree Algorithm is a new method for finding frequent itemsets based on user defined 
quantity and minimum support. It is found that this algorithm is time efficient when compared to the 
FP-tree and Apriori. Since we have used  small data sets, this algorithm can be fine tuned with 
large databases. This method may be modified further to store TIDs more efficiently.  
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